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a b s t r a c t

The class of general linear methods for ordinary differential equations combines the ad-
vantages of linear multistep methods (high efficiency) and Runge–Kutta methods (good
stability properties such as A-, L-, or algebraic stability), while at the same time avoiding
the disadvantages of these methods (poor stability of linear multistep methods, high cost
for Runge–Kutta methods). In this paper we describe the construction of algebraically sta-
ble general linear methods based on the criteria proposed recently by Hewitt and Hill. We
also introduce the new concept of ϵ-algebraic stability and investigate its consequences.
Examples of ϵ-algebraically stable methods are given up to order p = 4.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider the solution of an initial value problem for a system of differential equations
y′(t) = f


y(t)


, t ∈ [t0, T ],

y(t0) = y0,
(1.1)

f : Rm
→ Rm, by the general linear method (GLM) of the form
Y [n]
i = h

s
j=1

aijf (Y
[n]
j ) +

r
j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y[n]
i = h

s
j=1

bijf (Y
[n]
j ) +

r
j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

(1.2)

i = 1, 2, . . . ,N . Here, N is a positive integer, h = (T − t0)/N is a fixed stepsize, tn = t0 + nh, Y [n]
i is an approximation of

stage order q to y(tn−1 + cih), that is

Y [n]
i = y(tn−1 + cih) + O(hq+1), i = 1, 2, . . . , s, (1.3)

and y[n]
i is an approximation of order p to a linear combination of scaled derivatives of the solution y to (1.1), i.e., y[n]

i satisfy
the relations

y[n]
i = qi,0y(tn) + qi,1hy′(tn) + · · · + qi,phpy(p)(tn) + O(hp+1), i = 1, 2, . . . , r, (1.4)
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with some scalars qi,j. Such methods are characterized by the abscissa vector c = [c1, . . . , cs]T , four coefficient matrices
A ∈ Rs×s,U ∈ Rs×r , B ∈ Rr×s,V ∈ Rr×r , the vectors q0, q1, . . . , qp given by

q0 =

q1,0
...

qr,0

 , q1 =

q1,1
...

qr,1

 , . . . , qp =

q1,p
...

qr,p

 ,

and four integers: p—the order, q—the stage order, r—the number of external approximations, and s—the number of stages
or internal approximations. We assume throughout the paper that p = q = r = s and that the coefficient matrices A and V
have the form

A =


λ

a2,1 λ
a3,1 a3,2 λ
...

...
. . .

. . .

as,1 as,2 · · · as,s−1 λ

 , V =


1 v1,2 v1,3 · · · v1,r
0 v2,2 v2,3 · · · v2,r
...

...
. . .

. . .
...

0 0 · · · vr−1,r−1 vr−1,r
0 0 0 · · · vr,r

 ,

λ > 0, −1 ≤ vj,j < 1, j = 2, 3, . . . , r . This representation of V implies that the GLM (1.2) is zero-stable, i.e., that the matrix
V is power bounded (cf. [1]). The above representation for A implies that the methods we will consider are of type known
as diagonally-implicit multi-stage integration methods (DIMSIMs). These methods were first introduced in [2] and further
investigated in [3–6]. It is the purpose of this paper to construct new classes of algebraically stable DIMSIMs using the recent
criteria proposed by Hewitt and Hill [7]. These criteria are described in Section 4.

We introduce next the notions of method equivalence and reducibility following the presentation in [8] (compare
also [1]). We say that the GLMs defined by the coefficient matrices

A U
B V


and

 A UB V


are equivalent if there exists a permutation matrix P ∈ Rs×s and a nonsingular matrix Q ∈ Rr×r such that A UB V


=


PTAP PTUQ
Q−1BP Q−1VQ


.

The GLM (1.2) is said to be reducible if s = s1 + s2 and r = r1 + r2 + r3 with s2 + r2 + r3 > 0, and there exists an equivalent
GLM with a sparsity pattern of the form

s1 s2 r1 r2 r3
s1

s2

r1
r2
r3


A11 0 U11 0 U13

A21 A22 U21 U22 0

B11 0 V11 0 V13

B21 B22 V21 V22 V23

0 0 0 0 V33

 .

In this case the GLM (1.2) can be reduced to a GLM with coefficient matrices
A11 U11

B11 V11


with s1 internal stages and r1 external stages. The method is said to be irreducible if it is not reducible.

The organization of this paper is as follows. In Section 2 we review the stage order and order conditions for GLMs (1.2)
following the presentation in [2,1], and derive representation formulas for the coefficient matrices U, B, and the vector qp.
In Section 3 we survey algebraic stability of GLMs, introduce a new concept of ϵ-algebraic stability, and investigate its con-
sequences. In Section 4 we review some technical tools to investigate algebraic and ϵ-algebraic stability. In Section 5 we use
the criteria proposed by Hewitt and Hill [7] to search for algebraically and ϵ-algebraically stable DIMSIMswith p = q = r =

s = 2. In Sections 6 and 7 this search is extended to higher order methods with p = q = r = s = 3 and p = q = r = s = 4,
respectively. In Section 8we present the results of some numerical experimentswhich demonstrate that ϵ-algebraically sta-
ble methods constructed in Sections 5–7 do not suffer from order reduction. Finally, in Section 9 some concluding remarks
are given and plans for future work are outlined.

