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a b s t r a c t

Ruuth and Spiteri have shown, in 2002, that fifth-order strong-stability-preserving (SSP)
explicit Runge–Kutta (RK) methods with nonnegative coefficients do not exist. One of the
purposes of the present paper is to show that the Ruuth–Spiteri barrier can be broken by
adding backsteps to RK methods. New optimal, 8-stage, explicit, SSP, Hermite–Birkhoff
(HB) time discretizations of order p, p = 5, 6, . . . , 12, with nonnegative coefficients are
constructed by combining linear k-step methods of order (p − 4) with an 8-stage explicit
RK method of order 5 (RK(8, 5)). These new SSP HB methods preserve the monotonicity
property of the solution and prevent error growth; therefore, they are suitable for solving
hyperbolic partial differential equations (PDEs) by the method of lines. Moreover, these
new HB methods have larger effective SSP coefficients and larger maximum effective CFL
numbers than Huang’s hybrid methods and RK methods of the same order when applied
to the inviscid Burgers equation. Generally, HB methods combined with RK(8, 5) have
maximum stepsize 24% larger than HB combined with RK(8, 4).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We are concerned with the numerical solution of initial value problems

dy
dt

= f (t, y(t)), y(t0) = y0, (1)

where the function f : R × RN
→ RN is such that

∥y(t + 1t)∥ ≤ ∥y(t)∥, (2)

for all 1t ≥ 0, where ∥ · ∥ may be a norm, a semi-norm or, more generally, any convex functional. It is also assumed that f
satisfies the discrete analog of (2),

∥yn + 1tf (tn, yn)∥ ≤ ∥yn∥, 1t ≤ 1tFE, (3)

for the forward Euler (FE) method and yn is a numerical approximation to y(t0 + n1t). We are interested in higher-order
accurate, multistep, Hermite–Birkhoff (HB) methods that preserve the monotonicity property

∥yn+1∥ ≤ max
0≤j≤k−1

∥yn−j∥, (4)
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for 0 ≤ 1t ≤ 1tmax = c1tFE whenever condition (3) holds. Here k represents the number of previous steps used to
compute the next solution value and c , called the strong stability preserving (SSP) coefficient, depends only on the numerical
integration method but not on f . The monotonicity property (4) is suitable as it follows property (2) of the true solution and
inhibits growth of errors.

SSP methods have been developed to satisfy the monotonicity property (4) for system (1) whenever condition (3) is
fulfilled. Property (4) is guaranteed under the maximum time step 1tmax = c1tFE.

Substantial research efforts were dedicated to finding numerical methods with the highest c (see [1–3]). The main
application of suchmonotonicity results are found in the numerical solution of hyperbolic PDEs, in particular, of conservation
laws. For the one-dimensional equation

yt + g(y)x = 0, y(x, 0) = y0(x), (5)

the spatial derivative g(y)x can be approximated by a conservative finite difference or finite element at xj, j = 1, 2, . . . ,N ,
(see [4–7]). This spatial semi-discretization leads to system (1) of ODEs.

It has been shown by Ruuth and Spiteri [8] that fifth-order SSP RK methods with nonnegative coefficients do not exist.
One purpose of the present paper is to break the Ruuth–Spiteri barrier by adding backsteps to RKmethodswith nonnegative
coefficients which exist.

To solve system (1), new optimal, 8-stage, explicit, strong-stability-preserving, Hermite–Birkhoff (SSP HB) time
discretizations of order p, p = 5, 6, . . . , 12, with nonnegative coefficients are constructed by combining linear k-step
methods of order (p − 4) with an 8-stage explicit RK method of order 5 (RK(8, 5)).

All the HB(k, p)methods considered in the paper are based on the combination of a k-stepmethod and an explicit 8-stage
RK method. So the denomination ‘‘explicit 8-stage RK method’’ will be omitted.

These new methods are denoted HB(k, p), since HB interpolation polynomials enter in their construction as it is briefly
sketched in Section 2 (see [9] for fuller developments).

The objective of such high-order methods is to maintain the monotonicity property (4) while achieving higher-order
accuracy in time, perhaps with a modified time-step restriction, measured here with the SSP coefficient c(HB(k, p)):

1t ≤ c(HB(k, p))1tFE. (6)

The SSP coefficient, historically called CFL coefficient, describes the ratio of the SSP time step to the strongly stable FE time
step (see [1]). Since our arguments are based on convex decompositions of high-order methods in terms of FE, such high-
order methods preserve SSP in any norm once FE is shown to be strongly stable.

It is found that the new 8-stage HB(k, p) are better than similar 7-, 9-, and 10-stage methods. Among our HB methods of
order 11 and 12, the 8-stage HB(k, p) have an average SSP coefficient 24% higher than the average SSP coefficient of HB(k, p)
which combine linear k-step methods and RK(8,4).

A brief review of the development of SSP methods will appear in Section 5 on the construction of HB(k, p).
The new HB(k, p) have larger effective SSP coefficients than known SSP hybrid methods HM(k, p) with the same k and

p, especially when k is small. In particular, no counterparts of HB methods of order greater than 8 have been found in the
literature among hybrid and general linear, multistep, multistage, methods.

The paper is organized as follows. Section 2 introduces notation and general formulae of 8-stage HB(k, p) which combine
linear k-step methods and RK(8, 5). Order conditions are listed in Section 3. In Section 4, vector notation is used to describe
the modified Butcher, modified Shu–Osher, and canonical Shu–Osher forms of our HB(k, p) as generalizations of similar
forms of SSP RK(k, p). Section 5 presents the effective SSP coefficients of our HB(k, p) and compares themwith other known
SSP methods of the same order. The numerical verification of the order p of our methods is also shown in this section. In
Section 6, numerical results are displayed for all our methods applied to Burgers’ inviscid equation. Section 7 compares
HB(k, p) obtained from combining k-step methods with RK(8, 5) and RK(8, 4) of order 5 and 4, respectively. Eight new SSP
HB(s, p) with RK(8, 5) and nine new SSP HB(s, p) with RK(8, 4) are in Huong Nguyen-Thu’s Ph.D. Thesis [10].

2. Notation and k-step SSP HB methods of order p

The following notation will be used.

