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a b s t r a c t

A new and novel approach for analyzing boundary value problems for linear and for
integrable nonlinear PDEs was recently introduced. For linear elliptic PDEs, an important
aspect of this approach is the characterization of a generalized Dirichlet–Neumann map:
given the derivative of the solution along a direction of an arbitrary angle to the boundary,
the derivative of the solution perpendicularly to this direction is computed without
solving on the interior of the domain. For this computation, a collocation-type numerical
method has been recently developed. Here, we study the collocation’s coefficient matrix
properties. We prove that, for the Laplace’s equation on regular polygon domains with the
same type of boundary conditions on each side, the collocation matrix is block circulant,
independently of the choice of basis functions. This leads to the deployment of the FFT for
the solution of the associated collocation linear system, yielding significant computational
savings. Numerical experiments are included to demonstrate the efficiency of the whole
computation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A new method for solving boundary value problems for linear and for integrable nonlinear PDEs in two dimensions was
introduced by Fokas in [1,2]. This method involves two novel features:

(a) It yields an analytic representation of the solution, in an integral form, in the complex k-plane.
(b) It characterizes a generalized Dirichlet–Neumannmap through the solution of the so-called global relation, an equation,

valid for all complex values of k, which couples known and unknown components of the solution and its derivatives on
the boundary.

For a large class of boundary value problems, the global relation can be solved analytically, and hence the generalized
Dirichlet–Neumann map can be constructed in closed form. This includes linear evolution PDEs with spatial derivatives
of arbitrary order on the half-line [3] and on a finite interval [4], the Laplace, the bi-harmonic and the modified Helmholtz
equation in certain simple polygons [5–7], and the basic nonlinear integrable evolution PDEs on the half-line for certain
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simple boundary conditions [8,9]. However, for general boundary value problems, the global relation must be solved
numerically.

In [5,10] a well conditioned and fast convergent collocation-type numerical method was developed and studied for
the numerical solution of the generalized Dirichlet–Neumann map associated to the generic model problem of Laplace’s
equation on an arbitrary convex polygon domain. The present work, which is a natural continuation of our work in [10],
aims to the efficient solution of the associated collocation linear system. For the case of regular polygon domains, with the
same type of boundary conditions on each side, we prove, among other properties, that the Collocation coefficient matrix
is block circulant, independently of the choice of basis functions. Evidently, therefore, by deploying the Fourier Matrix, the
collocation matrix is transformed into a similar block diagonal matrix, the construction of which is implemented through
the Fast Fourier Transform (FFT), yielding efficient implementation of direct and iterative methods for the solution of the
collocation linear system.

This paper is organized as follows: Section 2 outlines some analytical results, as well as the collocation method of [10].
Section 3 presents the structure and the properties of the collocation coefficient matrix for the case of regular polygons.
And, finally, Section 4 presents the implementation through the FFT as well as numerical results, for a variety of boundary
conditions, to demonstrate the efficiency of the whole computation.

2. Overview

For elliptic PDEs in two dimensions it is convenient to replace the Cartesian coordinates (x, y) with the complex
coordinates (z, z̄) = (x + iy, x − iy). In doing so and using the equations

∂z =
1
2


∂x − i∂y


, ∂z̄ =

1
2


∂x + i∂y


,

Laplace’s equation in the independent variable q can be written in the form

∂2q
∂z∂ z̄

= 0. (2.1)

This equation is equivalent to the equation

∂

∂ z̄


e−ikz ∂q

∂z


= 0, (2.2)

for an arbitrary complex parameter k.
The global relation.

Suppose that the real-valued function q (z, z̄) satisfies Laplace’s Eq. (2.1) in a simply connected bounded domain Dwith
boundary ∂D. Then, Eq. (2.2) together with the complex form of Green’s theorem imply the equation

∂D
e−ikz ∂q

∂z
dz = 0, k ∈ C, (2.3)

which is referred to (cf. [2]) as the global relation associatedwith Laplace’s equation. For the case ofD being a convex bounded
polygon with vertices z1, z2, . . . , zn (modulo n), which have indexed counter-clockwise, the global relation (2.3) becomes

n
j=1


Sj
e−ikz ∂q

∂z
dz = 0, k ∈ C, (2.4)

where Sj denotes the side (zj, zj+1).
The generalized Dirichlet–Neumann map.