2. Stage order and order conditions

In this section we review the conditions on the abscissa vector c, coefficient matrices A,U, B,V, and the vectors
q0, q1, . . . , qp which guarantee that the method (1.2) has stage order q = p and order p. To formulate these conditions,
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taking into account (1.3) and (1.4), we assume that the components y[n−1]
i of the input vector y[n−1] for the step from tn−1 to

tn satisfy the relations

y[n−1]
i =

p
k=0

qi,khky(k)(tn−1) + O(hp+1), i = 1, 2, . . . , r. (2.1)

Then the method (1.2) has stage order q = p and order p if

Y [n]
i = y(tn−1 + cih) + O(hp+1), i = 1, 2, . . . , s, (2.2)

and

y[n]
i =

p
k=0

qi,khky(k)(tn) + O(hp+1), i = 1, 2, . . . , r, (2.3)

for scalars ci and for the same scalars qi,k. Define the vectorw(z) by

w(z) =

p
k=0

qk zk.

We have the following theorem expressing the order and stage order conditions (2.2) and (2.3) in terms of the coefficients
of the GLM.

Theorem 2.1 (Compare [2,9]). The method (1.2) has stage order q = p and order p, i.e., the relation (2.1) implies (2.2) and (2.3),
if and only if

ecz = zAecz + Uw(z) + O(zp+1), (2.4)

and

ezw(z) = zBecz + Vw(z) + O(zp+1). (2.5)

Here, ecz = [ec1z, ec2z, . . . , ec
sz
]
T .

This theorem is very convenient in a symbolic manipulation environment. Comparing the free terms in (2.4) and (2.5) leads
to the preconsistency conditions

Uq0 = e, Vq0 = q0,

where e = [1, 1, . . . , 1]T ∈ Rs. The vector q0 is called the preconsistency vector. For DIMSIMs this vector may be taken
as q0 = [1, 0, . . . , 0]T . Comparing terms of the first order in (2.4) and (2.5) leads to stage-consistency and consistency
conditions

Ae + Uq1 = c, Be + Vq1 = q0 + q1.

The vector q1 is called the consistency vector.
We derive next the representation formulas for the coefficient matrix U in terms of c,A and q0, . . . , qp−1, for the vector

qp in terms of c,A and U, and for the coefficient matrix B in terms of c,V and q1, . . . , qp. Put

C =


e c

c2

2!
· · ·

cp−1

(p − 1)!


∈ Rs×s,

K =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 ∈ Rs×s, F =



1
1
2!

· · ·
1

(p − 1)!
1
p!

1 1 · · ·
1

(p − 2)!
1

(p − 1)!

0 1 · · ·
1

(p − 3)!
1

(p − 2)!
...

...
. . .

...
...

0 0 · · · 1 1
0 0 · · · 0 1


∈ R(s+1)×s,

W =

q0 q1 · · · qp


∈ Rs×(s+1),

and partition the matrixW as

W =


q0 W0


=


Wp qp

, W0,Wp ∈ Rs×s.

We have the following theorem.
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Theorem 2.2. Assume that p = q = r = s. Moreover, assume that ci ≠ cj for i ≠ j and that the matrix Wp is nonsingular.
Assume also the definitions for C,K, F,W,W0, andWp as given above. Then if the method (1.2) has stage order q = p and order
p we have

U =

C − ACK


W−1

p , (2.6)

and if U is nonsingular then

qp = U−1

cp

p!
− A

cp−1

(p − 1)!


. (2.7)

Moreover, the matrix B is given by

B =

WF − VW0


C−1. (2.8)

Proof. Expanding (2.4) into power series with respect to z and comparing the powers of z from zero to p leads to the system
of equations

Uq0 = e,
Uq1 + Ae = c,

Uq2 + Ac =
c2

2!
,

...

Uqp−1 + A
cp−2

(p − 2)!
=

cp−1

(p − 1)!
,

Uqp + A
cp−1

(p − 1)!
=

cp

p!
.

(2.9)

The first p equations of (2.9) can be written in a vector form as

U

q0 q1 · · · qp−1


+ A


0 e c · · ·

cp−2

(p − 2)!


=


e c

c2

2!
· · ·

cp−1

(p − 1)!


,

which is equivalent to (2.6) and the last equation of (2.9) is equivalent to (2.7). Expanding next (2.5) into power series with
respect to z and comparing the powers of z from zero to p we obtain the relation q0 = Vq0 and the system of equations

q0 + q1 = Be + Vq1,

1
2!

q0 + q1 + q2 = Bc + Vq2,

...

