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matrices are described. The results are applied also to the inversion of infinite tridiagonal
matrices via recurrence relations. Moreover, since there are available free parameters,
different inverses can be associated with a given invertible tridiagonal matrix.
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1. Introduction

A characterization of the finite nonsingular unreduced Hessenberg matrices is related with the distinguished rank
structure of their inverse matrices [1–3]. Without loss of generality, we consider upper Hessenberg matrices. The inverses
of such matrices are rank one perturbations, UV + T, of triangular matrices. The matrix T is (strictly) upper triangular and
U and V are a column and a row vector, respectively. Their relevance to the case of finite tridiagonal matrices is immediate.
We ask whether the inverses of real or complex infinite Hessenberg matrices have a similar structure, and we shall show
that this is indeed the case.We propose amethod for inverting infinite Hessenbergmatrices that is based on these structural
properties. In particular, classical inverses of general tridiagonal matrices can be generated through recurrence relations.

Some background about inversion of infinite matrices and their applications can be found in the literature; see e.g. [4–7]
and the references given there. The classical role of the infinite unreduced Hessenberg matrices in orthogonal polynomials
as matrix representation of the multiplication by z operator is well known [8]. In addition, infinite (transition or adjacency)
Hessenberg matrices appear in signal processing, time series, and birth–death processes. Here the infinite Hessenberg
matrices are regarded simply as matrices over C or R. Nevertheless, the inversion of infinite Hessenberg matrices regarded
as matrices representing bounded operators on the linear space ℓ2 will be discussed briefly.

The outline is as follows. In Section 2, we recall some basic results about inverses of finite Hessenberg and tridiagonal
matrices. In Section 3, we study the problem of the consistency of regarding Hessenbergmatrices as the inverses of matrices
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of the form B = UV + T. In Section 4, we propose a method for inverting infinite unreduced Hessenberg matrices, in
particular Hessenberg–Toeplitz matrices and tridiagonal matrices. Its application to infinite reduced Hessenberg matrices
with finitely many zeros on their subdiagonals is straightforward. In addition, recurrence relations for evaluating classical
inverses of tridiagonalmatrices are introduced. Finally, Section 5 contains a short remark regarding the inversion of bounded
linear operators. Throughout the text the results are illustrated with appropriate examples.

2. Inverses of finite Hessenberg matrices

2.1. Unreduced Hessenberg matrices of finite order

A matrix H is upper Hessenberg if its elements hij satisfy hij = 0 for i ≥ j + 2. Here we extend and adapt a well-known
lemma [1–3] to upper Hessenberg matrices. We also recall that an order n Hessenberg matrix H = (hij)

n
i,j=1 is an unreduced

upper Hessenberg matrix if it has nonzero subdiagonal entries, hi+1,i ≠ 0, i = 1, 2, . . . , n − 1.

Lemma 1. An n×n nonsingular matrixH = (hij)
n
i,j=1 is unreduced upper Hessenberg if and only if its inverse matrix has the form

B = UV + T, where U is a column matrix with nonzero nth component and V is a row matrix with nonzero first component. The
matrixT is strictly upper triangular, having zero entries on itsmain diagonal andnonzero entries ti,i+1 = h−1

i+1,i ≠ 0, 1 ≤ i ≤ n−1,
on the superdiagonal.

See [2] for a proof. The matrix B has the form

B =


u1v1 b12 b13 · · · b1n
u2v1 u2v2 b23 · · · b2n
u3v1 u3v2 u3v3 · · · b3n

...
...

...
. . .

...

unv1 unv2 unv3 · · · unvn

 ,

where, for j > i, bij = uivj + tij. The determinant |B| is given by

|B| =
v1un

n−1
i=1

(−hi+1,i)

= (−1)n−1v1un

n−1
i=1

ti,i+1.

SinceB is nonsingular, the triangularmatrix Tmust have nonzero entries on its superdiagonal. The components of the vectors
U and V are

ui =
(−1)i−1

|H|
|H(i)

n−i|
1

n−1
k=i

hk+1,k

, vj = (−1)j−1
|Hj−1|

n−1
k=j

hk+1,k.