Using the identity

∂q
∂z

=
1
2
e−iαj


q(j)
τ + iq(j)

n


, z ∈ Sj, αj = arg


zj+1 − zj


, (2.5)

where q(j)
τ and q(j)

n denote the tangential and (outward) normal components of ∂q
∂z along the side Sj, as well as the local

coordinates

z = mj + shj, zi < z < zi+1, −π < s < π, (2.6)

with

mj =
1
2


zj + zj+1


, hj =

1
2π


zj+1 − zj


, (2.7)

it was shown (e.g. [10]) that:
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Proposition 2.1. Let the real-valued function q (z, z̄) satisfy the Laplace equation in the interior D of the convex bounded polygon
with corners {zi}ni=1 described above. Let g(j) denote the derivative of the solution in the directionmaking an angle βj, 0 ≤ βj ≤ π ,
with the side Sj, namely

cos

βj

q(j)
τ + sin


βj

q(j)
n = g(j), z ∈ Sj, 1 ≤ j ≤ n. (2.8)

Let f (j) denote the derivative of the solution in the direction normal to the above direction, namely

− sin

βj

q(j)
τ + cos


βj

q(j)
n = f (j), z ∈ Sj, 1 ≤ j ≤ n. (2.9)

The generalized Dirichlet–Neumannmap, that is the relation between the sets

f (j)
n
j=1 and


g(j)
n
j=1, is characterized by the single

equation

n
j=1

hj
 ei(βj−kmj)

 π

−π

e−ikhjs

f (j)(s) − ig(j)(s)


ds = 0, k ∈ C. (2.10)

Evaluating Eq. (2.10) on the following n-rays of the complex k-plane

kp = −
l
hp

, l ∈ R+, p = 1, . . . , n, (2.11)

and multiplying the resulting equations by exp

−i(βp + lmp/hp)


/
hp
, Eq. (2.10) yields the following set of n equations:

n
j=1

hj
hp
 ei(βj−βp)e−

il
hp (mp−mj)

 π

−π

eil
hj
hp

s f (j)(s) − ig(j)(s)

ds = 0, (2.12)

with l ∈ R+, p = 1, . . . , n.

Suppose, now, that the function set

g(j)
n
j=1 is known through appropriate boundary data. Then, it becomes apparent that

the generalizedDirichlet–Neumannmap, in its convenient formof (2.12),maybeused to determine the function set

f (j)
n
j=1.

The end values of the unknown functions f (j) can be calculated by the continuity requirements q(j)
z

zj


= q(j−1)
z


zj

. Namely,

rewriting equation (2.5) as

∂q
∂z

=
1
2
e−i(αj−βj)


g(j)

+ if (j) , z ∈ Sj, (2.13)

assuming that g(j) are compatible in the corners and setting δj = αj − βj we obtain (cf. [5])

f (j) (π) =
cos


δj+1 − δj


g(j) (π) − g(j+1) (π)

sin

δj+1 − δj

 ,

f (j) (−π) =
g(j−1) (π) − cos


δj − δj−1


g(j) (−π)

sin

δj − δj−1

 .

The numerical method.
The collocation-type numerical method, developed in [5,11,12,10], for the determination of the function set


f (j)
n
j=1, is

being described in the form of the following proposition (cf. [10]):

Proposition 2.2. Consider the generalized Dirichlet–Neumann map in Proposition 2.1. Suppose that the set

g(j)
n
j=1 is given.

Suppose that f (j) (s) is approximated by

f (j)
N (s) = f (j)

∗
(s) +

N
r=1

U j
rϕr(s), j = 1, . . . , n, N even integer, (2.14)

where ϕr(s) are appropriate basis functions, N is even and

f (j)
∗

(s) =
1
2π


(s + π) f (j) (π) − (s − π) f (j) (−π)


.