1
(p − 1)!

q0 +
1

(p − 2)!
q1 + · · · + qp−1 = B

cp−2

(p − 2)!
+ Vqp−1,

1
p!

q0 +
1

(p − 1)!
q1 + · · · + qp = B

cp−1

(p − 1)!
+ Vqp.

This system can be written in vector form as

WF = BC + VW0,

which is equivalent to (2.8). This completes the proof. �

3. Algebraic stability

The notion of algebraic stability of GLMs (1.2) was introduced by Burrage and Butcher [10] and further investigated
in [11–13,8,14].

Definition 3.1. The GLM (1.2) is said to be algebraically stable if there exist a real, symmetric, and positive definite matrix
G ∈ Rr×r and a real, diagonal, and positive definite matrix D ∈ Rs×s such that the matrixM defined by

M :=


DA + ATD − BTGB DU − BTGV

UTD − VTGB G − VTGV


(3.1)

is nonnegative definite.
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Wewill writeM ≥ 0 if the matrix is nonnegative definite andM > 0 ifM is positive definite. Note that the above definition
requires G > 0 and D > 0.

We would like to observe that the original definition of algebraic stability presented in [10] required only that both
matrices G and D be nonnegative definite (i.e., G ≥ 0 and D ≥ 0), while the definition presented in the monograph [15]
requires only that G is positive definite and D is nonnegative definite (i.e., G > 0 and D ≥ 0). The recent result of Hewitt
and Hill [16] shows that all these definitions are equivalent for a large class of GLMs (1.2). This result reads as follows.

Theorem 3.1. Assume that for an irreducible GLM (1.2) with coefficients c,A,U, B, and V, the matrix M defined by (3.1) is
nonnegative definite for some real, symmetric and nonnegative definite matrix G and a real, diagonal and nonnegative definite
matrix D. Then G and D are positive definite.

An interesting illustration of this theorem will be given in Section 3.
Itwas demonstrated in [10] that thematricesG andD appearing in the definition of algebraic stability are not independent

but rather are related by the equation

De = BTGq0,

where q0 is the preconsistency vector. Moreover, it follows from Lemma 9.5 in [15] that Gq0 is a left eigenvector of the
matrix V corresponding to the eigenvalue 1, i.e.,

(I − VT )Gq0 = 0.

These relationships between G and D are useful in investigations of algebraic stability.
We will now discuss some implications of algebraic stability of GLMs. To this end consider the test problem

y′(t) = f

y(t)


, t ≥ 0, (3.2)

f : Rm
→ Rm, such that for some inner product ⟨·, ·⟩ on Rm the function f satisfies the monotonicity condition
y, f (y)


≤ 0, (3.3)

for all y ∈ Rm. It can be demonstrated that any solution y to (3.2) with f satisfying (3.3) satisfies the conditiony(t + τ)
 ≤

y(t) (3.4)

for all t ≥ 0 and τ > 0, compare [17]. Here, ∥ · ∥ is the corresponding inner product norm ∥y∥ =
√

⟨y, y⟩. We would like
to point out again that in the original paper [10] it was assumed only that ⟨·, ·⟩ is a semi-inner product on Rm and ∥ · ∥ the
corresponding semi-norm on Rm.

A GLM (1.2) which reflect the non-increasing nature of the solution y to (3.2) as given by (3.4) will be called monotonic.
To give a precise formulation of this property we have to choose a norm on the space Rmr (since the computed solution y[n]

is represented by a vector in this space). Let

u =

uT
1 uT

2 · · · uT
r

T
∈ Rmr , v =


vT
1 vT

2 · · · vT
r

T
∈ Rmr ,

ui, vj ∈ Rr , and for a symmetric and positive definite matrix G = [gij] ∈ Rr×r we define the inner product ⟨·, ·⟩G on Rmr and
the corresponding inner product norm ∥ · ∥G by the formulas

u, v

G =

r
i=1

r
j=1

gij

ui, vj


,

uG =


u, u


G.

Then the GLM (1.2) is said to be monotonic ify[n]

G ≤

y[n−1]

G, (3.5)

n = 1, 2, . . . . It was proved in [10] that if the GLM (1.2) is algebraically stable then

y[n]
2
G −

y[n−1]
2
G = 2

s
i=1

di

Y [n]
i , hf (Y [n]

i )

−

r+s
i=1

r+s
j=1

mij

αi, αj


, (3.6)

where di are diagonal elements of the matrix D, mij are elements of the matrix M given by (3.1), and the vector α ∈ Rm(r+s)

is defined by

α =

(y[n−1]

1 )T · · · (y[n−1]
r )T hf (Y [n]

1 )T · · · hf (Y [n]
s )T

T
.