Notation 1. • HB(k, p) denotes 8-stage, k-step, SSP Hermite–Birkhoff methods of order p made of k-step linear methods
and an 8-stage RK(8, 5) of order 5. In Section 7, when we compare HB(k, p) combined with RK(8, 5) and RK(8, 4), the
extended notation HBRK5(k, p) and HBRK4(k, p) will be used.

• GL(k, p) denotes k-step, 4-stage, general linear methods of order p,
• HM(k, p) denotes Huang’s k-step, SSP, hybrid methods of order p (see [3]),
• RK(s, p) denotes s-stage, SSP, explicit RK methods of order p,
• TSRK(s, p) denotes two-step, s-stage, SSP, explicit RK methods of order p.

All methods considered in this work are SSP and explicit, so the denomination ‘‘SSP’’ and ‘‘explicit’’ will generally be
omitted. All our SSP HB methods have 8 stages; therefore, ‘‘8-stage’’ will not be repeated.
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Notation 2. • The abscissa vector σ = [c1, c2, c3, . . . , c8]T , 0 ≤ cj ≤ 1, defines the off-step points tn+cj1t . For simplicity,
set c1 = 0 and c1 raised to the zero power is 1, c01 = 1, by convention.

• At each off-step point, let Fj := f (tn + cj1t, Yj), j = 2, 3, . . . , 8, be the jth-stage derivative where Yj is the jth-stage value
and set Y1 = yn.

Definition 1. To perform an integration from tn to tn+1, an HB(k, p) method is defined by the following eight formulae:
Seven HB polynomials of degree (2k + i − 3) are used as predictors to obtain the stage values Yi,

Yi = vB,iyn +

k−1
j=1

AB,ijyn−j + 1t


i−1
j=1

aijFj +
k−1
j=1

BB,ijfn−j


, i = 2, 3, . . . , 8, (7)

and an HB polynomial of degree (2k + 6) is used as an integration formula to obtain yn+1 to order p,

yn+1 = vB,9yn +

k−1
j=1

AB,9,jyn−j + 1t


8

j=1

bjFj +
k−1
j=1

BB,9,jfn−j


. (8)

In formulae (7) and (8), the constant coefficients vB,i, AB,ij, BB,ij, aij and bj for i = 2, 3, . . . , 9 and j = 1, 2, . . . , k − 1 need
to be constructed to approximate yn+1 to the solution y(tn+1) = y(tn + 1t).

Here, the subscript B refers to the Butcher form, while, later, the subscript SO will be used for the Shu–Osher form.

3. Order conditions for HB(k, p)

To construct the order conditions for HB(k, p), first we let:

Bi(j) =

k−1
l=1

AB,il
(−l)j

j!
+

k−1
l=1

BB,il
(−l)j−1

(j − 1)!
,


i = 2, 3, . . . , 8,
j = 1, 2, . . . , p, (9)

which come from the backsteps of the methods.
Expanding the numerical solution produced by formulae (7)–(8) to agree with a Taylor expansion of the true solution,

we obtain the following multistep- and RK-type order conditions that must be satisfied by HB(k, p).
First, for consistency, we need to satisfy the multistep-type order conditions:

vB,i +

k−1
j=1

AB,ij = 1, i = 2, 3, . . . , 9. (10)

Second, for HB methods of order p, we impose the following (p − 4) simplifying assumptions on the coefficient aij,
backstep Bi(·) and abscissa vector σ :

i−1
j=1

aijcmj + m!Bi(m + 1) =
1

m + 1
cm+1
i ,


i = 2, 3, . . . , 8,
m = 0, 1, . . . , p − 5. (11)

These assumptions help reduce the large number of RK-type order conditions (see [9]) to the following 12 conditions
(12)–(23), in the case p > 5,

8
i=1

bicmi + m!B(m + 1) =
1

m + 1
, m = 0, 1, . . . , p − 1, (12)

8
i=2

bi


i−1
j=1

aij
cp−4
j

(p − 4)!
+ Bi(p − 3)


+ B(p − 2) =

1
(p − 2)!

, (13)

8
i=2

bi
ci

p − 2


i−1
j=1

aij
cp−4
j

(p − 4)!
+ Bi(p − 3)


+ B(p − 1) =

1
(p − 1)!

, (14)

8
i=2

bi


i−1
j=1

aij
cp−3
j

(p − 3)!
+ Bi(p − 2)


+ B(p − 1) =

1
(p − 1)!

, (15)
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8
i=2

bi


i−1
j=1

aij


j−1
k=1

ajk
cp−4
k

(p − 4)!
+ Bj(p − 3)


+ Bi(p − 2)


+ B(p − 1) =

1
(p − 1)!

, (16)

8
i=2

bi
c2i

(p − 2)(p − 1)


i−1
j=1

aij
cp−4
j

(p − 4)!
+ Bi(p − 3)


+ B(p) =

1
p!

, (17)

8
i=2

bi
ci

p − 1


i−1
j=1

aij
cp−3
j

(p − 3)!
+ Bi(p − 2)


+ B(p) =

1
p!

, (18)

8
i=2

bi
ci

p − 1


i−1
j=1

aij


j−1
k=1

ajk
cp−4
k

(p − 4)!
+ Bj(p − 3)


+ Bi(p − 2)


+ B(p) =

1
p!

, (19)

8
i=2

bi


i−1
j=1

aij
cp−2
j

(p − 2)!
+ Bi(p − 1)


+ B(p) =

1
p!

, (20)

8
i=2

bi


i−1
j=1

aij
cj

p − 2


j−1
k=1

ajk
cp−4
k

(p − 4)!
+ Bj(p − 3)


+ Bi(p − 1)


+ B(p) =

1
p!

, (21)

8
i=2

bi


i−1
j=1

aij


j−1
k=1

ajk
cp−3
k

(p − 3)!
+ Bj(p − 2)


+ Bi(p − 1)


+ B(p) =

1
p!

, (22)

8
i=2

bi


i−1
j=1

aij


j−1
k=1

ajk


k−1
ℓ=1

akℓ
cp−4
ℓ

(p − 4)!
+ Bk(p − 3)


+ Bj(p − 2)


+ Bi(p − 1)


+ B(p) =

1
p!

