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1. Introduction and statement of the main results

One of the main open problems in the qualitative theory of planar differential systems is the investigation of the limit
cycles that can bifurcate from such systems when we vary the parameters.

A classical way to investigate limit cycles is perturbing a differential system which has a center. In this case the perturbed
system displays limit cycles that bifurcate, either from the center (having the so-called Hopf bifurcation), or from some of
the periodic orbits around the center, see for instance Pontrjagin [1], the second part of the book [2], and the hundreds of
references quoted there. The problem of studying the limit cycles bifurcating from a center, or from its periodic solutions
has been exhaustively studied in the last century and is closely related to the Hilbert’s 16th problem. Nevertheless, in spite
of all efforts, there is no general method to solve this problem.

In the last decades several works about the bifurcation of limit cycles in planar differential systems having a uni-
form isochronous center have been published see for instance [3-5]. Aside from its importance in physical applications,
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isochronicity is closely related to the uniqueness and existence of solutions for some boundary value, perturbation, or bi-
furcation problems. It is also important in stability theory, since a periodic solution of the central region is Liapunov stable
if and only if the neighboring periodic solutions have the same period. For more details on these two last paragraphs see [6].
Moreover, the interest in this problem has also been revived due to the proliferation of powerful methods of computerized
research, and special attention has been dedicated to polynomial differential systems, see [7,8] and the bibliography therein.

Let p € R? be a center of a differential polynomial system in R?, without loss of generality we can assume that p is
the origin of coordinates. We say that p is an isochronous center if it is a center having a neighborhood such that all the
periodic orbits in this neighborhood have the same period. We say that p is a uniform isochronous center if the system, in
polar coordinates x = r cos 6, y = r sin 0, takes the form i = G(6, 1), 8 = k, k € R\ {0}, for more details see Conti [8]. The
next result is well-known.

Proposition 1. Assume that a planar differential polynomial system of degree n has a center at the origin of coordinates. Then
this center is uniform isochronous if and only if by doing a linear change of variables and a rescaling of time the system can be
written as

x=-y+xfxy), y=x+yfxy),
where f (x, y) is a polynomial in x and y of degree n — 1, and f (0, 0) = 0.
The following result due to Collins [9] in 1997, also obtained by Devlin, Lloyd and Pearson [10] in 1998, and by Gasull,
Prohens and Torregrosa [5] in 2005 characterizes the uniform isochronous centers of cubic polynomial systems.

Theorem 2. A planar cubic differential system has a uniform isochronous center at the origin if and only if it can be written as

x=—y+xf(xy), V=x+y(xy), (1)
where f (x, y) = ai1x + a;y + asx* + aqxy — asy?, and satisfies a?a; — a3az + a1aza4 = 0.

In this article a small limit cycle is one which bifurcates from a center equilibrium point, and a medium limit cycle is one
which bifurcates from a periodic orbit surrounding a center.

We study the largest number of small and medium limit cycles for the uniform isochronous cubic centers, when they are
perturbed either inside the class of all continuous cubic polynomial differential systems, or inside the class of all discontinu-
ous differential systems formed by two cubic differential systems separated by the straight line y = 0. The method is based
on the averaging theory. For more details about the averaging theory see the book of Sanders, Verhulst and Murdock [11].

In order to study the bifurcation phenomenon in these systems we take into account the following result due to Collins [9)].

Proposition 3. The planar cubic differential system (1) can be reduced to either one of the following two forms.

x=-y+xy, y=x+x7 (2)
x=—y+x+APY,  y=x+xy+ A, 3)
where A € R.

For now on we shall call (2) and (3) as Collins first form and Collins second form, respectively.
We consider the following continuous systems

6
X=—y+xf(xy)+ Y epix.y),

i=1
6 .
V=x+yp) + ) ek y),
i=1
where f(x, y) is as in Theorem 2, and the system
X=—y+Xy+epcxy),  Y=x+x°+eqx. ), (5)
where
pj = ohx + oy + X’ + Xy + sy’ + o)’ + X’y + gy’ + gy’
G5 = Brx + Boy + B3X* + Boxy + B5y° + Bk’ + Bix’y + By’ + Boy’,
Pk = oo + P1, qx = Bo + q1-
Moreover we consider the discontinuous systems