If the GLM (1.2) is algebraically stable then both terms on the right hand side of (3.6) are non-positive, so the GLM (1.2) is
also monotonic, i.e., the numerical solution y[n] satisfies the monotonicity condition (3.5).

It will be demonstrated in Sections 5–7, that it is difficult to satisfy exactly conditions for algebraic stability, especially
for high order methods, and for ϵ > 0 we define a weaker property of ϵ-algebraic stability.
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Definition 3.2. The GLM (1.2) is said to be ϵ-algebraically stable if there exist a real, symmetric, and positive definite matrix
G ∈ Rr×r and a real, diagonal, and positive definite matrix D ∈ Rs×s such that the matrix M defined by (3.1) satisfies the
relation

βT Mβ ≥ −ϵβTβ (3.7)

for any β ∈ Rm(r+s).

Clearly, for ϵ = 0 this definition reduces to Definition 3.1 of algebraic stability. Taking into account that if (3.7) holds then

−

r+s
i=1

r+s
j=1

mij

αi, αj


= −αTMα ≤ ϵ

y[n−1]
2
G + h2ϵ

f (Y [n])
2
G,

the next result is a consequence of Eq. (3.6).

Theorem 3.2. Assume that the GLM (1.2) is ϵ-algebraically stable. Then the numerical solution y[n] resulting from application
of (1.2) to (3.2) with f subject to (3.3) satisfies the relationy[n]

2
G ≤ (1 + ϵ)

y[n−1]
2
G + h2ϵ

f (Y [n])
2
G, (3.8)

n = 1, 2, . . . .

Hence, if the method (1.2) is ϵ-algebraically stable then it is no longer necessarily contractive, but the growth of the square
of the norm ∥y[n]

∥G may still be acceptable for small values of ϵ and moderate stepsizes h.

4. Technical tools to investigate algebraic and ϵ-algebraic stability

The construction of algebraically stable GLMs is a highly nontrivial task and so far only a few examples of such methods
are known in the literature on this subject. Perhaps themost interesting family of suchmethods is presented by Burrage [11],
who found algebraically stable formulas in the special subclass of GLMs, namely the class ofmultistep Runge–Kuttamethods
of order p = 2s. This construction utilizes an elegant extension of the collocation approach for Runge–Kutta methods. An
early example of GLM with p = 4, q = 3, and s = r = 2 was constructed by Dekker [18,17]. Other isolated examples of
algebraically stable methods are given in [16,7,19–21] and examples of ϵ-algebraically stable GLMs of order up to four are
given in [20,21], although the terminology of ϵ-algebraic stability was not used in these papers.

The search for coefficients c,A,U, B,V and the vectors q0, q1, . . . , qp of GLMs, symmetric positive definite matrix G and
diagonal positive definite matrix D such the matrix M is nonnegative definite is quite tedious and so far only successful for
some classes of GLMs with a relatively small number of external stages r and internal stages s. In this search the verification
of the conditionM ≥ 0 can be somewhat simplified by the observation by Hewitt and Hill [16] which is based on the Albert
theorem [22]. Assume thatM ∈ R(s+r)×(s+r) is partitioned as

M =

 M11 M12

MT
12 M22


,

where M11 ∈ Rs×s,M12 ∈ Rs×r ,M22 ∈ Rr×r . Then it follows from the Albert result [22] thatM ≥ 0 if and only if

M11 ≥ 0, M22 − MT
12M

+

11M12 ≥ 0, M11M+

11M12 = M12, (4.1)

or

M22 ≥ 0, M11 − M12M+

22M
T
12 ≥ 0, M22M+

22M
T
12 = MT

12. (4.2)

Here,A+ stands for theMoore–Penrose pseudoinverse of thematrixA [23,24]. Hence,we can reduce the problemof checking
if thematrixM of dimension r+s is nonnegative definite to two smaller problemswithmatrices of dimension s and r or r and
s, respectively, and some extra equality constraints, as given in (4.1) or (4.2). The examples of algebraically stable GLMs found
using this technique and some additional observations about the structure of thematrixG, the so calledminimality property,
are given in [16]. In [19] a technique from control theory is proposed where the candidate G matrices for an algebraically
stable GLMmay be obtained in terms of the generalized eigenvectors of a generalized eigenproblem related to the condition
M ≥ 0 and defined in terms of the coefficient matrices A,U, B, and V. The detailed description of this algorithm is also
presented in [19] and its applicability illustrated on some known algebraically stable GLMs from [25,16,18,17].