, (23)

where the backstep parts, B(j), are defined by

B(j) =

k−1
i=1

AB,9,i
(−i)j

j!
+

k−1
i=1

BB,9,i
(−i)j−1

(j − 1)!
, j = 1, . . . , p + 1. (24)

These order conditions are simply RK order conditions with backstep parts Bi(·) and B(·).
In the case p = 5, HB(k, p) has also to satisfy the additional condition:

8
i=2

bi
6


i−1
j=1

aij cj + Bi(2)

2

+ B(5) =
1
5!

, (25)

besides order conditions (12)–(23). Without the backstep parts, these order conditions reduce to the order conditions of an
8-stage RK5.

4. Canonical Shu–Osher form of HB(k, p)

Gottlieb, Ketcheson and Shu presented canonical Shu–Osher forms in compact vector notation for RK methods (see
[2, Sections 3.1–3.4] for details). Here, our construction proceeds in three steps in Sections 4.1–4.3.

4.1. Modified Shu–Osher form of HB(k, p)

The Butcher form (7)–(8) is transformed into the original Shu–Osher form [11] for HB(k, p) (see [12]) as follows:

Yi =

k−1
j=1


Aijyn−j + 1tBijfn−j


+

i−1
j=1


αijYj + 1t βijFj


, i = 2, 3, . . . , 9,

yn+1 = Y9,

(26)

where consistency requires that
k−1
j=1

Aij +

i−1
j=1

αij = 1, i = 2, 3, . . . , 9. (27)



H. Nguyen-Thu et al. / Journal of Computational and Applied Mathematics 263 (2014) 45–58 49

Definition 2. Themodified Shu–Osher form of HB(k, p) is:

Yi =

viyn + 1t wifn


+

k−1
j=1


Aijyn−j + 1tBijfn−j


+

i−1
j=2


αijYj + 1t βijFj


, i = 2, 3, . . . , 9,

yn+1 = Y9,

(28)

which is obtained from formulae (26) by letting vi = αi1 and wi = βi1, i = 2, 3, . . . , 9.

The consistency condition (27) becomes

vi +

k−1
j=1

Aij +

i−1
j=2

αij = 1, i = 2, 3, . . . , 9. (29)

4.2. Vector notation

Vector and matrix notation will help represent HB(k, p) in canonical Shu–Osher form. Consider two 9-vectors
v = [0, v2, v3, . . . , v9]

T , w = [0, w2, w3, . . . , w9]
T ,

two strictly lower triangular 9 × 9 matrices,
α = (αij), β = (βij),

and two 9 × (k − 1) rectangular matrices with zero first row,
ASO = (Aij), BSO = (Bij),

where the numbers αij, βij, Aij, Bij come from formulae (26). Moreover, the matrices Y , F ∈ R9×N , yback ∈ R(k−1)×N and
fback ∈ R(k−1)×N are:

Y = [0, Y2, . . . , Y9]
T , F = [0, F2, . . . , F9]T ,

yback = [yn−1, yn−2, . . . , yn−(k−1)]
T , fback = [fn−1, fn−2, . . . , fn−(k−1)]

T ,

with the following N-vectors: Yj, Fj for j = 1, 2, . . . , 9, yj, fj for j = n − (k − 1), . . . , n, Y1 = yn, F1 = fn, Y9 = yn+1 and
F9 = fn+1. Thus, the modified Shu–Osher form of HB(k, p) (28) in vector notation is:

Y = vyTn + αY + ASOyback + 1t

wf Tn + βF + BSOfback


,

yn+1 = Y9.
(30)

Here the consistency condition (29) becomes
v + αe9 + ASOeback = e9, (31)

where the 9- and (k − 1)-vectors e9 and eback are

e9 = [0, 1, 1, . . . , 1]T ∈ R9, eback = [1, 1, . . . , 1]T ∈ R(k−1), (32)
respectively.

Definition 3. The modified Butcher form of HB(k, p) in vector notation is:

Y = vByTn + AByback + 1t

wBf Tn + βBF + BBfback


,

yn+1 = Y9,
(33)

where

vB = (I − α)−1 v, wB = (I − α)−1 w, AB = (I − α)−1 ASO, (34)

βB = (I − α)−1 β, BB = (I − α)−1 BSO, (35)

and the consistency condition (31) reduces to

vB + ABeback = e9. (36)

The construction of relations (34)–(35) is in [13].

4.3. Canonical Shu–Osher form of HB(k, p)

To maximize c(HB(k, p)), we consider a particular modified Shu–Osher form (30) where the elements of matrices α and
β satisfy the ratio

r =
αij

βij
, ∀i, j, i = 2, 3, 4, . . . , 9; j = 1, 2, 3, . . . , i − 1, such that βij ≠ 0,
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or, in vector notation,

αr = rβr . (37)

Definition 4. The canonical Shu–Osher form of HB(k, p) is:

Y =

vryTn + 1twr f Tn


+


αrY + 1tβrF


+


ASO,ryback + 1tBSO,r fback


, (38)

where the coefficients are determined by the relations

vr = (I − αr) vB =

I + rβB

−1 vB, (39)

wr = (I − αr)wB =

I + rβB

−1 wB, (40)

αr = rβB (I − αr) = r

I + rβB

−1
βB, (41)

βr = βB (I − αr) =

I + rβB

−1
βB, (42)

ASO,r = (I − αr)AB =

I + rβB

−1 AB, (43)

BSO,r = (I − αr) BB =

I + rβB

−1 BB, (44)

with the consistency condition

vr + αre9 + ASO,reback = e9. (45)

See [13] for the relations (39)–(44). Like optimal SSP RK methods [14], the new sparse canonical Shu–Osher forms of
HB(k, p) might allow for reduced-storage implementation.

The ratio r =
αij
βij

for i, j, i = 3, 4, . . . , 9 and j = 2, 3, . . . , i − 1, becomes a feasible SSP coefficient of HB(k, p). Hence, this
ratio r must satisfy two additional sets of conditions:

r ≤
vi

wi
, i = 2, 3, . . . , 9,

and

r ≤
Aij

Bij
,


j = 1, 2, . . . , k − 1,
i = 2, 3, . . . , 9.