Then, the real coefficients U j
r satisfy the Nn algebraic set of equations

n
j=1

hj
hp
 ei(βj−βp)e−i l

hp (mp−mj)
N

r=1

U j
rFr


lhj

hp


= Gp (l) , p = 1, 2, . . . , n, (2.15)
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Fig. 3.1. Regular n-gon with vertices zj , sides Sj and interior D.

where Gp (l) denotes the known function

Gp (l) = i
n

j=1

hj
hp
 ei(βj−βp)e−i l

hp (mp−mj)
 π

−π

eil
hj
hp

s
(g(j)(s) + if (j)

∗
(s))ds, (2.16)

Fr (l) denotes the integral

Fr (l) =

 π

−π

eilsϕr(s)ds, r = 1, 2, . . . ,N, (2.17)

and l is chosen as follows: For the imaginary part of Eqs. (2.15)

l = 1, 2, . . . ,N/2,

whereas for the real part of Eqs. (2.15),

l =
1
2
,
3
2
, . . . ,

N − 1
2

.

It is worthwhile to point out that different choices of the basis functions ϕr(s) affect the convergence rate and the condition
number of the method, as well as the structure of the coefficient matrix (cf. [10] for a detailed treatment).

3. Matrix properties for regular polygons

Let us now consider the regular polygon, depicted in Fig. 3.1, with vertices zj and sides Sj, j = 1, . . . , n (modulo n),
indexed counter-clockwise, and interior D. For notational simplicity and without any loss of the generality, we assume that
the polygon is centered at the origin, scaled and oriented so that one vertex (say z1) is located at 1, that is z1 = 1. Setting
θ =

2π
n , the vertices may be written as

zj = ωj−1, ω = eiθ , j = 1, . . . , n, (3.1)

and the angle αj of the side Sj from the real axis (measured counterclockwise) is given by

αj = arg(zj+1 − zj) =
1
2
[π + (2j − 1)θ ] =

π

2
+ (2j − 1)

π

n
, j = 1, . . . , n. (3.2)

Suppose that the real-valued function q (z, z̄) satisfies the Laplace’s equation in the interiorD of the regular n-gon, described
above, subject to the same type of oblique Neumann boundary conditions on all sides, that is

cos (β) q(j)
τ + sin (β) q(j)

n = g(j), z ∈ Sj, 1 ≤ j ≤ n. (3.3)

Dirichlet and Neumann boundary conditions correspond to the special cases of β = 0 and β =
π
2 respectively.
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Recalling, now, the local coordinates of (2.6) and observing that their parametrization of (2.7) is expressed as

mj =
1
2


zj + zj+1


= |mj|ei(αj−

π
2 )

= cos
π

n


ei(2j−1) π

n = cos
π

n


ω(2j−1)/2, (3.4)

and

hj =
1
2π


zj+1 − zj


= |hj|eiaj = i

1
π

sin
π

n


ei(2j−1) π

n = i
1
π

sin
π

n


ω(2j−1)/2, (3.5)

it follows easily, from Proposition 2.1, that:

Corollary 3.1. Let the real-valued function q (z, z̄) satisfy the Laplace equation in the interior D of the regular n-gon with corners
{zi}ni=1 described above in this section. Let g(j), defined in (3.3), denote the derivative of the solution in the direction making an
angle β , 0 ≤ β ≤ π , with the side Sj, and let f (j) denote the derivative of the solution in the direction normal to the above
direction. The generalized Dirichlet–Neumann map is characterized by the single equation

n
j=1

e−ikmj

 π

−π

e−ikhjs

f (j)(s) − ig(j)(s)


ds = 0, k ∈ C, (3.6)

which, upon evaluation on the n-rays of the complex k-plane defined in (2.11), yields the following set of n equations:

n
j=1

elφωjp

 π

−π

eilωjps

f (j)(s) − ig(j)(s)


ds = 0, l ∈ R+, p = 1, . . . , n (3.7)

where

φ = π cot
π

n
, ωjp = ωj−p (3.8)

and ω = eiθ being as in (3.1).