Due to the limitations of symbolic manipulation packages the criteria based on (4.1) or (4.2) may be very difficult to
apply for GLMs with larger number of external and internal stages, say, when s ≥ 3 and r ≥ 3. Perhaps the more practical
approach, where the search for algebraically stable methods can be done numerically, is based on the Nyquist stability
function defined by

N(ξ) = A + U(ξ I − V)−1B, ξ ∈ C − σ(V), (4.3)
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(compare [8,26]). Here, σ(V) stands for the spectrum of the matrix V. Following [26] define the diagonal matrix D by
D = diag(BTGq0). Define also by He(Q) = (Q + Q∗)/2 the Hermitian part of a complex square matrix Q, where Q∗ stands
for the conjugate transpose of Q. Then it was demonstrated in [26] (see also [8]) that a consistent GLM (1.2) is algebraically
stable if the following conditions are satisfied:

1. The coefficient matrix V is power-bounded.
2. Ux ≠ 0 for all right eigenvectors of V and BTx ≠ 0 for all left eigenvectors of V.
3. D > 0 and He(DA) ≥ 0.
4. He


DN(ξ)


≥ 0 for all ξ such that |ξ | = 1 and ξ ∈ C − σ(V).

Examples of algebraically and ϵ-algebraically stable GLMs inNordsieck form and two-step Runge–Kuttamethods up to order
p = 4 which were found using the above criteria are presented in [20,21].

Another interesting recent idea of Hewitt and Hill [16,7] is to consider the equivalent GLMs with a simple structure of
the symmetric and positive definite matrix G, for example G = I. This search can be based on the observation that if the
methods (A,U, B,V) and (A,U,B,V) are equivalent then the method (A,U, B,V) is algebraically stable if and only if the
method (A,U,B,V) is algebraically stable [16], as well as on the following result.

Lemma 4.1 ([16]). An algebraically stable GLM (1.2)with coefficient matrices (A,U, B,V) is equivalent to an algebraically stable
method with coefficients (A,U,B,V) for whichG = I. Furthermore, if D > 0 is such that the matrix M defined by (3.1) satisfies
M ≥ 0, then we have M ≥ 0, where the matrix M is defined by

M :=


DA +ATD −BTB DU −BTVUTD −VTB I −VTV


.

Consider again the GLM (1.2) with coefficients (A,U, B,V) and the matrix M defined by (3.1), which assuming that G = I,
takes the form

M =

 M11 M12

MT
12 M22


=


DA + ATD − BTB DU − BTV

UTD − VTB I − VTV


.

Then, as discussed above, it follows from Albert theorem [22] that M ≥ 0 if and only if M22 ≥ 0,R ≥ 0, and M22M+

22M
T
12 =

MT
12, where R is defined by

R := M11 − M12M+

22M
T
12

= DA + ATD − BTB − (DU − BTV)(I − VTV)+(DU − BTV)T .

Lemma 4.1 and the choice R = 0, lead to the following algorithm for the construction of GLMs with coefficients (A,U, B,V)
for which G = I. This algorithm, which was recently proposed in [7], consists of the following steps.

1. Choose the matrix G = I.
2. Ensure that D = diag(BTq0) > 0.
3. Ensure thatM22 = I − VTV ≥ 0.
4. Enforce the condition R = 0.

Once the methods are found following the above algorithm we have also to verify the condition

M22M+

22M
T
12 = MT

12

appearing in (4.2). In our search for algebraically stable methods described in Sections 5–7 this condition was usually
automatically satisfied. In fact, the verification of this condition was not even mentioned in [7].

Remark. Steps 1 to 3 do not cause loss of generality, while step 4 is a sufficient condition to enforce the algebraic stability
of the methods (cf. [7]).

Carrying out this algorithm with the steps 3 and 4 above replaced by min σ(M22) ≥ −ϵ and ∥R∥ = O(ϵ), where ϵ is
small and positive, leads to methods which are ϵ-algebraically stable.

We conclude this section with a technical result which places some restrictions on the structure of the matrix V such
thatM22 = I − VTV ≥ 0.

Lemma 4.2. Assume that the matrix V has the form as described in Section 1. Then M22 = I − VTV ≥ 0 implies that
v1,j = 0, j = 2, 3, . . . , r.
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Proof. It can be verified that the matrixM22 has the form

M22 =


0 −v1,2 · · · −v1,r

−v1,2 × · · · ×

...
...

. . .
...

−v1,r × · · · ×

 ,

where ×’s designate arbitrary entries. ThenM22 ≥ 0 implies that

det


0 −v1,j
−v1,j ×


= −v2

1,j ≥ 0,

which can be only satisfied if v1,j = 0, j = 2, 3, . . . , r . �

5. Methods with p = q = r = s = 2

Solving stage order and order conditions (2.4) and (2.5) or using the representation formulas (2.6)–(2.8) for U, q2, B, and
using Lemma 4.2 leads to a seven parameter family of methods of stage order q = 2 and order p = 2 depending on the
parameters c1, c2, λ, a21, v22, q11, and q21, for which

M22 =


0 0
0 1 − v22


and D =


1 − 2c2

2(c1 − c2)
0

0
2c1 − 1

2(c1 − c2)

 .