A formally equivalent lemma holds for lower Hessenberg matrices. The entry bij of B has the determinantal repre-
sentation

bij =


(−1)i+j |Hj−1| · |H(i)

n−i| · [hi,i−1 · · · hj+1,j]

|H|
, if i ≥ j;

(−1)i+j |Hj−1| · |H(i)
n−1|

|H| · [hj,j−1 · · · hi+1,i]
−

(−1)i+j
|H(i)

j−i−1|

[hj,j−1 · · · hi+1,i]
, if i < j,

(1)

where |Hj−1| is the (j − 1)st left principal minor, and |H(i)
|n−i and |H(i)

|j−i−1 are the right principal minors of the matrices
Hn and Hj−i−1, respectively; see Corollary 1 in [9]. It follows immediately that, for i < j, the entries tij of T have the
form

tij =
(−1)i+j+1

|H(i)
j−i−1|

i
k=j−1

hk+1,k

. (2)

2.2. Unreduced tridiagonal matrices of finite order

Recall that a tridiagonal matrix having nonzero entries on both the subdiagonal and the superdiagonal is called an
unreduced tridiagonal matrix. The following result is also well known [1–3,10].
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Lemma 2. A nonsingular matrix H = (hij)
n
i,j=1 is an unreduced tridiagonal matrix if and only if its inverse matrix B = (bij)ni,j=1

has the form

bij =


uivj, if i ≥ j;
wixj, if i ≤ j,

where u1, vn, wn, and x1 are nonzero.

The proof is trivial because a tridiagonal matrix is also lower and upper Hessenberg. The result is an immediate
consequence of Lemma 1. Trivially, ukvk = wkxk. If, in addition, the matrix is symmetric, then ui = xi and vj = wj.
Specific numerical methods for inverting finite Hessenberg and tridiagonal matrices are known; see e.g. [1,3,10–12] and
the references given there.

2.3. Reduced Hessenberg matrices of finite order

For the reduced case, we consider, without loss of generality, nonsingular upper Hessenberg matrices having a zero
on the subdiagonal. We can decompose the matrix in blocks and using the Schur complement. For a nonsingular reduced
Hessenberg matrix H with hk+1,k = 0, we have

H =


H11 H12
0 H22


and B =


B11 B12
0 B22


where B11 = H−1

11 , B22 = H−1
22 and B12 = −B11H21B22. The matrix B is the inverse of H and both matrices have the same

block upper triangular structure. The case of nonsingular reduced tridiagonal matrices can be handled in a similar way.

3. Consistency

We consider an infinite invertible matrix B having the form B = UV + T, i.e. a rank one perturbation of an infinite
triangular matrix, subject to the conditions v1 ≠ 0, uk ≠ 0, for all k ≥ 1. This condition has the consequence that the nth
principal section of B, denoted [B]n, has the same form UnVn + Tn. Thus |[B]n| ≠ 0 for all n > 0, and block entry [B]n is
nonsingular. Consequently, its inverse is also an unreduced upper Hessenberg matrix.

It is natural to ask about the consistency of this class of Hessenberg matrices. If we consider the matrix sequence {Hk}

defined by

Hk = ([B]k)−1, (3)

it need not be true that ([B]k)−1 is a principal section of ([B]k+1)
−1 because the last column of ([B]k)−1 need not equal

the corresponding column of ([B]k+1)
−1. However, upon deleting the last column and the last row of ([B]k)−1 and the last

two columns and the last two rows of ([B]k+1)
−1, the resulting matrices are the same and the resulting sequence {Hk} is

consistent. Therefore, this class of infinite unreduced Hessenberg matrices can be built section by section from B.

Theorem 1 (Consistency). Given an infinite invertible matrix B of the form UV + T, where v1 ≠ 0, uk ≠ 0 for all k ≥ 1, and
matrix Twith nonzero superdiagonal entries. Let {[B]k} be the matrix sequence of the principal sections of B as given in Lemma 1.
Then, all principal sections [B]k are nonsingular and the matrix sequence of inverses {Hk} given in (3) is consistent, i.e.