Proof. The relations

mp − mj

hp
= iφ(ωjp − 1) and

hj

hp
= ωjp, (3.9)

together with the appropriate simplifications of constant quantities, relax Eq. (2.12) to (3.7) and the proof follows
immediately. �

As an immediate consequence of Corollary 3.1 and its combination with Proposition 2.2, one may readily obtain that:

Corollary 3.2. Consider the generalized Dirichlet–Neumann map in Corollary 3.1. Suppose that the set

g(j)
n
j=1 is given

through (3.3) and that the set

f (j)
n
j=1 is approximated by


f (j)
N

n
j=1

defined in (2.14). Then, the real coefficients U j
r satisfy the Nn

algebraic set of equations

n
j=1

elφωjp
N

r=1

U j
rFr

lωjp


= Gp (l) , p = 1, 2, . . . , n, (3.10)

where Gp (l) denotes the known function

Gp (l) = i
n

j=1

elφωjp

 π

−π

eilωjps(g(j)(s) + if (j)
∗

(s))ds, (3.11)

Fr (l) denotes the integral

Fr (l) =

 π

−π

eilsϕr(s)ds, r = 1, 2, . . . ,N, (3.12)

φ and ωjp are as defined in (3.8), and l is chosen as in Proposition 2.2, namely: For the imaginary part of Eqs. (3.10) l =

1, 2, . . . ,N/2, whereas for the real part of Eqs. (3.10) l = 1
2 ,

3
2 , . . . ,

N−1
2 .
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System’s structure.
Following Corollary 3.2, let C(p, j, l, r) be defined by

C(p, j, l, r) = elφωjpFr

lωjp


= elφωjp

 π

−π

eilωjpsϕr(s)ds, (3.13)

with CR(p, j, l, r) and CI(p, j, l, r) to denote its real and imaginary parts respectively, that is

CR(p, j, l, r) = Re[C(p, j, l, r)] and CI(p, j, l, r) = Im[C(p, j, l, r)]. (3.14)

Let, also, Cp,j ∈ RN,N denote the real N × N matrix with elements

Cp,j = {cp,j2l,r}, cp,j2l,r =


CR(p, j, l, r), l =

1
2
,
3
2
, . . . ,

N − 1
2

CI(p, j, l, r), l = 1, 2, . . . ,N/2
, r = 1, 2, . . . ,N. (3.15)

If, now, Uj ∈ RN,1 and Gp ∈ RN,1 denote the real vectors

Uj = {U j
r}

N
r=1 = [U j

1 U j
2 · · · U j

N ]
T , (3.16)

and

Gj = {Gp
ℓ}

N
ℓ=1 = [Gp

1 Gp
2 · · · Gp

N ]
T , (3.17)

where

Gp
ℓ =


Gp
R(l), l =

1
2
,
3
2
, . . . ,

N − 1
2

,

Gp
I (l), l = 1, 2, . . . ,N/2,

, ℓ = 2l, (3.18)

with Gp
R(l) and Gp

I (l) to denote respectively the real and imaginary parts of Gp(l) in (3.11), then it can be easily seen that:

Proposition 3.1. The linear system, described by Eqs. (3.10)–(3.12) in Corollary 3.2, is given by

CU = G, C ∈ RnN,nN , U,G ∈ RnN , (3.19)

where

C =


C1,1 · · · C1,j · · · C1,n
... · · ·

... · · ·
...

Cp,1 · · · Cp,j · · · Cp,n
... · · ·

... · · ·
...

Cn,1 · · · Cn,j · · · Cn,n

 , U =


U1
...
Uj
...
Un

 , G =


G1
...
Gp
...
Gn

 , (3.20)

with Cp,j,Uj and Gp are as defined in (3.15)–(3.17).

Proof. Recall (3.13)–(3.14) and observe that the set of equations in (3.10) is written as

n
j=1

N
r=1

C(p, j, l, r)U j
r = Gp (l) , p = 1, 2, . . . , n (3.21)

or, equivalently, as

n
j=1

N
r=1

CR(p, j, l, r)U j
r = Gp

R (l) and
n

j=1

N
r=1

CI(p, j, l, r)U j
r = Gp

I (l) . (3.22)