X\ _[Xi(x,y) ify >0;
(j/) =Xy = {X;(x, y) ify <O0. (6)

X Yix,y) ify >0
(y) =Yy = {Y;(x,y) ify < 0. @)
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where

6
—V+X %)+ ) e'pix,y)
X] (X7 y) = =1 s

6
X+ y)+ Y elgix.y)
i=1

6
V&Y + Y euxy)
Xa(x,y) = =1 ,
X+ y) + Y uix,y)
i=1

—y + X%y + epx (x,
Yl(x’y):<y Y + epi( y)>’

X+ xy* + eqx (%, Y)

=y + 2Py + eu(x,y)
YZ(va)_<X+Xy2+8UK(X5y) '

W =YX + vy + VI + vixy + VY + v + vxty + vaxy? + vy’
v = 8 x 4 8y + 8% + Slxy + 8Ly? + 8x° + 8%y + shxy? + 8Ly2,
Ug = Yo + Uy, vg = &g + V1.

In what follows we state our main results.

Theorem 4. For |¢| # O sufficiently small the maximum number of small limit cycles of the differential system (4) is 3 using the
averaging theory of order 6, and this number can be reached.

Theorem 4 is proved in Section 3. For more details on the averaging theory see Section 2.

Theorem 5. For |¢| # O sufficiently small the maximum number of medium limit cycles of the differential system (5) is 3 using
the first order averaging theory and this number can be reached.

Theorem 5 is proved in Section 4.

Theorem 6. For |¢| # O sufficiently small the maximum number of small limit cycles of the discontinuous differential sys-
tem (6) is 5 using the averaging method of order 6 and this number can be reached.

Theorem 6 is proved in Section 5.

Theorem 7. For |¢| # O sufficiently small the maximum number of medium limit cycles of the discontinuous differential
system (7) is 7 using the averaging method of first order and this number can be reached.

Theorem 7 is proved in Section 6.

Theorems 4 and 5 extend previous results presented in [5]. In that work the authors studied some subfamilies of uniform
isochronous cubic centers, proving the existence of one or two limit cycles. Moreover Theorem 7 extends the work done
in [12] on the number of medium limit cycles which can bifurcate from a family of uniform isochronous quadratic centers
perturbed by discontinuous differential systems with the straight line of discontinuity y = 0, to the uniform isochronous
cubic centers given by the Collins first form.

In this work we also provide the phase portraits and the first integrals for the uniform isochronous cubic centers.

Theorem 8. The first integrals H of system (1) in polar coordinates x = r cos 6, y = r sin 0 are described in what follows.
Case1:a% — a3 # 0.

Subcase 1.1: a; # 0.

Subcase 1.1.1: 4a4 # a3 — a2.

— i 2 S
_ arctan[ R+2a47( uzlggsﬁﬂl] sin6) ] |: aar ]
9

R+ r(ay cos® — aq sinf)(ayasr cos® — aj;as sind — R)

H=e

whereR = a? — a3, S = /4aq/R— 1.
In case of a negative square root, we have a complex first integral and therefore both its real and imaginary parts are also first
integrals, if not null.
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Subcase 1.1.2: 4a4 = aj — a2.

2
re 2—ayr cos 0+aqrsind

2 —ayrcosf +ayrsing’

Subcase 1.2: a5 = 0.
r

1 — ayrcos@ + a;rsing’

Case2:a? —a2 =0.
Subcase 2.1: a, = a;.
Subcase 2.1.1: a; = 0.

r2

T 1 —agr?cos? 6 + asr? sin(26)
Subcase2.1.2:a; #0, a; = 0.
Subcase 2.1.2.1: a3(a? + 4a;3) # 0.

2 arctan] 4120370805 0) | asr2(sin(20) — 1) R
(cos® — sin@)2[1 + a;r(sin@ — cos 0) + asr2(sin(20) — D] | °

H=e

where R = /—1 — 4a3/a3.
Subcase 2.1.2.2: a3 = 0.
r

" 1—ayr(cos@ —sinf)’

Subcase 2.1.2.3: a3 = —a? /4.

2
2T€ 2—aqr(cosf—sinf)

~2_ a;r(cos6 —sinf)’

Subcase 2.2: a, = —a,.