Observe that the matrix D is positive definite if and only if
c1 <

1
2
and c2 >

1
2


or


c1 >

1
2
and c2 <

1
2


.

Trying to construct methods which are algebraically stable wewill make several simplifying assumptions choosing some
parameters of the methods in advance. We assume first that v22 = 0 and q1 = [q11, q21]T = [0, 1]T , and then try to enforce
the condition R = 0. This leads to the system of three equations in four unknowns. Assuming in addition that c2 = 1 this
system has four real solutions including one solution with rational coefficients which is given by c1 = 1/2, λ = 3/2, and
a21 = −1/8. The coefficients of the resulting method are


A U
B V


=


3
2 0 1 −1

−
1
8

3
2 1 −

3
8

1 0 1 0
1 0 0 0

 .

For this method the spectrum of the matrix M defined by (3.1) is σ(M) = {2, 0, 0, 0}. The matrix D takes the form D =

diag(1, 0) and is not positive definite. Hence, it follows from Theorem 3.1 that this method must be reducible. It is easy to
verify that the reduced method is

A U
B V


=

 3
2 1 −1
1 1 0
1 0 0

 ,

for which σ(M) = {2, 0, 0} and D = [1].
The other three solutions to the system R = 0 using a finite precision arithmetic provide only approximations to

algebraically stable methods. One such approximation in rational format obtained in Mathematica using the function
Rationalize[x, tol] with tol = 10−16 is given by


A U
B V


=


235875500
76532157 0 1 −

74457421
26595157

−
317908253
60937223

235875500
76532157 1 248088986

79136875

35834268
51430529

42749463
140971448 1 0

4321111
66099453

54070473
57852454 0 0

 . (5.1)

For this method σ(M) = {5.71, −2.09 · 10−13, 8.82 · 10−14, −3.56 · 10−17
} and ∥R∥ = 4.19 · 10−13 so the method is

ϵ-algebraically stable with ϵ equal to 2 · 10−13. Increasing the precision of the computations leads to ϵ-algebraically stable
methods with decreasing values of ϵ. This is illustrated in Table 1, where we have listed the precision of the computations
set by the parameter WorkingPrecision in Mathematica versus min{σ(M)},min{σ(R)}, and ∥R∥F , where MachinePrecision
corresponds to about 16 correct decimal digits and ∥ · ∥F stands for Frobenius norm.

We can also construct methods for which the coefficient matrix A is diagonal. Putting q1 = [0, 1]T and v22 = 0 and
solving the system R = 0 with respect to c1, c2, and λ we obtain c1 = (5 −

√
22)/2, c2 = (5 +

√
22)/2, λ = 3/2, and the
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Table 1
WorkingPrecision versus min{σ(M)},min{σ(R)}, and ∥R∥F .

WorkingPrecision min{σ(M)} min{σ(R)} ∥R∥F

MachinePrecision −1.022 · 10−13
−1.216 · 10−13 2.454 · 10−13

20 −1.771 · 10−20
−8.080 · 10−20 9.988 · 10−20

30 −3.860 · 10−30
−1.579 · 10−29 2.434 · 10−29

40 −1.364 · 10−40
−6.500 · 10−40 6.501 · 10−40

50 −1.026 · 10−50
−2.412 · 10−50 3.315 · 10−49

100 −2.763·10−100
−8.439·10−100 8.440 · 10−100

200 −2.538·10−167
−2.591·10−167 1.323 · 10−167

500 −8.995·10−467
−4.400·10−466 4.400 · 10−466

coefficients of the resulting method are


A U
B V


=


3
2 0 1 2−

√
22

2

0 3
2 1 2+

√
22

2

11+
√
22

22
11−

√
22

22 1 0
22+

√
22

44
22−

√
22

44 0 0

 .

For this method D = diag((11 + 2
√
22)/22, (11 − 2

√
22)/22) and σ(M) = {115/44, 0, 0, 0}.

We relax next the condition on q1 and assume only that q11 = 0. In this case we do not assume that A is diagonal.
Assuming that the abscissa vector is given by c = [1/3, 2/3]T and solving the systemR = 0we obtainλ = 2/3, a21 = −1/6,
and q21 = ±

√
3/6. Choosing q21 =

√
3/6 leads to the method


A U
B V


=


2
3 0 1 −

2
√
3

3

−
1
6

2
3 1

√
3
3

1
2

1
2 1 0

−

√
3
6

√
3
3 0 0

 ,

which was obtained before in [7]. For this method σ(M) = {17/12, 0, 0, 0} and D = diag(1/2, 1/2).

