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and (A, b, c)-strong optimality of interval linear programming with inequality constraints
are developed. The features of the proposed methods are illustrated by some examples.
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1. Introduction

The interval linear programming (IvLP) problems have been investigated bymany authors, see, e.g., [1–11], among others.
Nevertheless, there are only few results on the issue of optimal solutions for a general IvLP, i.e., where the objective cost
vector, the coefficient matrix and the right hand vector are all interval vectors or interval matrices. In this paper, we will
introduce some new concepts of optimal solutions of IvLP in a unified framework. Necessary and sufficient conditions for
checking some types of optimality are developed.

Let us introduce some notation. The i-th row of a matrix A ∈ Rm×n is denoted by Ai,·, the j-th column by A.,j. An interval
matrix is defined as

A = [A, A] = {A ∈ Rm×n
; A ≤ A ≤ A},

where A, A ∈ Rm×n, and A ≤ A. Similarly, we define an interval vector as an one column interval matrix

b = [b, b] = {b ∈ Rm
; b ≤ b ≤ b},

where b, b ∈ Rm, and b ≤ b. The set of allm-by-n intervalmatriceswill be denoted by IRm×n and the set of allm-dimensional
interval vectors by IRm.

Denote by Ac and A∆ the center and radius matrices given by

Ac =
1
2
(A + A), A∆ =

1
2
(A − A),
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respectively. Then A = [Ac − A∆, Ac + A∆]. Similarly, the center and radius vectors are defined as

bc =
1
2
(b + b), b∆ =

1
2
(b − b)

respectively. Then b = [bc − b∆, bc + b∆].
Let Ym be the set of all {−1, 1} m-dimensional vectors, i.e.

Ym = {y ∈ Rm
| | y |= e},

where e = (1, . . . , 1)T is the m-dimensional vector of all 1,s. For a given y ∈ Ym, let

Ty = diag(y1, . . . , ym)

denote the corresponding diagonal matrix. For each x ∈ Rn, we define its sign vector sign x by

(sign x)i =


1 if xi ≥ 0,
−1 if xi < 0,

where i = 1, . . . , n. Then we have |x| = Tzx, where z = sign x ∈ Yn.
For a given interval matrix A = [Ac − A∆, Ac + A∆], and for each vector y ∈ Ym and each vector z ∈ Yn, we introduce the

matrices

Ayz = Ac − TyA∆Tz,

which means

(Ayz)ij = (Ac)ij − yi(A∆)ijzj =


aij if yizj = −1,
aij if yizj = 1.

where i = 1, . . . ,m, j = 1, . . . , n. Similarly, for an interval vector b = [bc − b∆, bc + b∆] and for each vector y ∈ Ym, we
define vector

by = bc + Tyb∆,

which means

(by)i = (bc)i + yi(b∆)i =


bi if yi = 1,
bi if yi = −1.

where i = 1, . . . ,m.

2. Unified optimal solution concepts of IvLP and some preliminaries

Consider an LP problem

min cT x subject to x ∈ M(A, b), (1)

where M(A, b) is the feasible set characterized by a linear system.
Let A ∈ IRm×n, b ∈ IRm and c ∈ IRn be given. By an IvLP problem we mean a family of the LP (1), where A ∈ A, b ∈

b, c ∈ c. We write it in short as

min cT x subject to x ∈ M(A, b). (2)

By a realizationwe mean a concrete setting (1).
In the IvLP theory, one of the following canonical forms

(A) M(A, b) = {x ∈ Rn
;Ax = b, x ≥ 0},

(B) M(A, b) = {x ∈ Rn
;Ax ≤ b},

(C) M(A, b) = {x ∈ Rn
;Ax ≤ b, x ≥ 0}

is usually assumed [3,7].