Subcase 2.2.1: a; = 0. This case becomes the subcase 2.1.1.
Subcase2.2.2:a; #0, a; = 0.

Subcase 2.2.2.1: a3(4a; — a3) # 0.

aq+2a3r(sin#+-cos6)

e% [72 arctan( R >+Rarctanh(tan 0)]

asr?(sec(26) + tan(26))
1+ ar(sin@ 4+ cos ) + azr2(1 + sin(20))

where R = \/4as/a3 — 1.

Subcase 2.2.2.2: a3 = 0.
r

)

1= a;r(cosé —sinf)’

Subcase 2.2.2.3: a3 = a3 /4.
;

1 . B .
el taar(cosfHsing (1 4 la;r(cos6 + sind))

Theorem 8 is proved in Section 7.

We say that two polynomial vector fields X and Y on R? are topologically equivalent if there exists a homeomorphism on
the Poincaré sphere S? preserving the infinity S' carrying orbits of the flow induced by the Poincaré compactified vector field
of X into orbits of the flow induced by the Poincaré compactified vector field of Y preserving or reversing simultaneously
the sense of all orbits. For more details on the Poincaré compactification see Chapter 5 of [13].

Theorem 9. The global phase portrait in the Poincaré disc of the differential system (1) is topologically equivalent to one of the
three phase portraits presented in Fig. 1.
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Fig. 1. Phase portraits of cubic uniform isochronous centers.

More precisely, the global phase portrait of (1) is topologically equivalent to the phase portrait (a) of Fig. 1 if one of the
following conditions holds

. 410y # 0,and ag(a® — a3) > 0,and as < (a* — a?)/4;
.0y =—a; #0,and0 < a3 < a?/4,and ay = 0;

.y =0a; #0,and —a?/4 < a3 < 0,and ag = 0;

.a; =0,anda, #0,and —a3/4 < ay < 0;

.a; #0,anda, =0,and 0 < as < a3/4;

the phase portrait (b) if one of the following conditions holds

. 10y # 0,and as(a? — a3) > 0,and as > (a3 — a3)/4;
.Gy = —a; #0,and a3 > d3/4,and ag = 0;

.y =a; #0,andas < —a3/4,and ag = 0;
.a;=0,anda, #0and ag < —a3/4;

. a; #0,anda, =0and ay > a?/4;

the phase portrait (c) if one of the following conditions holds

. 10y # 0, and as(a? — a3) < 0;

.0 =—a; #0,andas < 0,anday = 0;
.a;=a; #0,andas > 0,and ay = 0;
.a;=0,anda, # 0,and ay > 0;

. a1 #0,anda; =0,anday < O;
.ap=a, =0.

The cases where a3 = a4 = 0 are omitted in Theorem 9 because in such cases system (1) is a quadratic polynomial
differential system, which has already been exhaustively studied, see for instance system S, at p. 38 of [7].

Theorem 9 is proved in Section 8.

Collins [9] presented the phase portraits and first integrals for the uniform isochronous cubic centers, but he applied the
forms (2) and (3) in order to obtain the results and therefore one needs to change the differential systems to such forms
before getting the phase portraits and first integrals. Our results present the first integrals in terms of all the parameters of
the uniform isochronous centers. Moreover, the phase portrait for the case A = 1/4, Fig. 2(d), p. 347 of [9] is not correct,
because it presents two saddle-nodes at infinity which do not exist.

The rest of the paper is organized as follows. In Section 2 we present some results on the averaging theory and technical
propositions used in our study. The next four sections are dedicated to prove our main results. More precisely in those
sections we present the proofs of Theorems 4-7, respectively. Finally, in Sections 7 and 8 we respectively provide the proofs
of Theorems 8 and 9. All calculations were performed with the assistance of the software Mathematica.

2. Preliminary results

In this section we introduce some preliminary results on the averaging theory that we shall use in our study of the uniform
isochronous cubic centers.

The following result is due to Llibre, Novaes and Teixeira [ 14].