The above set of equations, by using (3.15) and (3.18), is expressed as

n
j=1

N
r=1

cp,j2l,rU
j
r = Gp

2l, p = 1, 2, . . . , n (3.23)

and, by letting l = 1
2 , 1,

3
2 , 2, . . . ,

N−1
2 , N

2 , as

n
j=1

Cp,jUj = Gp, p = 1, 2, . . . , n, (3.24)

which completes the proof. �
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Coefficient matrix properties.
To reveal, now, the properties of the coefficient matrix C of (3.20) we first prove that:

Proposition 3.2. The coefficient matrix C, defined in relations (3.19)–(3.20) of Proposition 3.3, is block circulant. Namely,

C = bcirc{C1, C2, . . . , Cn} =



C1 C2 C3 · · · Cn−1 Cn
Cn C1 C2 · · · Cn−2 Cn−1
Cn−1 Cn C1 · · · Cn−3 Cn−2
...

...
...

. . .
...

...
C3 C4 C5 · · · C1 C2
C2 C3 C4 · · · Cn C1

 , (3.25)

where

Cj = C1,j, j = 1, . . . , n (3.26)

and C1,j are as defined in (3.15).

Proof. It suffices to prove that, for any µ = 1, . . . , n − 1, the matrices Cp,j (p, j = 1, . . . , n) of (3.15) satisfy

Cp,j = Cp′,j′ , (3.27)

where

p′
=


p + µ, 1 ≤ µ ≤ n − p
p + µ − n, n − p + 1 ≤ µ ≤ n − 1 (3.28)

and

j′ =


j + µ, 1 ≤ µ ≤ n − j
j + µ − n, n − j + 1 ≤ µ ≤ n − 1 . (3.29)

For this, recall C(p, j, r, l) from (3.13) and observe that, for fixed r and l, there holds

C(p′, j′, r, l) = C(p, j, r, l) (3.30)

since, from (3.1) and (3.8), ω±n
= 1 and

ωj′p′ = ωj′−p′

= ωj−p
= ωjp. (3.31)

Evidently, therefore, for fixed r and l, we obtain, from (3.15), that

cp,j2l,r = cp
′,j′

2l,r , (3.32)

and the proof follows. �

We know (e.g. [11,13]) that the block circulant property of the coefficient matrix C allows its block diagonal factorization.
To be specific, let Fn ∈ Cn,n denote the Fourier Matrix, that is

Fn =


1 1 1 · · · 1
1 ω ω2

· · · ωn−1

1 ω2 ω4
· · · ω2(n−1)

...
...

... · · ·
...

1 ωn−1 ω2(n−1)
· · · ω(n−1)(n−1)

 , (3.33)

where ω = ei2π/n is as in (3.1). Let also Pn ∈ Rn,n denote the cyclic permutation matrix

Pn =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1
1 0 0 · · · 0

 =


On−1,1 In−1

1 O1,n−1


, (3.34)

where Iq denotes the q×q identity matrix and Op,q the p×q null matrix. It is, also, well known that, among other celebrated
properties,

F−1
n =

1
n
F∗

n , (3.35)
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where F∗
n denotes the conjugate transpose, while

Pn
n = In and Pℓ

n =


On−ℓ,ℓ In−ℓ

Iℓ Oℓ,n−ℓ


for ℓ = 1, . . . , n − 1, (3.36)

and, furthermore,

Pn = FnΩnF−1
n , Ωn = diag(1, ω, ω2, . . . , ωn−1). (3.37)

If we now let ⊗ and ⊕ denote the Kronecker product and direct sum of matrices, respectively, then (see Thm. 5.6.4 of [13]):

Proposition 3.3. The block circulant matrix C, defined in (3.25) of Proposition 3.2, is expressed as

C = (Fn ⊗ IN)


n

ℓ=1


n

j=1

ω(ℓ−1)(j−1)Cj


(F−1

n ⊗ IN). (3.38)

Proof. Observing that

C =

n
j=1


P j−1
n ⊗ IN

  n
ℓ=1

Cj



=

n
j=1


FnΩ j−1

n F−1
n


⊗ IN

  n
ℓ=1

Cj



=

n
j=1

(Fn ⊗ IN)

Ω j−1

n ⊗ IN
 

F−1
n ⊗ IN

  n
ℓ=1

Cj



= (Fn ⊗ IN)


n

j=1


Ω j−1

n ⊗ IN
  n

ℓ=1

Cj


(F−1

n ⊗ IN)