2.1. Optimal solution concepts of IvLP

We first review some concepts briefly. A vector x ∈ Rn is called a weak feasible solution of the IvLP (2) if it is a feasible
solution of the LP (1) for some A ∈ A, b ∈ b. A vector x ∈ Rn is called a strong feasible solution of the IvLP (2) if it is a feasible
solution of the LP (1) for each A ∈ A, b ∈ b [5,7]. Recently, new concepts of the optimal solution to IvLP are proposed in a
unified framework [12].
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Definition 2.1 ([12]).
(1) A vector x ∈ Rn is called a (∅)-strong optimal solution (or a weak optimal solution) of the IvLP (2) if it is an optimal

solution of the LP (1) for some A ∈ A, b ∈ b and c ∈ c.
(2) A vector x ∈ Rn is called a (c)-strong optimal solution of the IvLP (2) if for each c ∈ c it is an optimal solution of the LP

(1) for some A ∈ A, b ∈ b.
(3) A vector x ∈ Rn is called a (b)-strong optimal solution of the IvLP (2) if for each b ∈ b it is an optimal solution of the LP

(1) for some A ∈ A, c ∈ c.
(4) A vector x ∈ Rn is called an (A)-strong optimal solution of the IvLP (2) if for each A ∈ A it is an optimal solution of the

LP (1) for some b ∈ b, c ∈ c.
(5) A vector x ∈ Rn is called an (A, b)-strong optimal solution of the IvLP (2) if for each A ∈ A, b ∈ b it is an optimal solution

of the LP (1) for some c ∈ c.
(6) A vector x ∈ Rn is called an (A, c)-strong optimal solution of the IvLP (2) if for each A ∈ A, c ∈ c it is an optimal solution

of the LP (1) for some b ∈ b.
(7) A vector x ∈ Rn is called a (b, c)-strong optimal solution of the IvLP (2) if for each b ∈ b, c ∈ c it is an optimal solution

of the LP (1) for some A ∈ A.
(8) A vector x ∈ Rn is called an (A, b, c)-strong optimal solution of the IvLP (2) if for each A ∈ A, b ∈ b, c ∈ c it is an optimal

solution of the LP (1).

The solution concepts of IvLp are closely related with that of interval linear systems. Various solutions of interval linear
equations and interval linear inequalities are investigated by different authors, see, e.g., [13–16]. Mixed interval systems are
discussed in [17]. In Definition 2.1, we consider quantified solution sets where all universally quantified parameters precede
all existentially quantified ones. From this point of view, the proposed solution concept can be seen as an extension of the
so called AE solutions proposed in [18]. Some recent developments on AE solutions set of interval systems can be found
in [19,20].

Some kinds of optimal solutions of IvLP have been studied by different authors. These optimal solutions are special cases
of Definition 2.1. For example, the optimal solution discussed in [5,7,8] is a weak optimal solution (or a (∅)-strong optimal
solution). The strong optimal solution discussed in [21] is a (c)-strong optimal solution. To discuss all kinds of optimal
solutions of IvLP for all three types A, B, and C may not be a suitable task in one paper. Recently, necessary and sufficient
conditions for checking (A, b)-strong and (A, b, c)-strong optimal solutions to IvLP of type A and B are given in [12,22],
respectively. In this paper, we focus on the (A, b)-strong optimal solutions and (A, b, c)-strong optimal solutions to IvLP
of type C and propose some necessary and sufficient conditions for checking them. It is worth mentioning that Hladík [7]
discussed the strongly optimality whichmeans the IvLP (2) has an optimal solution for each realization (optimal solution for
each realization can be different), whereas an (A, b, c)-strong optimal solution defined abovemeans there is a same optimal
solution to each realization of the IvLP (2). It can be seen later from the theoretical conclusions and illustrative examples
that the various strong optimal solutions exist not only on rare occasions.

2.2. Preliminaries

We remind some basics of tangent cones first. Let x∗ be a feasible solution to a convex polyhedral setM(A, b). The tangent
cone toM(A, b) at the point x∗ is formed by all rays emanating from x∗ and intersectingM(A, b) in at least one point distinct
from x∗. Hladík [7] presented the tangent cone to the feasible setM(A, b) of some linear constraints below.

The tangent cone toM(A, b) = {x ∈ Rn
; Ax = b, x ≥ 0} at the point x∗ reads

Ax = 0,
xtj ≥ 0 tj ∈ F ,

where F = {tj|j = 1, . . . , p, x∗
tj = 0}.

The tangent cone toM(A, b) = {x ∈ Rn
; Ax ≤ b} at the point x∗ reads

Ari,·x ≤ 0 ri ∈ G,

where G = {ri|i = 1, . . . , q, Ari,·x
∗

= bri}.
Finally, the tangent cone to M(A, b) = {x ∈ Rn

; Ax ≤ b, x ≥ 0} at the point x∗ can be transformed from tangent cone
above.