[Hk]k−1 = [Hk+1]k−1.

Proof. The nonsingularity of the principal sections ofB is immediate from Lemma1. Now, let [B]k+1 be the (k+1)st principal
section of B and let ([B]k+1)

−1 be its inverse. In order to show consistency in the sequence {Hk}, we assume the following
block partitions for matrices

[B]k+1 =


[[B]k+1]k−1 B12

B21 B22


and ([B]k+1)

−1
=


[([B]k+1)

−1
]k−1 H12

H21 H22


.

Trivially, the product [B]k+1([B]k+1)
−1

=


Ik−1 0
0 I2


. Therefore,

[[B]k+1]k−1[([B]k+1)
−1

]k−1 + B12H21 = Ik−1.

In a similar way, taking the block matrix partition for the kth section,

[B]k =


[Bk]k−1 B′

12
B′

21 B′

22


and using the product [B]k([B]k)−1, with an analogous partition for ([B]k)−1, we obtain

[[B]k]k−1[([B]k)−1
]k−1 + B′

12H
′

21 = Ik−1.
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But

B12H21 = B′

12H
′

21 =


0 0 · · · 0 (u1vk + t1,k)hk,k−1
0 0 · · · 0 (u2vk + t2,k)hk,k−1
0 0 · · · 0 (u3vk + t3,k)hk,k−1
...

...
. . .

...
...

0 0 · · · 0 (uk−1vk + tk−1,k)hk,k−1

 .

Therefore, [[B]k+1]k−1[([B]k+1)
−1

]k−1 = [[B]k]k−1[([B]k)−1
]k−1. Taking into account that [[B]k+1]k−1 = [[B]k]k−1 = [B]k−1,

with matrix [B]k−1 nonsingular, we conclude [([B]k+1)
−1

]k−1 = [([B]k)−1
]k−1. �

4. Inverses of infinite Hessenberg matrices

Imposing some additional conditions, we extend Lemma 1 to infinite Hessenberg matrices and Lemma 2 to infinite
tridiagonal matrices. We recall that if A = (aij)∞i,j=1 is an infinite matrix of complex numbers, the matrix B = (bij)∞i,j=1
is a classical inverse of A if AB = BA = I. It is known that an infinite matrix need not have classical inverse. For example the
matrix corresponding to the right shift operator,

SR =


0 0 0 0 · · ·

1 0 0 0 · · ·

0 1 0 0 · · ·

0 0 1 0 · · ·

...
...

...
...

. . .

 ,

has no classical inverse, because the product of the first row of SR with the first column of any other matrix is always zero. It
is also known that an infinite matrix can have two classical inverse matrices; see e.g. [6]. In this case it has infinitely many
classical inverses, because if B′ and B′′ are inverses of A, then αB′

+ (1 − α)B′′ is also an inverse matrix of A, for all α ∈ C.

4.1. Infinite unreduced Hessenberg matrices

For infinite unreduced Hessenberg matrices we need to impose, in addition to the conditions imposed in the finite case,
additional conditions on the components of the vector U and on the limits of the ratios of the determinants of certain
submatrices, as we make precise in the following theorem.

Theorem 2. Let H = (hij)
∞

i,j=1 be an infinite invertible matrix and assume that the limits

lim
n

|[H]
(i)
n−i|

|[H]n|
= ξi, (4)

for i ≥ 1, are finite and nonzero. Then H is an unreduced upper Hessenberg matrix if and only if its classical inverse matrix
B = (bij)∞i,j=1 has the form B = UV + T. Here U = (u1, u2, u3, . . .)

t is a column vector with nonzero components,
V = (v1, v2, v3, . . .) is a row vector with nonzero first component, and T is strictly upper triangular, having zeros on its main
diagonal, and nonzero entries ti,i+1 = h−1

i+1,i, i ≥ 1, on its superdiagonal.