= (Fn ⊗ IN)


n

j=1


n

ℓ=1

ω(ℓ−1)(j−1)Cj


(F−1

n ⊗ IN)

the proof follows. �

At this point we would like to conclude this section with the following remarks:

Remark 3.1. For the case of regular polygons with the same type boundary conditions on all sides, the coefficient matrix C
of (3.25) is independent of the angle βj = β the derivative of the solution is makingwith the side Sj. Namely, C is independent
of the type (i.e. Dirichlet, Neumann or Mixed) of Boundary Conditions.

Remark 3.2. The coefficient matrix properties revealed in this section are independent of the choice of basis functions and
the number of polygon sides. However, certain choices of basis functions may enrich the properties of the coefficient matrix.
For example, for the natural choice of sine basis functions, i.e.

ϕr(s) = sin

r


π + s
2


, (3.39)

studied in [10], and in addition to the property that the block diagonal submatrices of C are point diagonal, that is (cf. [10])

C1 = π diag(1, −1, −1, 1, . . . , (−1)N−1, (−1)N), (3.40)

it takes only a few algebraic manipulations to verify that (cf. [12]), for regular polygons with the same type of boundary
conditions on all sides, there also holds

Cn−j+2 = DCjD, D = diag(1, −1, . . . , 1, −1), j = 2, . . . , n̂, (3.41)

where n̂ = n/2 if n = even while n̂ = (n+ 1)/2 if n = odd. Similarly, if one considers the case of a square domain, with the
same type of boundary conditions on all sides, then, independently of the choice of basis functions, one may easily verify
(cf. [14]) that

C2 = C4 = O and C3 = D̂C1, D̂ = diag(d1, . . . , dN), (3.42)

with dr = (−1)r−1e−rπ , r = 1, . . . ,N .
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4. Implementation & numerical verification

Having in mind that the cost for solving the linear system in (3.19), by the classical LU-factorization, is O

n3N3


, in this

sectionwe are aiming at the efficient implementation of the results in Propositions 3.2 and 3.3 and its numerical verification.
For this purpose, recall the relation (3.38) and observe that, upon substitution in (3.19), the linear system at hand may be
written as

Au = g, (4.1)

where

A = bdiag(A1, . . . , An) =

n
ℓ=1

Aℓ, Aℓ =


n

j=1

ω(ℓ−1)(j−1)Cj


, (4.2)

u =

F−1
n ⊗ IN


U, (4.3)

and

g =

F−1
n ⊗ IN


G, (4.4)

with Cj,U andG and Fn to be as defined in (3.26), (3.20) and (3.33), respectively. The cost of the solution, by the classical LU , of
the equivalent block diagonal system in (4.1) has already been reduced to O


nN3


, implying substantial savings especially

for regular polygons with a large number of sides. Of course, in addition to this cost, one has to consider also the cost to
convert the system from its form in (3.19) into the form of (4.1). And in order to enjoy the said cost savings, this conversion
has to be efficient. In this direction, aiming at the efficient deployment of the FFT, let us first observe thatA1

...
An

 = (Fn ⊗ IN)

C1
...
Cn

 , (4.5)

and prove that:

Lemma 4.1. Given the Fourier matrix in (3.33) there holds

E(Fn ⊗ IN)ET
=

N
r=1

Fn, (4.6)

where E ∈ RnN,nN denotes the permutation matrix

E =


E1
...
Er
...
EN

 , Er = In ⊗ eTr ∈ Rn,nN , r = 1, . . . ,N, j = 1, . . . , n, (4.7)

with er to denote the r − th unit vector of RN,1.

Proof. Simply observe that:

E(Fn ⊗ IN)ET
=

In ⊗ eT1
...

In ⊗ eTN

 (Fn ⊗ IN)

In ⊗ e1 · · · In ⊗ eN



=

In ⊗ eT1
...

In ⊗ eTN

Fn ⊗ e1 · · · Fn ⊗ eN


=


Fn O · · · O
O Fn · · · O
...

...
. . .