Lemma 2.1. Let x∗
∈ M(A, b) = {x ∈ Rn

; Ax ≤ b, x ≥ 0}. Denote

F = {tj|j = 1, . . . , p, x∗

tj = 0},

G = {ri|i = 1, . . . , q, Ari,·x
∗

= bri}.

Then the tangent cone at x∗ reads

Ari,·x ≤ 0 ri ∈ G,

xtj ≥ 0 tj ∈ F .
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Proof. The linear system Ax ≤ b, x ≥ 0 is equivalent to
A
−I


x ≤


b
0


,

where I is an n × n identity matrix, and 0 is an n × 1 null matrix. Let

A1
=


A
−I


, b1 =


b
0


,

then we have A1x ≤ b1, so the tangent cone toM(A1, b1) = {x ∈ Rn
; A1x ≤ b1} at x∗ is

A1
si,·x ≤ 0 si ∈ G1, (3)

where

G1
= {si|i = 1, . . . , u, A1

si,·x
∗

= b1si}

= {ri|i = 1, . . . , q, Ari,·x
∗

= bri}


{tj|j = 1, . . . , p, −Itj,·x
∗

= 0}

Hence, the tangent cone (3) is equivalent to

Ari,·x ≤ 0 ri ∈ G,

xtj ≥ 0 tj ∈ F .

This completes the proof of Lemma 2.1. �

Without loss of generality, let a tangent cone toM(A, b) at x∗ be described by Dx ≤ 0.

Lemma 2.2 ([7]). A vector x∗
∈ M(A, b) is an optimal solution of the LP problem

min cT x subject to x ∈ M(A, b)

if and only if the linear inequality system
Dy ≤ 0,
cTy ≤ −1 (4)

has no solution.

Thus, x∗ is an optimal for some c ∈ c if and only if the system (4) is unsolvable for some c ∈ c.
The following result holds for a special case of IvLP (interval objective function only).

Theorem 2.1 ([7]). A vector x∗
∈ M(A, b) is a weak optimal solution of the IvLP problem

min cT x subject to x ∈ M(A, b)

if and only if there is no solution to the linear systemD(x1 − x2) ≤ 0,
cT x1 − cT x2 ≤ −1,
x1, x2 ≥ 0.

(5)

Now we review some concepts for later use [5,7].
A system is feasiblemeans that the system has a nonnegative solution, and the nonnegative solution is a feasible solution

to the system. An interval system is feasiblemeans that some realizations of the interval system have a nonnegative solution,
and the nonnegative solution is a weak feasible solution to the interval system. An interval system is strong feasible means
that each realization of the interval system has a nonnegative solution, and a solution which is a common feasible solution
to each realization of the interval system is called a strong feasible solution to the interval system. A strong feasible solution to
an IvLP means that it is a feasible solution to each realization of the IvLP.

Theorem 2.2 ([14]). A system Ax ≤ b is strong feasible if and only if the system

Ax ≤ b (6)

is feasible.

Corollary 2.1. A vector x∗
∈ Rn is a strong feasible solution of Ax ≤ b if and only if it is a feasible solution to the system

Ax ≤ b. (7)
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Proof. ‘‘Only if’’: Let x∗ be a strong feasible solution to Ax ≤ b, then for each A ∈ A, b ∈ b, x∗ is a feasible solution to Ax ≤ b.
Hence x∗ is a feasible solution to (7).

‘‘If’’: Let x∗ be a feasible solution to (7). Note that x∗
≥ 0, thus for each A ∈ A, b ∈ b, the inequality

Ax ≤ Ax ≤ b ≤ b

holds. Hence x∗ is a strong feasible solution to Ax ≤ b. This completes the proof of the corollary. �

Theorem 2.3 ([14]). A system Ax ≤ b is weakly solvable if and only if the system

Aezx ≤ b (8)

is solvable for some z ∈ Yn.

From the proof in [14] we know that a weak solution of Ax ≤ b is a solution of the system (8). Similarly, a solution of the
system (8) is a weak solution of Ax ≤ b.

Let A be a 1-by-n interval matrix, then we have e = 1 in the system (8). Hence we get the corollary below and it will be
used in Section 4 for clarity.

Corollary 2.2. Let c ∈ IRn, b ∈ IR1, then the system cT x ≤ b is weakly solvable if and only if the inequality

(cT )ezx ≤ b (9)

is solvable for some z ∈ Yn, where e = 1.