Proof. First, we assume that H is an unreduced upper Hessenberg matrix. Its principal section [H]n is a finite unreduced
upper Hessenberg matrix. Direct computation of its inverse matrix ([H]n)

−1 using the adjugate matrix gives, for i ≥ j,

[B]n(i, j) =
[Adj(j, i)]n

|[H]n|
=

(−1)i+j

|[H]n|


[H]j−1 D E

0 F G
0 0 [H]

(i)
n−i


= (−1)i−1 |[H]

(i)
n−i|

|[H]n|
|[H]j−1|

i−1
k=j

hk+1,k.

The entries [B]n(i, j) depend on n. Taking the limit when n tends to infinity, we have for i ≥ j,

bij = lim
n

[Adj(j, i)]n
|[H]n|

= (−1)i−1 lim
n

|[H]
(i)
n−i|

|[H]n|
|[H]j−1|

i−1
k=j

hk+1,k

= (−1)i−1 ξi
m−1
k=i

hk+1,k

· (−1)j−1
|[H]j−1|

m−1
k=j

hk+1,k,
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wherem is an arbitrary positive integer satisfyingm ≥ max{i, j}. The block entry F is upper triangular and its main diagonal
have entries from the subdiagonal of H. Therefore, defining

ui = (−1)i−1 ξi
m−1
k=i

hk+1,k

and vj = (−1)j−1
|[H]j−1|

m−1
k=j

hk+1,k, (5)

(see also Lemmas 1 and 2 from [2]) with m as before, we obtain bij = uivj, for i ≥ j. With the conventions |[H]0| = 1 and
|[H]

(i)
0 | = 1, the components v1 and ui are nonzero. These observations about the lower half part of B lead us to see that the

inverse of H has the form

B =


u1
u2
u3
...

v1 v2 v3 · · ·

+


0 t12 t13 t14 · · ·

0 0 t23 t24 · · ·

0 0 0 t34 · · ·

...
...

...
...

. . .

 = UV + T.

Hence,

B =


u1v1 b12 b13 · · ·

u2v1 u2v2 b23 · · ·

u3v1 u3v2 u3v3 · · ·

...
...

...
. . .

 , (6)

and, for j > i, by Lemma 1, Eqs. (1) and (2), and Theorem 1, there holds bij = uivj + tij, with ti,i+1 ≠ 0.
Conversely, we assume that H is the inverse of an infinite invertible matrix B = (bij)∞i,j=1 as in (6), with entries bij = uivj

for i ≥ j and bij = uivj + tij for i < j, where 1 ≤ i, j. Additionally, ti,i+1 = h−1
i+1,i ≠ 0, ui ≠ 0, and v1 ≠ 0. It is not difficult to

see that, for j − i ≥ 2, the corresponding entries of the adjugate matrix are zeros. Thus the invertible matrix H = B−1 is an
upper Hessenberg matrix. In addition, since B is invertible, the entries ti,i+1 = h−1

i+1,i ≠ 0, and H is unreduced. �

Note that the existence of the limits gives a sufficient condition on the form of such classical inverses, different from
the bounds given for tridiagonal matrices in [5]. An equivalent result can be obtained for lower unreduced Hessenberg
matrices.

4.2. Inverses of infinite Hessenberg–Toeplitz matrices

Theorem 2 is applied to the inversion of an infinite (invertible) Hessenberg–Toeplitz matrix

H =


h1 h2 h3 h4 · · ·

h0 h1 h2 h3 · · ·

0 h0 h1 h2 · · ·

0 0 h0 h1 · · ·

...
...

...
...

. . .

 .

By expanding along its last column we obtain the large recurrence relation for the determinant of its nth principal
section,

|[H]n| =

n−1
k=0

hn−k (−h0)
n−1−k

|[H]k|,

where |[H]0| = 1. Assuming that the Hessenberg–Toeplitz matrix H is invertible, by Theorem 2 we obtain

lim
n

|[H]
(1)
n−1|

|[H]n|
= lim

n

|[H]n−1|

|[H]n|
= ξ .

Then ξ is finite. Its value can be obtained using the large recurrence relation, by taking the limit at infinite, and solving the
equation,

1 = h1ξ − h2h0ξ
2
+ h3h2

0ξ
3
− h4h3

0ξ
4
+ · · · + (−1)n−1hnhn−1

0 ξ n
+ · · · .