Therefore, the following result is an extension of the corresponding result presented in [15,3].

Theorem 1. If f satisfies the forward Euler condition (3), then the 8-stage HB(k, p) (38) satisfies the monotonicity property

∥yn+1∥ ≤ max
0≤j≤k−1

∥yn−j∥

provided

1t ≤ c(vr ,wr , αr , βr ,ASO,r , BSO,r)1tFE,

where c(vr ,wr , αr , βr ,ASO,r , BSO,r) is equal to

r =


αij

βij


,


i = 3, 4, . . . , 9,
j = 2, 3, . . . , i − 1, (46)

and less than or equal to:

min
i=2,3,...,9

vi

wi
, (47)

min
j=1,2,...,k−1


Aij

Bij


, i = 2, 3, . . . , 9, (48)

with the convention that a/0 = +∞, under the assumption that all coefficients of (38) are nonnegative.

4.4. Optimizing c of HB(k, p)

To optimize c of HB(k, p) in canonical form (38), following Theorem 1, we maximize

c(HB(k, p)) = max
vr ,wr ,αr ,βr ,ASO,r ,BSO,r

c(vr ,wr , αr ,ASO,r , BSO,r).
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In the optimization formulationwith any feasible initial data, the ratio r becomes the variable r which satisfies the system
of nonlinear equations in the variables αij, r, βij,

αij − rβij = 0, i = 3, 4, . . . , 9, j = 2, 3, . . . , i − 1,
together with conditions (47) and (48).

Hence, the problem of optimizing the canonical HB(k, p) can be formulated as
c(HB(k, p)) = max

vB,wB,βB,AB,BB

r, (49)

subject to the component-wise inequalities:
I + rβB

−1 vB ≥ 0, (50)
I + rβB

−1 wB ≥ 0, (51)

βB


I + rβB

−1
≥ 0, (52)

I + rβB

−1 AB ≥ 0, (53)
I + rβB

−1 BB ≥ 0, (54)

rβB


I + rβB

−1 e9 +

I + rβB

−1 ABeback ≤ e9, (55)
I + rβB

−1
(−vB + rwB) ≤ 0, (56)

I + rβB

−1
(−AB + rBB) ≤ 0, (57)

together with the order conditions (12)–(23).

5. Construction of HB(k, p)

In this section we obtain the SSP coefficient c and the effective SSP coefficient ceff of HB(k, p) in canonical Shu–Osher form.
SinceHB(k, p) containmany free parameterswhen k is sufficiently large, theMATLABOptimization Toolboxhas beenused

to search for the methods with largest c(HB(k, p)) for different values of k. Several authors [16,17,2] have found optimal RK
and hybrid methods by this technique. In this work, the ‘‘fmincon’’ function was used to tolerance 10−12 on the objective
function c(HB(k, p)) provided all constraints were satisfied to tolerance 10−14.

It is not guaranteed that the obtained results are global because of the limitation of ‘‘fmincon’’ function. However, the
obtained optimal HB(k, p) methods with nonnegative coefficients give really good SSP coefficients and show fairly good
efficiency gain over well known methods. It is noted that all obtained ceff are checked multiple times with different initial
input solutions.

With time step limited by the monotonicity property (6), the computational efficiency of a method can be measured by
its effective SSP coefficients, which provides a fair comparison between two methods of the same order.

Definition 5 (See [18]). The effective SSP coefficients of an SSP methodM is

ceff(M) =
c(M)

ℓ
, (58)

where ℓ is the number of function evaluations used byM per time step and c(M) is its SSP coefficient.

In this paper, ℓ is the number of stages of HB(k, p) or RK(s, p), and ℓ = 2 for HM(k, p). By definition, ceff(FE) = 1.

Definition 6 (See [16]). The percentage efficiency gain (PEG) of ceff(M2) of method 2 over ceff(M1) of method 1 is

PEG(ceff(M2), ceff(M1)) =
ceff(M2) − ceff(M1)

ceff(M1)
. (59)

In the following subsections, we compare effective SSP coefficients of our HBmethods with those of other methods such
as RK(s, p),HM(k, p) and TSRK(s, p). Although our 2-step s-stage HB methods and TSRK(s, p) methods have the same step,
the same stage and the same order, the two sets of conditions satisfied by the coefficients of 2-step s-stage HB methods
and TSRK(s, p) methods are generally different. Moreover they have generally different formulae. Therefore, they will give
generally different SSP coefficients.

5.1. Fifth-order methods

Ruuth and Spiteri [8] proved that there are no 5th-order SSP RKmethodswith nonnegative coefficients; they constructed
methods of order five: RK(9, 5) and RK(10, 5) with negative coefficients in [18,19]. Ruuth and Hundsdorfer [20] pointed
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Table 1
ceff(HB(k, p)) as function of step number k and order p.

p k
2 3 4 5 6 7 8

5 0.447
6 0.241 0.328 0.341 0.345 0.347
7 *0.040 0.248 0.284 0.285
8 0.142 0.198 0.235 0.241 0.243
9 *0.035 0.138 0.179 0.203 0.216 0.218

10 *0.043 0.121 0.156 0.182 0.186
11 *0.060 0.106 0.135 0.156
12 *0.025 0.100 0.116
* The superscript ‘∗’ attached to the methods indicates these methods are

not tested.

out that 5th-order linear multistep methods with nonnegative coefficients require at least k = 7 steps. Huang [3]
found HM(k, 5) with k = 4, 5, 6, 7. It is seen in Table 2 that HB of order five are better than RK methods, typically
PEG(ceff(HB(2, 5)), ceff(RK(9, 5))) = 49% and PEG(ceff(HB(2, 5)), ceff(RK(10, 5))) = 32%. TSRK(s, 5) methods with
nonnegative coefficients are found in [21] with the best ceff(TSRK(8, 5)) = 0.447. Our best method of order 5 is HB(2,
5) with c(HB(2, 5)) = 3.579 and ceff(HB(2, 5)) = 0.447.