...
O O · · · Fn

 ,

and the proof follows. �
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Table 4.1
Regular 8-gon (n = 8).

Method N = 16 N = 128
Regular FFT Regular FFT
E∞ Time E∞ Time E∞ Time E∞ Time

LU 4.93E−04 0.023 4.93E−04 0.002 8.22E−06 25 8.22E−06 0.345
BiCGSTAB 4.93E−04 0.004 4.93E−04 0.006 8.22E−06 0.226 8.15E−06 0.233
GMRES 4.92E−04 0.005 4.93E−04 0.006 8.74E−06 0.227 8.09E−06 0.269

Table 4.2
Regular 16-gon (n = 16).

Method N = 16 N = 128
Regular FFT Regular FFT
E∞ Time E∞ Time E∞ Time E∞ Time

LU 2.71E−04 0.184 2.71E−04 0.004 4.46E−06 470 4.46E−06 0.742
BiCGSTAB 2.70E−04 0.013 2.71E−04 0.011 5.46E−06 0.744 3.91E−06 0.576
GMRES 2.70E−04 0.014 2.71E−04 0.014 5.82E−06 0.763 4.62E−06 0.837

Table 4.3
Regular 24-gon (n = 24).

Method N = 16 N = 128
Regular FFT Regular FFT
E∞ Time E∞ Time E∞ Time E∞ Time

LU 1.40E−04 0.622 1.40E−04 0.006 2.23E−06 1540 2.23E−06 1.150
BiCGSTAB 1.41E−04 0.024 1.40E−04 0.018 5.72E−06 1.300 8.86E−06 0.970
GMRES 1.41E−04 0.032 1.40E−04 0.028 3.57E−06 1.510 2.23E−06 2.370

Table 4.4
Regular 32-gon (n = 32).

Method N = 16 N = 128
Regular FFT Regular FFT
E∞ Time E∞ Time E∞ Time E∞ Time

LU 8.68E−05 1.490 8.68E−05 0.010 1.34E−06 4390 1.34E−06 1.570
BiCGSTAB 8.67E−05 0.060 8.69E−05 0.020 1.30E−06 3.160 2.08E−06 1.290
GMRES 8.74E−05 0.110 8.67E−05 0.080 1.88E−06 6.880 1.50E−06 4.980

Table 4.5
Regular 40-gon (n = 40).

Method N = 16 N = 128
Regular FFT Regular FFT
E∞ Time E∞ Time E∞ Time E∞ Time

LU 6.05E−05 3.090 6.05E−05 0.010 8.73E−07 7560 8.73E−07 1.990
BiCGSTAB 6.02E−05 0.110 6.08E−05 0.030 8.62E−07 7.130 8.92E−07 1.860
GMRES 3.27E−04 0.310 6.08E−05 0.140 2.35E−03 12.50 1.97E−03 7.660

Table 4.6
Regular 48-gon (n = 48).

Method N = 16 N = 128
Regular FFT Regular FFT
E∞ Time E∞ Time E∞ Time E∞ Time

LU 5.09E−05 9.180 5.09E−05 0.010 6.69E−07 13900 6.69E−07 2.610
BiCGSTAB 4.32E−05 0.190 5.09E−05 0.040 7.73E−07 12.80 7.34E−07 2.500
GMRES 1.06E−02 0.380 2.50E−03 0.220 1.27E−02 15.50 1.32E−02 10.70

Evidently, therefore, we can writeA1
...
An

 = ET


N

r=1

Fn


E

C1
...
Cn

 , (4.8)
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Fig. 4.1. Performance of the LU-factorization with (FFT) and without (regular) applying the FFT formulation (cases of N = 16 and N = 128).

g = ET


N

r=1

F−1
n


E G, (4.9)

and

U = ET


N

r=1

Fn


E u. (4.10)

Hence, the cost of computing the vectors g or U is equivalent to the cost of applying N independent (parallel) IFFT/FFTs
of order n, that is O(Nn log n). Similarly, the cost of computing the matrices Aℓ, ℓ = 1, . . . , n is equivalent to the cost of
performingN2 independent (parallel) FFTs of order n, that isO(N2n log n). Thus, by following relations (4.8)–(4.10), the total
cost of constructing and solving the system in (4.1) is O(N3n + N2n log n).