Let A ∈ IRm×n, b ∈ IRm and c ∈ IRn. Consider the IvLP of type C

min cT x subject to Ax ≤ b, x ≥ 0. (10)

In next two sections, we will discuss the IvLP (10) and propose two necessary and sufficient conditions for checking
(A, b)-strong optimality and (A, b, c)-strong optimality of given vectors respectively.

3. (A, b)-strong optimal solutions

In this section, we will propose the necessary and sufficient conditions for checking (A, b)-strong optimality of given
vectors.

Theorem 3.1. Let x∗
∈ Rn. Denote

F = {tj|j = 1, . . . , p, x∗

tj = 0},

G = {ri|i = 1, . . . , q, Ari,·x
∗

= bri}.

Then x∗ is an (A, b)-strong optimal solution to (10) if and only if x∗ is a strong feasible solution to (10), and the linear system


Ari,·(x

1
− x2) ≤ 0 i = 1, . . . , q, (a)

(x1 − x2)tj ≥ 0 j = 1, . . . , p, (b)
cT x1 − cT x2 ≤ −1, (c)
x1, x2 ≥ 0 (d)

(11)

has no solution.

Proof. ‘‘Only if’’: Let x∗ be an (A, b)-strong optimal solution to (10), then x∗ is a strong feasible solution to (10) and x∗ is a
weak optimal solution to the IvLP problem

min cT x subject to Ax ≤ b, x ≥ 0. (12)

The tangent cone to the feasible region of (12) at x∗ reads
Ari,·x ≤ 0 i = 1, . . . , q,
xtj ≥ 0 j = 1, . . . , p. (13)

Let matrix E = (eij)n×n, where

eij =


1 i = j ∈ F ,
0 others.
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Denote

D =


Ar1,·
Ar2,·
...

Arq,·
−E

 .

Then the tangent cone (13) can be written as Dx ≤ 0.
Note that x∗ is a weak optimal solution to the IvLP (12), then it follows from Theorem 2.1 that the associated system (5)D(x1 − x2) ≤ 0,

cT x1 − cT x2 ≤ −1,
x1, x2 ≥ 0

has no solution. Hence the linear system (11)(a)–(d) has no solution.
‘‘If’’: Let x∗ be a strong feasible solution to (10), then x∗ is a feasible solution to the IvLP problem (12). Because the linear

system (11)(a)–(d) has no solution, from the proof above we have the associated system (5) has no solution. It follows from
Theorem2.1 that x∗ is aweak optimal solution to the IvLP (12), that is, for some c0 ∈ cwehave c0x∗

= min{c0x|x ∈ M(A, b)}.
For each A ∈ A, b ∈ b, x∗ is a feasible solution to the IvLP problem

min cT x subject to Ax ≤ b, x ≥ 0. (14)

It is obvious that

M(A, b) = {x ∈ Rn
|Ax ≤ b, x ≥ 0} ⊆ M(A, b) = {x ∈ Rn

|Ax ≤ b, x ≥ 0}.

Thus, we have

c0x∗
= min{c0x|x ∈ M(A, b)} ≤ min{c0x|x ∈ M(A, b)}.

Because x∗
∈ M(A, b), we have c0x∗

= min{c0x|x ∈ M(A, b)}, that is, x∗ is an optimal solution to the LP problem

min (c0)T x subject to Ax ≤ b, x ≥ 0.

Thus, x∗ is a weak optimal solution to the IvLP (14) for each A ∈ A, b ∈ b. Hence x∗ is an (A, b)-strong optimal solution to
(10). This completes the proof of the theorem. �

4. (A, b, c)-strong optimal solutions

In this section, we will propose the necessary and sufficient conditions for checking (A, b, c)-strong optimality of given
vectors.

Theorem 4.1. Let x∗
∈ Rn. Denote

F = {tj|j = 1, . . . , p, x∗

tj = 0},

G = {ri|i = 1, . . . , q, Ari,·x
∗

= bri}.

Then x∗ is an (A, b, c)-strong optimal solution to (10) if and only if x∗ is a strong feasible solution to (10), and for each c ∈ c the
linear system

Ari,·y ≤ 0 i = 1, . . . , q, (a)
ytj ≥ 0 j = 1, . . . , p, (b)
cTy ≤ −1 (c)

(15)

has no solution.