6. Methods with p = q = r = s = 3

Using the representation formulas (2.6)–(2.8) for U, q3, B, and taking into account Lemma 4.2, we obtain a 16 parameter
family of methods of stage order q = 3 and order p = 3 depending on the parameters c1, c2, c3, λ, a21, a31, a32, v22, v23,
v33, q11, q21, q31, q12, q22 and q32. In this case it is not easy to force the condition R = 0, because it constitutes a nonlinear
system of six equations in sixteen unknowns, but numerical approximations for algebraically stable methods can be found
by minimizing the quantity ∥R∥F . To this aim we have used the NMinimize function of Mathematica. An example of such
a method obtained with WorkingPrecision equal to MachinePrecision is given by

c =


−

101945136
112612663

, −
4581335
62678469

,
31271554
33364359

T

,

A =


46917000
104218099

0 0

143886276
141018391

46917000
104218099

0

26519721
51255491

32428625
49353386

46917000
104218099

 , U =


1

72449071
83980704

23278421
81652661

1
71510487
58991348

21000658
151963191

1
3714629

143661548
−

28549797
77302997

 ,

B =


24899124
51799415

29578637
98768301

24291430
110495197

−
28254283
168393484

−
23259899
90332233

−
22315183
65037990

5762224
48449435

−
6769993
73337137

−
21501955
134501824

 , V =


1 0 0

0 −
16561402
68584587

5012623
85021484

0 0
19299246
50267989

 ,

q1 =


−

66758655
88894537

, −
70240814
111634289

, −
45996736
212672177

T

, q2 =


41739183
82954951

,
9734946
25441867

, −
4987490
89126563

T

.
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Table 2
WorkingPrecision versus min{σ(M)},min{σ(R)} and ∥R∥F .

WorkingPrecision min{σ(M)} min{σ(R)} ∥R∥F

MachinePrecision −1.972 · 10−6
−2.228 · 10−6 2.228 · 10−6

20 −3.371 · 10−8
−3.808 · 10−8 3.808 · 10−8

30 −1.572 · 10−11
−1.776 · 10−11 1.776 · 10−11

40 −3.024 · 10−14
−3.417 · 10−14 3.417 · 10−14

50 −5.644 · 10−18
−6.378 · 10−18 6.378 · 10−18

100 −8.319 · 10−35
−9.400 · 10−35 9.400 · 10−35

200 −3.591 · 10−68
−4.058 · 10−68 4.058 · 10−68

500 −1.435·10−167
−1.621·10−167 1.621 · 10−167

It can be verified that for this method

D = diag(0.481, 0.299, 0.220),

and

σ(M) = {1.213, 0.849, −1.972 · 10−6, −1.966 · 10−8, −3.201 · 10−9, 1.124 · 10−16
}.

Similarly as in Section 5, increasing the precision of the computations leads to ϵ-algebraically stable methods with
decreasing values of ϵ. This is illustrated in Table 2, where we have listed the precision of the computations set by the
parameter WorkingPrecision in Mathematica versus min{σ(M)},min{σ(R)}, and ∥R∥F .

7. Methods with p = q = r = s = 4

Using the representation formulas (2.6)–(2.8) for U, q4, B, and taking into account Lemma 4.2, we obtain a 29 parameter
family of methods of stage order q = 4 and order p = 4 depending on the parameters c1, c2, c3, c4, λ, a21, a31, a32, a41, a42,
a44, v22, v23, v24, v33, v34, v44, q11, q21, q31, q41, q12, q22, q32, q42, q13, q23, q33 and q43.

As in the previous sectionwe look for numerical approximations for algebraically stablemethodsminimizing the quantity
∥R∥F by means of the NMinimize Mathematica function. An example of such a method obtained with WorkingPrecision
equal to MachinePrecision is given by

c =


−

136691984
56181129

, −
50483434
97001607

,
67774851
79681789

,
113679233
29070903

T

,

A =



72790755
100862638

0 0 0

476785
87049992

72790755
100862638

0 0

20050367
136240340

45511759
88582495

72790755
100862638

0

−
47594845
103765783

106930055
278211234

27285361
74242319

72790755
100862638


,

U =



1 −
451634987
140827502

−
152906573
43743542

145488433
59069284

1 −
28380214
46050151

111117249
128311658

8094106
111485217

1
80259071
139207756

−
23821648
70030981

93027797
86529613

1 −
113721374
32649629

−
117707786
26849261

−
352780594
16109787


,

B =



8055613
173594494

50692033
76932071

31238859
106472948

25987
20323048

−
8452327
97477693

15801488
88238837

44127692
96094939

−
2443177

332935081

−
4049179
33492836

32497415
81434453

−
29137108
100267221

−
1159458

119366215
135447

64189342
−

4040557
130316218

−
3386596
40127799

−
633671

16754328


,
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Table 3
WorkingPrecision versus min{σ(M)},min{σ(R)} and ∥R∥F .