Therefore ξ ≠ 0 and we can evaluate the inverse B = UV + T using formulas (2) and (5). It can be seen that the upper
triangular matrix T is also Toeplitz.
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Example 1. Let H be the infinite upper Hessenberg matrix

H =



1
2

1
8

1
16

1
32

1
64

1
128 · · ·

1
5

1
2

1
8

1
16

1
32

1
64 · · ·

0 1
5

1
2

1
8

1
16

1
32 · · ·

0 0 1
5

1
2

1
8

1
16 · · ·

0 0 0 1
5

1
2

1
8 · · ·

0 0 0 0 1
5

1
2 · · ·

...
...

...
...

...
...

. . .


.

The large recurrence relation is

|[H]n| =
1
2
|[H]n−1| −

1
40

|[H]n−2| + · · · +
(−1)n−2

5n−2 · 2n
|[H]1| +

(−1)n−1

5n−1 · 2n+1
|[H]0|.

As [H]n is Toeplitz, it satisfies |[H]
(i)
n−i| = |[H]n−i|. Thus we have

lim
n

|[H]n−1|

|[H]n|
= ξ and lim

n

|[H]n−i|

|[H]n|
= ξ i.

If we divide the large recurrence relation by |[H]n| and take limits, there results

1 =
1
2
ξ −

1
40

ξ 2
+

1
400

ξ 3
−

1
4000

ξ 4
+ · · · =

20ξ + ξ 2

40 + 4ξ
,

so that ξ 2
+ 16ξ − 40 = 0. Thus

ξ = −8 ± 2
√
26.

To obtain convergence we take the positive root, ξ = 8 + 2
√
26 ≃ 2.1980. The row vector V is given by (5) and we have

vj = (−1)j−1
|[H]j−1| · hm−j

0 =
(−1)j−1

· |[H]j−1|

5m−j
, v1 =

1
5m−1

.

The column vector U is also given by (5),

ui = (−1)i−1ξ i5m−i.

For i ≥ j

bij = uivj =
(−1)i+jξ i

|[H]j−1|

5i−j
,

which does not depend onm.
Finally,

B = UV + T =



ξ
−5ξ+10

2
45ξ−100

8
−205ξ+450

16 · · ·

−
1
5ξ

2 1
2ξ

2 −9ξ2+40
8

41ξ2−200
16 · · ·

1
25ξ

3
−

1
10ξ

3 7
32ξ

3 −41ξ3+400
80 · · ·

−
1

125ξ
4 7

100ξ
4

−
5

256ξ
4 25

256ξ
4

· · ·

...
...

...
...

. . .


.

4.3. Infinite unreduced tridiagonal matrices

A finite tridiagonal matrix is written {ai, bi, ci}, 1 ≤ i ≤ n, where ai, bi, and ci are the entries of the lower subdiagonal,
the main diagonal, and the upper diagonal, respectively. We use the same notation H = {ai, bi, ci} to indicate the infinite
tridiagonal matrix

H =


b0 c1 0 0 · · ·

a1 b1 c2 0 · · ·

0 a2 b2 c3 · · ·

0 0 a3 b3 · · ·

...
...

...
...

. . .

 .
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Recall that a tridiagonalmatrix having nonzero entries on both the subdiagonal and the superdiagonal is called an unreduced
tridiagonal matrix. The following result is a particular case of Theorem 2 and an extension of Lemma 2 to the infinite case.

Corollary 1. With the assumptions of Theorem 2, an infinite invertible matrix H = (hij)
∞

i,j=1 is an unreduced tridiagonal matrix
if and only if the entries of its inverse matrix B = (bij)∞i,j=1 have the forms

bij =


uivj, if i ≥ j;
wixj, if i ≤ j,

where u1, vi, wi, and x1 are nonzero.

Trivially, ukvk = wkxk. If, in addition, H is symmetric, then ui = xi, and vj = wj.