Proof. ‘‘Only if’’: Let x∗ be an (A, b, c)-strong optimal solution to (10), then x∗ is a strong feasible solution to (10) and for
each c ∈ c, x∗ is an optimal solution to the LP problem

min cT x subject to Ax ≤ b, x ≥ 0. (16)

The tangent cone to the feasible region of (16) at x∗ reads
Ari,·x ≤ 0 i = 1, . . . , q,
xtj ≥ 0 j = 1, . . . , p. (17)
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Let matrix E = (eij)n×n, where

eij =


1 i = j ∈ F ,
0 others.

Denote

D =


Ar1,·
Ar2,·
...

Arq,·
−E

 .

Then the tangent cone (17) can be written as Dx ≤ 0.
Note that x∗ is an optimal solution to the LP (16), then it follows from Lemma 2.2 that the associated system (4)

Dy ≤ 0,
cTy ≤ −1

has no solution. Hence for each c ∈ c the linear system (15)(a)–(c) has no solution.
‘‘If’’: Let x∗ be a strong feasible solution to (10), then for each c ∈ c, x∗ is a feasible solution to the LP (16). Because for

each c ∈ c the linear system (15)(a)–(c) has no solution, from the proof above we have the associated system (4) has no
solution. It follows from Lemma 2.2 that x∗ is an optimal solution to the LP (16), that is, for each c ∈ c we have cx∗

=

min{cx|x ∈ M(A, b)}.
For each A ∈ A, b ∈ b, c ∈ c, x∗ is a feasible solution to the LP problem

min cT x subject to Ax ≤ b, x ≥ 0. (18)

It is obvious that

M(A, b) = {x ∈ Rn
|Ax ≤ b, x ≥ 0} ⊆ M(A, b) = {x ∈ Rn

|Ax ≤ b, x ≥ 0}.

Thus, we have

cx∗
= min{cx|x ∈ M(A, b)} ≤ min{cx|x ∈ M(A, b)}.

Because x∗
∈ M(A, b), we have cx∗

= min{cx|x ∈ M(A, b)}, that is, x∗ is an optimal solution to the LP (18). Hence x∗ is an
(A, b, c)-strong optimal solution to (10). This completes the proof of the theorem. �

Theorem 4.1 presents the necessary and sufficient conditions for checking (A, b, c)-strong optimality of given vectors.
However, it is not effective since it demands that the linear system (15)(a)–(c) has no solution for each c ∈ c. To make the
checking conditions more effective, we first prove a lemma. It is easy to see that the necessary and sufficient conditions
described in Theorem 4.1 are equivalent to the conditions that x∗ is a strong feasible solution to (10), and the interval linear
system

Ari,·y ≤ 0 i = 1, . . . , q,
ytj ≥ 0 j = 1, . . . , p,
cTy ≤ −1

(19)

has no weak solution.

Lemma 4.1. Let x∗
∈ Rn be a strong feasible solution to (10). Denote

F = {tj|j = 1, . . . , p, x∗

tj = 0},

G = {ri|i = 1, . . . , q, Ari,·x
∗

= bri}.

Then the interval linear system (19) has no weak solution if and only if for each h = (h1, . . . , hn−p)
T

∈ Yn−p, the linear
system

Ari,·y ≤ 0 i = 1, . . . , q,
ytj ≥ 0 j = 1, . . . , p,
p

j=1

ctjytj +
n

j=p+1

((cc)tj + hj−p(c∆)tj)ytj ≤ −1
(20)

has no solution.
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Proof. ‘‘Only if’’: We prove this part by contradiction. Assume that the interval linear system (19) has no weak solution, but
the linear system (20) has a solution y∗ for some h ∈ Yn−p. Then y∗ satisfies

p
j=1

ctjytj +
n

j=p+1

((cc)tj + hj−p(c∆)tj)ytj ≤ −1.

Let

−h1
tj =


−1 j = 1, . . . , p,
hj−p j = p + 1, . . . , n.