WorkingPrecision min{σ(M)} min{σ(R)} ∥R∥F

MachinePrecision −9.290 · 10−8
−1.042 · 10−7 1.158 · 10−7

20 −2.532 · 10−8
−2.864 · 10−8 2.888 · 10−8

30 −6.271 · 10−9
−7.038 · 10−9 7.041 · 10−9

40 −8.294 ·10−11
−9.301 ·10−11 9.304 · 10−11

50 −7.775 ·10−12
−8.732 ·10−12 8.733 · 10−12

100 −5.419 ·10−19
−6.099 ·10−19 6.099 · 10−19

V =



1 0 0 0

0
18257081
41519760

38469238
94411247

29985486
70219573

0 0
189820571
228231862

−
1274917

110945271

0 0 0
1075320273
2684824064

 ,

q1 =


−

36042078
51394831

38765702
55691309

−
13608701
119003375

−
28697948
113848499

T

,

q2 =


107717787
204603878

−
87950752
125801249

−
31179097
61611950

3157174
43616961

T

,

q3 =


−

40924885
150423523

50875109
115541270

55776045
110288264

−
96101253
218223736

T

.

It can be verified that for this method

D = diag(0.046, 0.659, 0.293, 0.001),

and

σ(M) = {1.208, 0.769, 0.031, −9.290 · 10−8, −4.116 · 10−8, 2.272 · 10−8, −3.284 · 10−9, −1.358 · 10−18
}.

Once again, increasing the precision of the computations leads to ϵ-algebraically stablemethodswith decreasing values of ϵ.
This is illustrated in Table 3, where we have listed the precision of the computations set by the parameterWorkingPrecision
in Mathematica versus min{σ(M)},min{σ(R)}, and ∥R∥F .

8. Numerical experiments

In this section we will illustrate that some of the DIMSIMs of order p and stage order q = p derived in this paper do not
suffer from order reduction, unlike standard classical Runge–Kutta formulas. To illustrate this we have applied the Runge–
Kutta–Gauss method of order p = 4 and stage order q = 2 and DIMSIMs of order p = 2, 3 and 4 and stage order q = p given
in Section 5 (method (5.1)), 6 and 7 to the van der Pol oscillator (see VDPOL problem in [15])

y′

1 = y2, y1(0) = 2,
y′

2 = ((1 − y21)y2 − y1)/ε, y2(0) = −2/3, (8.1)

t ∈ [0, T ], with a stiffness parameter ε. We have implemented all methods with a fixed stepsize h, and observed the order
of convergence of the numerical approximations to the slowly varying parts of the solution, where the problem is stiff for
small values of the parameter ε (the problem is not stiff on the interval where the solution is changing rapidly). We compare
the numerical results for the solution at the final time with a reference solution computed by the Matlab function ode15s
with very tight tolerances atol = 2∗10−16 and rtol = 10−14. The errors aremeasured in the ∥ ·∥2 norm. Plots of error versus
time step size for the Runge–Kutta–Gauss method of order p = 4 and stage order q = 2 and DIMSIMs of order p = 2, 3, 4
and stage order q = p applied to problem (8.1) with T = 3/4, h = T/N , and N = 256, 512, 1024 and 2048 are reported in
Figs. 1, 2, 3 and 4, respectively. The observed orders reported in Figs. 2–4 match the theoretical predictions, while the one
reported in Fig. 1 shows an order reduction phenomenon.

9. Concluding remarks

We introduced the definition of ϵ-algebraic stable method and investigated algebraically and ϵ-algebraically stable
DIMSIMs of order p, for which the stage order q, the number of internal stages s and the number of external stages r are
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Fig. 1. Numerical results for the Runge–Kutta–Gauss formula with p = 4 and q = 2 on the van der Pol problem (8.1) with ϵ = 10−6 and T = 3/4.

Fig. 2. Numerical results for the DIMSIM (5.1) derived in Section 5 on the van der Pol problem (8.1) with ϵ = 10−6 and T = 3/4.

Fig. 3. Numerical results for the DIMSIM derived in Section 6 on the van der Pol problem (8.1) with ϵ = 10−6 and T = 3/4.

Fig. 4. Numerical results for the DIMSIM derived in Section 7 on the van der Pol problem (8.1) with ϵ = 10−6 and T = 3/4.
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all equal to p. For this particular class of DIMSIMs we gave explicit representation formulas for matrices B and U and for the
vector qp. Using a criteria proposed recently byHewitt andHill [7]we found algebraically and ϵ-algebraically stablemethods
with p = q = r = s = 2, and ϵ-algebraically stable methods for small values of the parameters ϵ, with p = q = r = s = 3
and p = q = r = s = 4. Finally we showed by means of numerical tests that the DIMSIMs constructed in this paper do not
suffer from order reduction, unlike standard classical Runge–Kutta methods.

Future work will address various implementation issues related to these methods such as choice of initial stepsize, the
construction of starting procedures, local error estimation, stepsize and order changing strategies, strategies for updating
the vector of external approximations, and construction of continuous interpolants of uniform order p, as well as developing
variable stepsize variable order software based on these methods for stiff differential systems.
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