Consider the general differential system

k
(1) =) &Rt x) + e TIR(E, %, ), (8)

i=0

whereF; : R xI — R'fori=1,2,...,kandR: R x I x (—&g, &g) — R" are continuous functions and T-periodic in the
first variable, I being an open subset of R".
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Moreover, let L be a positive integer,x = (X1, X2, ..., X,) € I, t e Randy; = (¥j1,¥j2, - .-, ¥jn) € R", j=1,...,L.Given
F : R x I — R"asulfficiently smooth function, for each (t, x) € R x I we denote by 3F(t, x) a symmetric L-multilinear map
which is applied to a ‘product’ of L vectors of R", which we denote as @L] yj € R™. The definition of such L-multilinear
map is

L n L
d"F(t, x)
L — ’ R Y
9 F(t,X)Qy,'—' Z_ e AR Y 9)
j=1 i1,....ip=1 1 L
We define 3° as the identity functional. Given a positive integer b and a vector y € R" we also denote y® = @jl-’zl y € R™,
Let (-, z) : [0, t,] — R" be the solution of the unperturbed system x(t) = Fy(t, x) suchthat ¢(0,z) = z.Fori=1, ...,k
we define the averaged function f; : I — R" of order i as
¥i(T,2)
fi@) ===, (10)
wherey; : R x I — R", i =1,...,k— 1are defined recurrently by the following integral equation.
t i 1 1
yilt,2) =il f [Ff(s, 0, 2) + )Y e 3'Fii(s, 065, 2) (D s, z)”f'] ds, (11)
0 = 5 bilba!202 - byl e

where §; is the set of all [-tuples of non-negative integers (b, bo, ..., b)) satisfying by +2b, +---lbj=1land L = by + b, +
- - -+ b;. Observe that if Fh = O then ¢(t, z) = zforeach t € R. Therefore y(t,z) = fot Fi(s,z)dsand fi(t,z) = fOT Fi(t, z)dt
as usual in averaging theory.

Theorem 10. Suppose Fy = 0. In addition, for the functions of (8) we assume the following conditions.

(i) Foreach t € R, Fi(t,-) € ¥, i =1,...,k, 3“'F is locally Lipschitz in the second variable fori = 1,...,kand Risa
continuous function locally Lipschitz in the second variable;

(ii) Assume that fi =0, i=1,...,r —1andf. # 0,1 € {1, ..., k} (here we are taking fo = 0). Moreover, suppose that for
some a € I with f,(a) = O there exists a neighborhood V C I of a such that f,(z) # 0, Vz € V\{a} and dg(f; (z), V, 0) # 0.

Then, for sufficiently small |e| > 0 there exists a T-periodic solution x(-, €) of (8) such that x(0, €) — a when & — 0.

The proof of this theorem can be found in Section 3 of [14].
The next result provides a method to write a perturbed differential system under the form (8) fork = 1and F; = 0
which can be used to apply the averaging theory of first order.

Theorem 11. Consider the unperturbed system x = P(x, y), y = Q(x, y), where P, Q : R*> — R are continuous functions, and
assume that this system has a continuous family of period solutions {I';} C {(x,y) : #(x,y) = h, h;y < h < hy}, where # isa
first integral of the system. For a given first integral H assume that xQ (x,y) — yP(x,y) # 0O for all (x, y) in the period annulus
formed by the ovals {I}). Let p : (v/h1, ~/h2) x [0, 2) — [0, 0o) be a continuous function such that

H(p(R, 0) cos6, p(R, ) sind) = R?
forallR € (+/h1, ~/h2) and all & € [0, 2r). Then the differential equation which describes the dependence between the square
root of the energy R = Vh and the angle 0 for the perturbed system x = P(x,y) + ep(x,y), y = Q(x,y) + £q(x, y), where
p, q : R> — R are continuous functions is

dR _ (& +y*)(Q —Pg)

do 2R(Qx — Py)

where u = wu(x, y) is the integrating factor corresponding to the first integral H of the unperturbed system and x = p(R, 6) cos 6,
y = p(R, 0) sin6.

+0(&?) (12)

For more details see [ 15]. We also need the next results. The first one can be found in Proposition 1 of [16] and the latter
in[17].

Proposition 12. Let fy, .. ., f; be analytic functions defined on an open interval I C R. If fo, ..., f; are linearly independent
then there exists Sy, ...,S, € I and A, ..., Ay € R such that foreveryj € {1, ..., n} we have Z?:o Aifi(s) = 0.