Proposition 1. Let H be an infinite invertible tridiagonal unreduced matrix. Then, its classical inverse B = (bij)∞i,j=1 has entries
as given in Corollary 1 and the vectors U = (u1, u2, . . .)

t ,V = (v1, v2, . . .),W = (w1, w2, . . .)
t , and X = (x1, x2, . . .) satisfy

the recurrence relations
u2 =

1 − b0u1v1

c1v1

ui =
−ai−2ui−2 − bi−2ui−1

ci−1
,


v2 =

−b0v1

a1

vi =
−ci−2vi−2 − bi−2vi−1

ai−1
,

or


w2 =

−b0w1

c1

wi =
−ai−2wi−2 − bi−2wi−1

ci−1
,


x2 =

1 − b0w1x1
a1w1

xi =
−ci−2xi−2 − bi−2xi−1

ai−1
,

for i ≥ 3, with v1 ≠ 0, w1 ≠ 0, and u1v1 = w1x1.

Proof. Let be H and B the matrices

H =


b0 c1 0 · · ·

a1 b1 c2 · · ·

0 a2 b2 · · ·

...
...

...
. . .

 , B =


u1v1 w1x2 w1x3 · · ·

u2v1 u2v2 w2x3 · · ·

u3v1 u3v2 u3v3 · · ·

...
...

...
. . .

 ,

where B = UV + T, wi−1xi = ui−1vi + ti−1,i, and ti−1,i =
1

ai−1
≠ 0.

First we consider the matrix product HB. If we multiply the ith row of H by the ith column of B, we have, from the
recurrences in Proposition 1,

ai−1wi−1xi + bi−1uiv1 + ciui+1vi = 1.

We nowmultiply the ith row of H by the jth column of B. When i ≠ j the result is 0.
We now consider the matrix product BH. If we multiply the ith row of B by the ith column of H, we obtain

uivi−1ci−1 + uivibi−1 + wixi+1ai = uivi−1ci−1 + uivibi−1 + (uivi+1 + ti,i+1)ai = 1.

We nowmultiply the ith row of B by the jth column of H. When i ≠ j the result is 0.
Therefore, B is the classical inverse of H and, conversely, H is the classical inverse of B.
We must prove that the condition u1v1 = w1x1 implies ukvk = wkxk for k ≥ 2. Indeed, for k = 2, we have

u2v2 =
−b0(1 − b0u1v1)

a1c1
=

−b0(1 − b0w1x1)
a1c1

= w2x2,

and, additionally, we have

a1b1u1v2 + b1c1u2v1 = a1b1u1
−b0v1

a1
+ b1c1v1

1 − b0u1v1

c1v1
= a1b1w1x2 + b1c1w2x1.

By the induction hypothesis we can suppose uk−1vk−1 = wk−1xk−1, ukvk = wkxk, and

ak−1bk−1uk−1vk + bk−1ck−1ukvk−1 = ak−1bk−1wk−1xk + bk−1ck−1wkxk−1.

Therefore, we obtain uk+1vk+1 = wk+1xk+1 and the proof is complete. �
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Remark 1. In establishing Proposition 1, we use the recurrence relations subject to the conditions v1 ≠ 0, w1 ≠ 0, and
u1v1 = w1x1. Three of these parameters can be chosen freely.Whenwe choose different values for them,we obtain different
classical inverses of the infinite tridiagonal matrix H. However, such an election is crucial in order to find a suitable matrix
related with a bounded linear operator.

Example 2. We illustrate with the infinite real symmetric tridiagonal matrix

H =


1 −

2
5 0 · · ·

−
2
5 1 −

2
5 · · ·

0 −
2
5 1 · · ·

...
...

...
. . .

 ,

where bi = 1 and ai = ci = −2/5. If we choose, say, u1 = v1 = 1, we have

U =

1, 0, −1, − 5

2 , −
21
4 , − 85

8 , . . .
t

, V =

1, 5

2 ,
21
4 , 85

8 , 341
16 , 1365

32 , . . .

.

By symmetry we obtain a classical inverse B′ of H. However, if we choose, say, u1 = 5/4 and v1 = 1, we have

U =
 5
4 ,

5
8 ,

5
16 ,

5
32 ,

5
64 ,

5
128 , . . .

t
, V =


1, 5

2 ,
21
4 , 85

8 , 341
16 , 1365

32 , . . .