Clearly, h1
= (h1

t1 , . . . , h
1
tn)

T
∈ Yn and the system

(cT )eh1y
∗

=

n
j=1

((cc)tj − e(c∆)tjh
1
tj)y

∗

tj

=

n
j=1

((cc)tj + (−h1
tj)(c∆)tj)y

∗

tj

=

p
j=1

ctjy
∗

tj +

n
j=p+1

((cc)tj + hj−p(c∆)tj)y
∗

tj ≤ −1

holds, where e = 1. From Corollary 2.2 we know that y∗ is a weak solution to cTy ≤ −1, that is, y∗ is a solution to cTy ≤ −1
for some c ∈ c. Hence y∗ is a solution to the linear system

Ari,·y ≤ 0 i = 1, . . . , q,
ytj ≥ 0 j = 1, . . . , p,

cTy ≤ −1

for some c ∈ c, thus, y∗ is a weak solution to the interval linear system (19). This is a contradiction, so the linear system (20)
has no solution for each h ∈ Yn−p.

‘‘If’’: We prove this part by contradiction. Assume that for each h ∈ Yn−p the linear system (20) has no solution, but the
interval linear system (19) has a weak solution y∗. Then y∗ is a weak solution to cTy ≤ −1. From Corollary 2.2 we know that
y∗ is a solution to (cT )eh1y ≤ −1 for some h1

= (h1
t1 , . . . , h

1
tn)

T
∈ Yn. Let hj−p = −h1

tj , j = p+1, . . . , n, and clearly, h ∈ Yn−p.
Because y∗

tj ≥ 0 j = 1, . . . , p, the inequality

p
j=1

ctjy
∗

tj +

n
j=p+1

((cc)tj + hj−p(c∆)tj)y
∗

tj ≤

p
j=1

((cc)tj + (−h1
tj)(c∆)tj)y

∗

tj +

n
j=p+1

((cc)tj + hj−p(c∆)tj)y
∗

tj

=

n
j=1

((cc)tj + (−h1
tj)(c∆)tj)y

∗

tj

=

n
j=1

((cc)tj − e(c∆)tjh
1
tj)y

∗

tj

= (cT )eh1y
∗

≤ −1

holds. Hence y∗ satisfies the linear system (20) for the h ∈ Yn−p. This is a contradiction, so the interval linear system (19)
has no weak solution. This completes the proof of the lemma. �

The above discussion leads to Theorem 4.2.

Theorem 4.2. Let x∗
∈ Rn. Denote

F = {tj|j = 1, . . . , p, x∗

tj = 0},

G = {ri|i = 1, . . . , q, Ari,·x
∗

= bri}.

Then x∗ is an (A, b, c)-strong optimal solution to (10) if and only if x∗ is a strong feasible solution to (10), and for each h ∈ Yn−p
the linear system (20) has no solution.

Obviously, Theorem 4.2 is more effective than Theorem 4.1, since Theorem 4.2 has only 2n−p linear systems, whereas
Theorem 3.1 has infinitely many linear systems, to be solved.
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5. Illustrative examples

In this section, we will solve two examples by using the presented methods in the previous sections.

Example 1. Consider the IvLP problem

min [−1, 0]x1 + [−2, 0]x2 + [−1, 2]x3
s.t x1 + 2x2 + [−1, 1]x3 ≤ 3, (21)
x1 + [−1, 3]x2 + [1, 2]x3 ≤ [4, 5],
x1, x2, x3 ≥ 0.

Let x∗
= (1, 1, 0)T . Clearly, x∗ solves Ax ≤ b, x ≥ 0, hence x∗ is a strong feasible solution to (21).

To use the conditions given in Theorem 3.1, first, note that the sets

F = {tj|j = 1, . . . , p, x∗

tj = 0} = {3}, G = {ri|i = 1, . . . , q, Ari,·x
∗

= bri} = {1}.

Then, the corresponding linear system (11)(a)–(d) is given by

(1, 2, −1)(x1 − x2) ≤ 0,
(x1 − x2)3 ≥ 0,
(0, 0, 2)x1 − (−1, −2, −1)x2 ≤ −1,
x1, x2 ≥ 0,

where x1 = (x11, x
1
2, x

1
3), x

2
= (x21, x

2
2, x

2
3). The linear system above can be written as

(x11 − x21) + 2(x12 − x22) − (x13 + x23) ≤ 0, (a)
x13 − x23 ≥ 0, (b)
2x13 + x21 + 2x22 + x23 ≤ −1, (c)
x11, x

2
1, x

1
2, x

2
2, x

1
3, x

2
3 ≥ 0. (d)

(22)

From (22)(c) and x11, x
1
2, x

1
3, x

2
3 ≥ 0, we have the linear system (22)(a)–(d) has no solution. From Theorem 3.1 we know that

x∗ is an (A, b)-strong optimal solution to (21).
We describe in detail, a method by which a cost vector c ∈ c can be found such that x∗ is an optimal solution to a

realization of (21) for given A ∈ A and b ∈ b. For a given A ∈ A and b ∈ b, say for example,

A =


1 2 0
1 1 1


, b =


3
4


.