5.2. Sixth-order methods

Ketcheson [22] pointed out that LM(k, 6) of order 6 with nonnegative coefficients requires at least k = 10 steps and
ceff(LM(10, 6)) = 0.052. Huang [3] introduced HM(k, 6) with k = 5, 6, 7 with largest ceff(HM(7, 6)) = 0.220.

Ketcheson, Gottlieb and Macdonald [21] found a 2-step 8-stage RK method of order 6 with ceff(TSRK(8, 6)) = 0.242.
Our HB(2, 6) has similar ceff(HB(2, 6)) = 0.241. With k = 3,HB(3, 6) has larger ceff(HB(3, 6)) = 0.328 and, from data in
Table 2, formula (59) gives PEG(ceff(HB(3, 6)), ceff(TSRK(8, 6))) = 35.5%.

As seen in Table 1, our best HB(k, 6) are with k = 2, 3, . . . , 6; in fact, HB(6,6) has largest ceff(HB(6, 6)) = 0.347. Thus
increasing k increases ceff(HB(k, 6)).

5.3. Higher-order methods

Table 1 lists ceff(HB(k, p)) as function of step number k and order p. We see that ceff increases as k increases and decreases
as p increases. Only the fairly good unstarred methods are listed in Table 2.

Table 2 lists c(HB(k, p)), ceff(HB(k, p)), and c(OM(k, p)), ceff(OM(k, p)) for other methods on hand. Since PEG(ceff
(HB(k, p)), ceff(OM(k, p))) ≥ 0, it follows that our methods are better than the other methods on hand.

The superscript ‘a’ attached to eight HB(k, p) listed in Table 2 indicates methods with fairly good ceff(HB(k, p)) and low
step number k for reduced storage implementation. These methods can be found in [10, pp. 132–139] in their canonical
Shu–Osher form with their c(HB(k, p)), ceff(HB(k, p)) and abscissa vector σ .

Ketcheson, Gottlieb andMacdonald [21] found an 8-stage TSRKmethod of order 7 with ceff(TSRK(8, 7)) = 0.071. Table 1
shows that ceff(HB(2, 7)) = 0.040. However, increasing the step number to k = 3, 4, 5, we find HB(k, 7) with much
larger SSP coefficients than TSRK(8, 7) and formula (58) gives PEG(ceff(HB(3, 7)), ceff(TSRK(8, 7))) = 249%. The ceff of these
methods are listed in Table 1 with numerically largest ceff(HB(5, 7)) = 0.285.

It is not mentioned in [21] that 8–10-stage TSRK methods of order 8 exist. However, we found HB(3, 8) with
ceff(HB(3, 8)) = 0.160 and, by formula (59), PEG(ceff(HB(3, 8)), ceff(TSRK(12, 8))) = 105% even if our 8-stage HB(3, 8)
has fewer stages than the 12-stage TSRK(12, 8).

We have not found, in the literature, general linear SSP methods of order 9–12 with nonnegative coefficients. However,
Tables 1 and 2 show that HB(k, p) of order p ≥ 9 with nonnegative coefficients exist.

5.4. Numerical verification of the order p of HB(k, p)

To show the relevance of the theoretical order of HB(k, p) when solving ODEs, we have applied these methods with
various constant stepsizes, h, on the following initial value problem over tn ∈ [0, π + 8], with exact solution yi(t):

y′

1 = −y1, y1(0) = 1, y1(t) = e−t ,

y′

2 = y3, y2(0) = 0, y2(t) = sin t,

y′

3 = −y2, y3(0) = 1, y3(t) = cos t,

y′

4 = 1, y4(0) = 0, y4(t) = t,

y′

5 = −y1 + (y2 + y4y3), y5(0) = 1, y5(t) = e−t
+ t sin t.

(60)
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Table 2
Row-wise PEG(ceff(HB(k, p)), ceff(OM(k, p))).

HB(k, p) c(HB(k, p)) ceff(HB(k, p)) OM(k, p) c(OM(k, p)) ceff(OM(k, p)) PEG
aHB(2, 5) 3.579 0.447 HM(4, 5) 0.371 0.185 141%

’’ ’’ ’’ HM(5, 5) 0.525 0.262 70%
’’ ’’ ’’ HM(6, 5) 0.657 0.328 36%
’’ ’’ ’’ HM(7, 5) 0.746 0.373 20%
’’ ’’ ’’ RK(9, 5) 2.696 0.300 49%
’’ ’’ ’’ RK(10, 5) 3.395 0.339 32%
’’ ’’ ’’ TSRK(8, 5) 3.576 0.447 0%

aHB(2, 6) 1.928 0.241 HM(5, 6) 0.209 0.104 131%
HB(3, 6) 2.621 0.328 ’’ ’’ ’’ 213%
HB(4, 6) 2.732 0.341 ’’ ’’ ’’ 227%

’’ ’’ ’’ HM(6, 6) 0.362 0.181 89%
’’ ’’ ’’ HM(7, 6) 0.440 0.220 55%
’’ ’’ ’’ TSRK(8, 6) 1.936 0.242 41%

aHB(3, 7) 1.985 0.248 HM(7, 7) 0.234 0.117 112%
HB(4,7) 2.273 0.284 ’’ ’’ ’’ 143%

’’ ’’ ’’ TSRK(8, 7) 0.568 0.071 300%
aHB(3, 8) 1.277 0.160 HM(7, 7) 0.234 0.117 36%
HB(4, 8) 1.588 0.198 ’’ ’’ ’’ 70%
HB(5, 8) 1.884 0.235 ’’ ’’ ’’ 101%
HB(6, 8) 1.930 0.241 ’’ ’’ ’’ 106%
HB(7, 8) 1.943 0.243 ’’ ’’ ’’ 108%

’’ ’’ ’’ TSRK(12, 8) 0.936 0.078 211%
aHB(4, 9) 1.107 0.138 HM(7, 7) 0.234 0.117 18%
HB(5, 9) 1.429 0.178 ’’ ’’ ’’ 53%
HB(6, 9) 1.623 0.203 ’’ ’’ ’’ 73%
HB(7, 9) 1.727 0.216 ’’ ’’ ’’ 85%
HB(8, 9) 1.741 0.218 ’’ ’’ ’’ 86%

aHB(5, 10) 0.971 0.121 HM(7, 7) 0.234 0.117 4%
HB(6, 10) 1.249 0.156 ’’ ’’ ’’ 33%
HB(7, 10) 1.453 0.182 ’’ ’’ ’’ 55%
HB(8, 10) 1.492 0.186 ’’ ’’ ’’ 59%
aHB(7, 11) 1.078 0.135 HM(7, 7) 0.234 0.117 15%
HB(8, 11) 1.247 0.156 ’’ ’’ ’’ 33%
aHB(7, 12) 0.801 0.100
HB(8, 12) 0.930 0.116

a The superscript ‘a’ attached to eight HB(k, p) indicates methods with fairly good ceff(HB(k, p)) and
low step number k for reduced storage implementation.