To demonstrate the efficiency of our implementation we consider the solution of the model Laplace’s equation, with
exact solution (cf. [5,11,12,10])

q(x, y) = sinh(3x) sin(3y), (4.11)
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Fig. 4.2. Performance of the BiCGSTABmethod with (FFT) and without (regular) applying the FFT formulation (cases of N = 16 and N = 128).

by the direct LU-factorizationmethod and, twomain representatives of theKrylov subspace iterativemethods, the BiCGSTAB
and the GMRES(10) methods. The basis functions used are the sine functions defined in (3.39), and the relative error E∞,
used to demonstrate the convergence behavior of the methods considered, is given by

E∞ =
∥f − fN∥∞

∥f ∥∞

, (4.12)

where

∥f ∥∞ = max
1≤j≤n


max

−π≤s≤π
|f (j)(s)|


(4.13)

and

∥f − fN∥∞ = max
1≤j≤n


max

−π≤s≤π
|f (j)(s) − f (j)

N (s)|


, (4.14)

with f (j)
N as in (2.14), and themax over s is taken over a dense discretization of the interval [−π, π]. For the direct solution of

the linear systems we have used the standard LAPACK routines, while for the computation of the right hand side vector we



Y.G. Saridakis et al. / Journal of Computational and Applied Mathematics 236 (2012) 2515–2528 2527

Fig. 4.3. Comparison of LU and BiCGSTAB methods, both using the FFT formulation, for the cases of N = 16 and N = 128.

have used a routine (dqawo) from QUADPACK implementing the modified Clenshaw–Curtis technique. We have considered
the un-preconditioned forms of the both BiCGSTAB and GMRES iterative methods. However, we point out that, as we are
using the sine basis functions, the diagonal blocks C1, defined in (3.26), are point diagonal matrices (cf. [10]), hence the
coefficient matrix C of (3.25) may be considered as block Jacobi preconditioned. The maximum number of iterations, allowed
for all iterative methods to perform, is set to 200 and the zero iterate U (0) is set to be equal to the right hand side vector.
The results we have included refer to the representative cases of regular polygons with 8, 16, 24, 32, 40 and 48 vertices. All
polygons are constructed as in [5]. All experiments were conducted on a multiuser SUN V240 system using the Fortran-90
compiler.

Inspecting Tables 4.1–4.6 and Figs. 4.1–4.3 it can be readily verified that:

• Applying the FFT formulation, all direct and iterative methods perform significantly faster, especially the direct solution
method (LU-factorization, Fig. 4.1).

• The un-preconditioned BiCGSTAB iterative method outperforms the un-preconditioned GMRES(10), while GMRES fails
to converge within 200 iterations for polygons with medium to large number of edges.

• Iterative methods compete with direct only for large number of basis functions (Fig. 4.3).
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5. Conclusions and remarks

Wehave studied the coefficientmatrix properties of the collocation linear systemassociatedwith theDirichlet–Neumann
map for linear PDEs in regular polygon domains with the same type of boundary conditions. It was shown (Section 3) that,
independently of the choice of basis functions, thematrix is block circulant and independent of the boundary conditions. These
properties allowed the use of the FFT (Section 4), for the efficient solution of the collocation linear system, with significant
improvement of the performance for both direct and iterative methods considered. The set of matrix properties may be
expanded if one considers certain choices of basis functions (see Remark 3.2).

We note that an investigation for thematrix properties for other cases of regular and irregular polygons has already been
undertaken. Preliminary results for these cases may be also found in [12] where:

• For the case of regular polygons with different type of boundary conditions on each side of the polygon it has been shown
(cf. [12]) that the collocation matrix is dependent from the boundary conditions and, although not circulant, has the form

C = D1C1 + D2C2

where the matrices Cj (j = 1, 2) are block circulant while the matrices Dj (j = 1, 2) are diagonal. This property allows
for the deployment of FFT whenever iterative methods are used for the solution of the collocation system.

• For the case of irregular polygons the collocation matrix is just a general matrix. A numerical treatment of this case has
been included in [12].
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