Then we have the IvLP problem

min [−1, 0]x1 + [−2, 0]x2 + [−1, 2]x3
s.t x1 + 2x2 ≤ 3,
x1 + x2 + x3 ≤ 4,
x1, x2, x3 ≥ 0.

Let us check that x∗ is a weak optimal solution to the IvLP above, that is, for some c = (c1, c2, c3) ∈ c, x∗ is an optimal
solution to the LP

min c1x1 + c2x2 + c3x3
s.t x1 + 2x2 ≤ 3, (23)
x1 + x2 + x3 ≤ 4,
x1, x2, x3 ≥ 0.

Let the set G1
= {r1i |i = 1, . . . , q1, Ar1i ,·x

∗
= br1i } = {1}, hence from Lemma 2.2, we know the linear system

(1, 2, 0)y ≤ 0,
y3 ≥ 0,
cTy ≤ −1

has no solution, that is, the linear system

y1 + 2y2 ≤ 0,
y3 ≥ 0,
c1y1 + c2y2 + c3y3 ≤ −1
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has no solution. Clearly, the linear system above has no solution when c = (−1, −2, 0)T . Substituting c = (−1, −2, 0)T
into the LP (23), we have the LP problem

min − x1 − 2x2
s.t x1 + 2x2 ≤ 3,
x1 + x2 + x3 ≤ 4,
x1, x2, x3 ≥ 0.

It is easy to know that x∗ is an optimal solution to the LP above.

Example 2. Consider the IvLP problem

min − x1 − 2x2 + [1, 2]x3
s.t x1 + 2x2 + [−1, 1]x3 ≤ 3, (24)
x1 + [−1, 3]x2 + [1, 2]x3 ≤ [4, 5],
x1, x2, x3 ≥ 0.

Let x∗
= (1, 1, 0)T . Clearly, x∗ solves Ax ≤ b, x ≥ 0, hence x∗ is a strong feasible solution to (24).

To use the conditions given in Theorem 4.2, first, note that the sets

F = {tj|j = 1, . . . , p, x∗

tj = 0} = {3}, G = {ri|i = 1, . . . , q, Ari,·x
∗

= bri} = {1}.

Then, the corresponding linear system (20) is given byA1,·y ≤ 0,
y3 ≥ 0,
c3y3 + [(cc)1 + h1(c∆)1]y1 + [(cc)2 + h2(c∆)2]y2 ≤ −1,

(25)

where h = (h1, h2)
T

∈ Y2, y = (y1.y2, y3)T . Note that (c∆)1 = (c∆)2 = 0 and hence h1(c∆)1 = h2(c∆)2 = 0, so the linear
system (25) becomesy1 + 2y2 − y3 ≤ 0,

y3 ≥ 0,
−y1 − 2y2 + y3 ≤ −1.

(26)

It is easy to see that the linear system (26) has no solution. From Theorem 4.2 we know that x∗ is an (A, b, c)-strong optimal
solution to (24).

6. Conclusion

In this paper, we introduce new concepts of optimal solutions of IvLP in a unified framework. Some previously discussed
concepts of IvLP, e.g., weak optimal solutions and strong optimal solutions, are special cases in this framework. Efficient
methods to check (A, b)-strong optimality and (A, b, c)-strong optimality of given vectors for type C IvLP are developed.
The necessary and sufficient conditions for checking (A, b)-strong optimality and (A, b, c)-strong optimality of given vectors
for type B IvLP are to appear in a forthcoming paper.

Future work includes checking methods for (A)-strong optimal solutions, (b)-strong optimal solutions, (c)-strong
optimal solutions, (b, c)-strong optimal solutions and (A, c)-strong optimal solutions for type A, B and C type IvLP,
respectively. Interval nonlinear programming problems are also studied by some authors [23–28]. The methodology of this
paper can be applicable to make a generalization of the solution concepts for these interval programs.
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