In Fig. 1, the global error of y2 and y5 at tn = π + 8 is plotted for different stepsizes h in a log–log scale so that the curves
appear as straight lines with slope p whenever the leading term of the global error at t = tn is of order p, that is

max{|y2,n − y2(tn)|, |y5,n − y5(tn)|} = O(hp).

For HB(k, p), we have straight lines of slope very close to p, thus confirming the orders of the methods.

6. Numerical results

Numerical results confirm the validity of the monotonicity preserving property of our new optimal schemes on two
problems of inviscid Burgers’ equation, with unit downstep and square-wave initial conditions, respectively. Similar to
Huang [3], we only consider the validity of the monotonicity preserving property dependent on a fixed-order spatial
discretization, the weighted essentially non-oscillatory finite difference scheme of order 5 (WENO5) of Jiang and Shu [23].

From now on, we shall use the total variation semi-norm ∥yn∥ = TV(yn) where

TV(yn) =


j

|yn,j+1 − yn,j|, (61)

and say that a method is total variation diminishing (TVD) if

TV(yn+1) ≤ TV(yn). (62)

The following two definitions will help compare different methods with different computational costs more easily and
fairly (see more in [3]).
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Fig. 1. log10(global error) versus log10 h at tn = π + 8 for the listed HB(k, p) applied to problem (60) with constant stepsizes, h, over tn ∈ [0, π + 8], and
tn = 4π for HB(2, 6).

Definition 7. The largest effective CFL number of methodM denoted by numeff(M), for an error ϵ,

|TV(u(x, tfinal)) − TV(u(x, t0))| ≤ ϵ, (63)

is defined by

numeff(M) = max
1t


1t
1x

1
ℓ


, (64)

where ℓ is the number of function evaluations ofM per time step.

Then max1tnum = ℓ1xnumeff(M) is called the maximum numerical stepsize. We let max{1ttheor} be the maximum
theoretical time step taken as

max1ttheor = c(M)1tFE, (65)

and Rn/t be the ratio of the maximum numerical to the maximum theoretical stepsizes

Rn/t =
max1tnum
max1ttheor

. (66)

It is to be noted that Rn/t indicates howwell amethod behaveswhen applied to a given problem. According to Theorem 1,
max1ttheor is the stepsize beyond which, the considered numerical method will theoretically breakdown while max1tnum
is the maximum stepsize, at which the breakdown of the numerical method is observed. Hence, Rn/t can be regarded as a
quality measurement of a numerical method for the considered problem. Given two methods with the same ceff and same
numeff, it will be safer to use the method with larger Rn/t.

Definition 8. The percentage efficiency gain of numeff(M2) of method 2 over numeff(M1) of method 1, is defined by

PEG(numeff(M2), numeff(M1)) =
numeff(M2) − numeff(M1)

numeff(M1)
. (67)

Some starting values are computed by the optimal RK(5, 4) scheme [8] with small initial stepsize h ≈ 1.0e − 04.

6.1. Burgers’ equation with a unit downstep initial condition

As in [3], we consider the following problem.

Problem 1. Burgers’ equation with a unit downstep initial condition,

∂

∂t
u(x, t) +

∂

∂x


1
2
u(x, t)2


= 0, u(x, 0) =


1, −1 ≤ x < 0,
0, 0 < x ≤ 1, (68)

and boundary condition u(−1, t) = 1 for t ≥ 0.



H. Nguyen-Thu et al. / Journal of Computational and Applied Mathematics 263 (2014) 45–58 55

Table 3
Row-wise PEG(numeff(HB(k, p)), numeff(OM(k, p))) and Rn/t for Problem 1.

HB(k, p) numeff(HB(k, p)) Rn/t OM(k, p) numeff(OM(k, p)) Rn/t PEG

HB(2, 5) 0.336 2.311 HM(4, 5) 0.182 3.019 85%
’’ ’’ ’’ HM(5, 5) 0.277 3.247 21%
’’ ’’ ’’ HM(6, 5) 0.277 2.594 21%
’’ ’’ ’’ HM(7, 5) 0.317 2.615 6%
’’ ’’ ’’ RK(10, 5) 0.324 2.933 4%

HB(2, 6) 0.311 3.970 HM(5, 6) 0.174 5.123 79%
HB(3, 6) 0.316 2.968 ’’ ’’ ’’ 82%
HB(4, 6) 0.306 2.757 ’’ ’’ ’’ 76%

’’ ’’ ’’ HM(6, 6) 0.169 2.873 81%
’’ ’’ ’’ HM(7, 6) 0.189 2.643 62%

HB(3, 7) 0.309 3.831 HM(7, 7) 0.127 3.340 143%
HB(4, 7) 0.304 3.292 ’’ ’’ ’’ 139%

HB(3, 8) 0.203 3.914 HM(7, 7) 0.127 3.340 60%
HB(4, 8) 0.234 3.628 ’’ ’’ ’’ 84%
HB(5, 8) 0.249 3.253 ’’ ’’ ’’ 96%
HB(6, 8) 0.289 3.686 ’’ ’’ ’’ 128%
HB(7, 8) 0.319 4.041 ’’ ’’ ’’ 151%

HB(4, 9) 0.148 3.290 HM(7, 7) 0.127 3.340 17%
HB(5, 9) 0.238 4.099 ’’ ’’ ’’ 87%
HB(6, 9) 0.268 4.063 ’’ ’’ ’’ 111%
HB(7, 9) 0.268 3.819 ’’ ’’ ’’ 111%
HB(8, 9) 0.293 4.142 ’’ ’’ ’’ 131%