.

We obtain another classical inverse B′′ of H. The matrices B′ and B′′ are

B′
=



1 0 −1 −
5
2 · · ·

0 0 −
5
2 −

25
4 · · ·

−1 −
5
2 −

21
4 −

105
8 · · ·

−
5
2 −

25
4 −

105
8 −

425
16 · · ·

...
...

...
...

. . .

 , B′′
=



5
4

5
8

5
16

5
32 · · ·

5
8

25
16

25
32

25
64 · · ·

5
16

25
32

105
64

105
128 · · ·

5
32

25
64

105
128

425
256 · · ·

...
...

...
...

. . .

 .

These two matrices are examples of classical inverses of H. Note also that if we choose v1 = i, we obtain the vector
V =


i, 5i

2 , 21i
4 , 85i

8 , 341i
16 , . . .


. Taking, for example, u1 = 1, we obtain a complex classical inverse of the real matrix H.

Proposition 1 yields classical inverses of a tridiagonal matrix H. Conversely, the next proposition shows how to obtain
the inverse of an infinite matrix B of a particular form.

Proposition 2. Let B = (bij)∞i,j=1 be an infinite invertible matrix of the form UV for i ≥ j andWX for i ≤ j. The vectors U,V,W,
and X are as in Proposition 1. Then its classical inverse, the infinite tridiagonal matrixH = {ai, bi, ci}, is unique and its entries are
given by the recursive relations

a1 =
1 − b0x1

x2

ai−1 =
−ci−2xi−2 − bi−2xi−1

xi
,


c1 =

1 − b0u1

u2

ci−1 =
−ai−2ui−2 − bi−2ui−1

ui
,

and


b0 =

b22
b11b22 − b12b21

bi−2 =
bi−2,1(bi−1,i−1b1,ibi,1 − biib1,i−1bi−1,1)

ci−2bi−1,1(biib1,i−2bi−2,1 − bi−2,i−2b1,ibi,1)
,

for i ≥ 3. The order in the computation of parameters is the following: first b0, then a1 and c1, then b1, then a2 and c2, and so
forth, sequentially.
Proof. Without loss of generality we take v1 = w1 = 1. The matrix B has the form

B =


u1 x2 x3 x4 · · ·

u2 u2v2 w2x3 w2x4 · · ·

u3 u3v2 u3v3 w3x4 · · ·

...
...

...
...

. . .

 ,

with x1 = u1 and ukvk = wkxk, for k ≥ 2. The first column of B is the vector U and the first row of B is the vector X.
Thus ui and xi are known for i ≥ 1. Recurrence relations for ai and ci are obtained from the recurrence relations for xi
and ui in Proposition 1. We must determine b0 and bi. From the recurrence for vi, with v1 = 1, we obtain b0 and bi. The
products of rows of Hwith columns of Bwere already computed in the proof of Proposition 1. In summary, H is the inverse
matrix of B, and conversely. It follows from the fact that ai, bi, and ci are uniquely determined that the matrix H is uniquely
determined. �
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4.4. Inverses of infinite reduced Hessenberg matrices

When an invertible Hessenberg matrix H has a zero entry on its subdiagonal, we can calculate its classical inverse in a
way similar to how the inverse of a finite Hessenberg matrix was computed in Section 2.3.

Proposition 3. Let H be an infinite invertible upper Hessenbergmatrix with only a zero entry on its subdiagonal. Then its classical
inverse matrix can be calculated using a decomposition into block matrices. If H and B have the forms

H =


H11 H12
0 H22


, B =


H−1

11 −H−1
11 H12H−1

22
0 H−1

22


,

thenB is a classical inversematrix of H, where H11 is a finite nonsingular unreduced Hessenbergmatrix, H22 is an infinite invertible
unreduced Hessenberg matrix, and we assume that the product −H−1

11 H12H−1
22 exists.

Proof. This is trivial because HB = I and BH = I. Therefore, B is a classical inverse of matrix H. �

Remark 2. The product −H−1
11 H12H−1

22 , in the block decomposition of B, satisfies the associative property because the order
of these matrices are 3 × 3, 3 × ∞, and ∞ × ∞. It can be proven that the product of three matrices, one of which is finite,
satisfies the associative property.