HB(5, 10) 0.253 6.413 HM(7, 7) 0.127 3.340 99%
HB(6, 10) 0.163 3.213 ’’ ’’ ’’ 28%
HB(7, 10) 0.288 4.879 ’’ ’’ ’’ 127%
HB(8, 10) 0.288 4.751 ’’ ’’ ’’ 127%

HB(7, 11) 0.165 3.766 HM(7, 7) 0.127 3.340 30%
HB(8, 11) 0.245 4.835 ’’ ’’ ’’ 93%

HB(7, 12) 0.170 5.224 HM(7, 7) 0.127 3.340 34%
HB(8, 12) 0.180 4.764 ’’ ’’ ’’ 42%

First, the spatial derivative of the flux f (u) = u(x, t)2/2 is discretized by the weighted essentially non-oscillatory finite
difference scheme of order 5 (WENO5) of Jiang and Shu [23] with stepsize 1x = 1/150 to obtain the semi-discrete
system

d
dt

uj(t) = −
1

1x


fj+(1/2) − fj−(1/2)


, (69)

where uj(t) ≈ u(xj, t) with xj = j1x, j = −150, −149, . . . , 149, 150, and fj+(1/2) is the numerical flux, which typically is
a Lipschitz continuous function of several neighboring values uj(t) (see [23] for details). Now a time discretization can be
applied to (69). For Problem 1, we consider the total variation norm of the numerical solution at tfinal = 1.8 and take 1t
sufficiently small, 1t ≤ max1tnum such that (63) holds with error ϵ = 5.0e − 02 for the methods listed in Table 3.

Numerical results show that FE satisfies the TVD property (62) under the time step restriction

1t ≤ 1tFE = 0.3251x. (70)

Table 3 presents numeff(HB(k, p)) and numeff(OM(k, p)) for other methods (OM) applied to Problem 1. The
PEG(numeff(HB(k, p)), numeff(OM(k, p))) is shown in column 7.

It is seen that:

(a) numeff(HB(k, p)) > numeff(OM(k, p)) for methods of the same order p and all k, so PEG(numeff(HB(k, p)), numeff(OM
(k, p))) > 0.

(b) quite remarkably, even though ceff(HB(7, 12)) = 0.100 < ceff(HM(7, 7)) = 0.117 and ceff(HB(8, 12)) = 0.116 <
ceff(HM(7, 7)) = 0.117, in this test, HB(7, 12) and HB(8, 12) allow a larger time step since numeff(HB(7, 12)) >
numeff(HM(7, 7)) and numeff(HB(8, 12)) > numeff(HM(7, 7)).

6.2. Burgers’ equation with a square-wave initial condition

As a second comparison, we consider Burgers’ equation with a square-wave initial value in Problem 2, which is one of
Laney’s five test problems [24, p. 311].
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Table 4
Row-wise PEG(numeff(HB(k, p)), numeff(OM(k, p))) and Rn/t for Problem 2.

HB(k, p) numeff(HB(k, p)) Rn/t OM(k, p) numeff(OM(k, p)) Rn/t PEG

HB(2, 5) 0.366 4.463 HM(4, 5) 0.192 5.647 91%
’’ ’’ ’’ HM(5, 5) 0.292 6.069 25%
’’ ’’ ’’ HM(6, 5) 0.287 4.766 28%
’’ ’’ ’’ HM(7, 5) 0.312 4.563 17%
’’ ’’ ’’ RK(10, 5) 0.324 5.200 13%

HB(2, 6) 0.306 6.925 HM(5, 6) 0.179 9.345 71%
HB(3, 6) 0.331 5.512 ’’ ’’ ’’ 85%
HB(4, 6) 0.296 4.729 ’’ ’’ ’’ 65%

’’ ’’ ’’ HM(6, 6) 0.174 5.244 70%
’’ ’’ ’’ HM(7, 6) 0.194 4.811 53%

HB(3, 7) 0.334 7.343 HM(7, 7) 0.124 5.782 169%
HB(4, 7) 0.289 5.549 ’’ ’’ ’’ 133%

HB(3, 8) 0.198 6.785 HM(7, 7) 0.124 5.782 60%
HB(4, 8) 0.229 6.295 ’’ ’’ ’’ 85%
HB(5, 8) 0.234 5.421 ’’ ’’ ’’ 89%
HB(6, 8) 0.329 7.439 ’’ ’’ ’’ 165%
HB(7, 8) 0.309 6.940 ’’ ’’ ’’ 149%

HB(4, 9) 0.148 5.853 HM(7, 7) 0.124 5.782 20%
HB(5, 9) 0.254 7.757 ’’ ’’ ’’ 105%
HB(6, 9) 0.269 7.230 ’’ ’’ ’’ 117%
HB(7, 9) 0.254 6.418 ’’ ’’ ’’ 105%
HB(8, 9) 0.284 7.119 ’’ ’’ ’’ 129%

HB(5, 10) 0.248 11.169 HM(7, 7) 0.124 5.782 100%
HB(6, 10) 0.149 5.207 ’’ ’’ ’’ 20%
HB(7, 10) 0.279 8.381 ’’ ’’ ’’ 125%
HB(8, 10) 0.289 8.453 ’’ ’’ ’’ 133%

HB(7, 11) 0.153 6.191 HM(7, 7) 0.124 5.782 23%
HB(8, 11) 0.233 8.153 ’’ ’’ ’’ 88%

HB(7, 12) 0.163 8.907 HM(7, 7) 0.124 5.782 32%
HB(8, 12) 0.178 8.377 ’’ ’’ ’’ 44%

Problem 2. Burgers’ equation with a square wave initial condition,

∂

∂t
u(x, t) +

∂

∂x


1
2
u(x, t)2


= 0, u(x, 0) =


1, |x| ≤

1
3
,

0,
1
3

< |x| ≤ 1,
(71)

and boundary condition u(−1, t) = u(1, t) for t ≥ 0.

The spatial derivative of Problem 2 is discretized by WENO5 and the total variation of the numerical solution is computed
as a function of the effective CFL number, numeff = 1t/(ℓ1x), at tfinal = 0.6. In this case, we take numeff = 0.183 in the
time step restriction (70) instead of 0.325.

Table 4 lists numeff in columns 2 and 5, the ratio Rn/t for HB(k, p) in column 3 and for OM(k, p) (othermethods) in column
6 applied to Problem 2. The PEG(numeff) is in column 7.

It is seen that the results for Problem 2 listed in Table 4 confirm the observations (a) and (b) for Problem 1.
We observe that the ratio Rn/t of HB(k, p) for Problems 1 and 2 are greater than 1, as with hybrid methods in [3]. The

theoretical strong stability bounds of HB(k, p) are thus verified in the numerical comparison of the maximum time steps for
these problems.

7. Comparing HBRKq(k, p) made of a k-step linear method and RKq of order q = 5 and 4

This section shows that HB methods obtained by combining k-step methods with RK(8, 5) have larger ceff and larger
numeff than HB methods obtained by combining k-step methods with RK(8, 4). (See [10, Section 4.3] for details about the
construction of 8-stage HB methods obtained by combining k-step methods with RK(8, 4)).

For simplicity, in Table 5, we only compare ceff(HBRK5(k, p)) and ceff(HBRK4(k, p)). Since, in the last column,
PEG(HBRK5(k, p),HBRK4(k, p)) ≥ 0, it is seen that HBRK5(k, p) is superior to HBRK4(k, p) for methods of the same order,
especially for order 11 and order 12.

The eight entrieswith a superscript ‘a’, listed in Table 5, indicateHBRK4(k, p)with good ceff(HB(k, p)) and low step number
k for reduced storage implementation. These methods can be found in [10, pp. 124–131] in their canonical Shu–Osher form
with their c(HB(k, p)), ceff(HB(k, p)) and abscissa vector σ .
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Table 5
ceff(HBRKq(k, p)) for p = 5, 6, . . . , 12, as functions of RKq, q = 4, 5, which are combined with a k-stepmethod
to obtain HBRKq(k, p) for the listed k, p taken row-wise. The last column is PEG(HBRK5(k, p),HBRK4(k, p)).

p k ceff of HB(k, p) and PEG
HBRK5(k, p) HBRK4(k, p) PEG

5 2 0.447 a0.447 0%

6 2 0.241 a0.240 0.4%
3 0.328 0.328 0%
4 0.341 0.336 1%

7 3 0.248 a0.229 8%
4 0.284 0.280 1%

8 4 0.198 a0.190 4%
5 0.235 0.231 2%
6 0.241 0.233 3%
7 0.243 0.233 4%

9 5 0.178 a0.153 16%
6 0.203 0.191 8%
7 0.216 0.206 5%
8 0.218 0.210 4%

10 6 0.156 a0.141 11%
7 0.182 0.170 7%
8 0.186 0.176 6%

11 7 0.135 0.110 23%
8 0.156 a0.127 23%

12 7 0.100 0.055 82%
8 0.116 a0.091 27%

a The superscript ‘a’ attached to the eight entries indicates HBRK4(k, p)with good ceff(HB(k, p)) and low step
number k for reduced storage implementation.

Table 6
numeff(HBRKq(k, p)) for Burgers’ equation as a function of RKq, q = 4, 5, for the listed
k, p taken row-wise and PEG(HBRK5(k, p),HBRK4(k, p)) for Problems 1 (left) and 2
(right).

p k numeff and PEG of HB(k, p) as a combination of a
k-step linear method with RK5 and RK4
Problem 1 Problem 2
RK5 RK4 PEG RK5 RK4 PEG

5 2 0.336 0.334 0.5% 0.336 0.335 0.5%

6 2 0.311 0.305 2% 0.306 0.265 15%
3 0.316 0.315 0.3% 0.331 0.335 −1%
4 0.306 0.300 2% 0.296 0.285 4%

7 3 0.309 0.295 5% 0.334 0.295 13%
4 0.304 0.270 13% 0.289 0.265 9%

8 4 0.234 0.230 2% 0.229 0.219 5%
5 0.249 0.280 −11% 0.234 0.279 −16%
6 0.289 0.260 11% 0.329 0.254 30%
7 0.319 0.270 18% 0.309 0.249 24%

9 5 0.238 0.240 −0.8% 0.254 0.229 11%
6 0.268 0.260 3% 0.269 0.224 20%
7 0.268 0.275 −3% 0.254 0.260 −2%
8 0.293 0.270 9% 0.284 0.254 12%

10 7 0.288 0.215 34% 0.279 0.214 30%
8 0.288 0.235 23% 0.289 0.232 25%

11 7 0.165 0.200 −18% 0.153 0.169 −9%
8 0.245 0.195 26% 0.233 0.204 14%

12 7 0.170 0.105 62% 0.163 0.114 43%
8 0.180 0.125 44% 0.178 0.110 62%

We also apply our HBRKq(k, p) on Problems 1 and 2 for Burgers’ equation. Table 6 lists numeff of HBRKq(k, p) for q = 4, 5.
The two columns PEG denote PEG(HBRK5(k, p),HBRK4(k, p)) for Problems 1 and 2, respectively. It is seen that, generally,
HBRK5(k, p) have higher numeff than HBRK4(k, p), especially with methods of order 12.
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8. Conclusion

In this work, we construct new optimal, explicit, k-step, 8-stage, SSP Hermite–Birkhoff (HB) methods of order p, HB(k, p),
for p = 5, 6, . . . , 12, with nonnegative coefficients, in their Shu–Osher and canonical Shu–Osher forms, respectively, by
combining linear k-step methods of order (p − 4) with 8-stage explicit Runge–Kutta (RK) methods of order 5. We did not
find in the literature any counterparts of HB(k, p) of order greater than eight among hybrid and general linear multistep
and multistage methods. Moreover, compared to some other methods, such as hybrid methods and RK methods of the
same order, HB methods generally have larger SSP coefficients and larger maximum effective CFL numbers when tested on
Burgers’ equation. Generally, HB methods of orders 11 and 12 combined with 8-stage, order 5 RK(8, 5) have maximum step
size 24% larger than HB combined with RK(8, 4).
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