Example 3. LetH be the infinite tridiagonal matrixH = {1, 2, 1}, with a unique zero, h43 = 0, on its subdiagonal. A classical
inverse will be B, where

H =



2 1 0 0 0 · · ·

1 2 1 0 0 · · ·

0 1 2 1 0 · · ·

0 0 0 2 1 · · ·

0 0 0 1 2 · · ·

...
...

...
...

...
. . .

 , B =



3
4 −

1
2

1
4 · · ·

−
1
2 1 −

1
2 B12 · · ·

1
4 −

1
2

3
4 · · ·

0 0 0 1 −1 · · ·

0 0 0 −1 2 · · ·

...
...

...
...

...
. . .

 ,

in which B12 = −H−1
11 H12H−1

22 =

−
1
4

1
4 −

1
4 · · ·

1
2 −

1
2

1
2 · · ·

−
3
4

3
4 −

3
4 · · ·

 equals

−


3
4 −

1
2

1
4

−
1
2 1 −

1
2

1
4 −

1
2

3
4

0 0 0 · · ·

0 0 0 · · ·

1 0 0 · · ·


1 −1 1 · · ·

−1 2 −2 · · ·

1 −2 3 · · ·

...
...

...
. . .

 .

The case of finitely many zeros on the subdiagonal follows easily from Proposition 3.

Corollary 2. Let H be an infinite invertible upper Hessenberg matrix with finitely many zeros on its subdiagonal. Then its classical
inversematrices can be calculated using a blockmatrix decomposition as in Proposition 3, but now entry H11 is a finite nonsingular
reduced Hessenberg matrix.

An analogous procedure is valid if H is a lower reduced Hessenberg matrix.

5. Hessenberg matrices related with bounded linear operators

In some cases, Hessenbergmatrices can be regarded as bounded linear operators on ℓ2.We recall here somebasic features
of the matrix representation of invertible linear operators. A bounded linear operator L between Hilbert spaces, for example
from ℓ2 to itself, is invertible if there exists an operator L−1, obviously bounded, such that L−1Lx = x and LL−1y = y for every
x, y ∈ ℓ2. The operator L−1 is called the inverse operator of L, and it is unique. A useful method for inverting bounded linear
operators is the (iterative) power series method given by the next lemma; see e.g. Theorem 8.2 from [4].

Lemma 3. Let H be a matrix representation of a bounded linear operator on ℓ2 that satisfies ∥A∥ < 1, where A = I−H. Then H
is invertible, and its inverse H−1,

H−1
=

∞
j=0

Aj
= I + A + A2

+ A3
+ · · · ,

is a matrix representation of its inverse operator defined on ℓ2.
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Example 4. The infinite Hessenberg matrix from Example 1 satisfies H = I − A, where A is the matrix

A =


1
2 −

1
8 −

1
16 · · ·

−
1
5

1
2 −

1
8 · · ·

0 −
1
5

1
2 · · ·

...
...

...
. . .

 ,

with norm ∥A∥ < 1. Thus H, as a matrix representation of a bounded linear operator in ℓ2, is invertible. The matrix B from
Example 1 is a matrix representation of its inverse operator.

The infinite tridiagonal matrix from Example 2 satisfies also H = I − A, where A is the matrix

A =


0 2

5 0 · · ·

2
5 0 2

5 · · ·

0 2
5 0 · · ·

...
...

...
. . .

 ,

with norm ∥A∥ < 1. HenceH, as amatrix representation of a bounded linear operator in ℓ2, is invertible. Thematrix B′′ from
Example 2 is a matrix representation of its inverse operator.

Recall that a matrix H can have infinitely many classical inverses. Nevertheless, if H is a matrix representation of an
invertible bounded linear operator, it has a unique inverse. Such an inverse is also a matrix representation of its inverse
bounded linear operator, as those given in Example 4.
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