We say that the functions (fy, . .., f;) defined on the interval I form an Extended Chebyshev system or ET-system on I, if
and only if, any nontrivial linear combination of these functions has at most n zeros counting their multiplicities and this
number is reached. The functions (fy, . . ., f;) are an Extended Complete Chebyshev system or an ECT-system on [ if and only
ifforany k € {0, 1,...,n}, (fo, ..., fi) form an ET-system.
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Theorem 13. Let fy, .. ., f, be analytic functions defined on an open interval I C R. Then (fy, ..., f,) is an ECT-system on I if
and only if foreach k € {0, 1, ..., n} and ally € I the Wronskian

hO) RO - KO
o) KO Ko
Wh ..o =" . . .
2P0 e ()

is different from zero.
The next result follows easily from Lemma 2.13 of [18].
Proposition 14. Consider g(t) = f(t — A)f (A — t), for A € RT andf : R — R, C*, defined by

eVt ift > o0;
f(t)_{o ift<o0.

Clearly g is C*°, nonnegative and g(t) > 0 < t € (—A, 1). Then the function h defined by
t

Josc8)ds
o0

S g(s)ds

isC®and h(t) = —1fort < —A, h(t) = 1fort > L and —1 < h(t) < 1 otherwise.

h(t) =2

3. Proof of Theorem 4

We use the Collins first and second forms, respectively systems (2) and (3) in this article to prove Theorem 4. We were
able to apply up to the averaging theory of order 6.
Collins first form

Consider system (4) with f (x, y) = xy, that is, the unperturbed system is the Collins first form.

6
k=-y+Xy+ ) enxy),

6::1 (13)

V=x+x7+ ) daixy).
i=1

In order to analyze the Hopf bifurcation for system (13), applying Theorem 10, we introduce a small parameter ¢ doing the
change of coordinates x = ¢X, y = &Y. After that we perform the polar change of coordinates X = rcos6,Y = rsin9,
and by doing a Taylor expansion truncated at the 6th order in & we obtain an expression for dr/df similar to (8) with
Fo = 0, k = 6. The explicit expression is quite large so we omit it.

System (13) is a polynomial system. The functions F;(6,r), i = 1,...,6 and R(9, r, ¢) of system (13) are analytic, and
since the variable 6 appears through sinus and cosinus, they are 27 -periodic. Hence the assumptions of Theorem 10 are
satisfied. We take I of Theorem 10asI = {r : 0 < r < 1} because the Collins first form has the period annulus of the center
intheband —1 <x < 1.

Applying Theorem 10 we obtain the averaging function of first order

fi(r) =mr(aq + By).
Clearly f1(r) has no solution in I. Thus there is no small limit cycle which bifurcates from the uniform isochronous center

at the origin by the averaging method of first order. Setting ;‘321 = —a} we obtain f;(r) = 0. So we can apply the averaging
theory of second order using Theorem 10, obtaining the averaging function of second order.

h(r) =mr(ad + B3).
Since f,(r) has no solution in I, there is no small limit cycle which bifurcates from the uniform isochronous center at the

origin applying the averaging method of second order. Doing ,3% = —ocf we get f>(r) = 0, and then we can apply the
averaging method of third order obtaining

f3(r) = r(Asr® + Ay),
where
T
As = 2(401}—1—30(%4—04;—{-,3714—3,3;), Aq :n(otf—i—ﬂ;).

Thus f3(r) has one solution in I if 0 < —A;/A3 < 1. Hence applying the averaging theory of third order it is proved that at
most 1 small limit cycle can bifurcate from the uniform isochronous center at the origin and this number can be reached.
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In order to apply the averaging method of fourth order, we need to have f3(r) = 0 so we set /323 = —oq?’ and 571 =
—(4a + 30} + a4 + 3B4). The resulting averaging function of fourth order is
fa(r) =r(Bsr* 4+ By),
where
T
B; = 2(405}055 + 204}0571 + 20{},3& + 3,311;391 + a;ozg + 30;5/3; — 205%;331
+azoy — BsBa +ages — Bafs + 205 B5 + Piog + 4ot + 3ug + B7 + o +365).
By = m(af + By)-

Then f,(r) has one solutioninl if0 < —By/B3 < 1.Hence we can show that at most 1 small limit cycle can bifurcate from the
uniform isochronous center and this number can be reached. Solving B; = 0 for ,35‘ and B; = 0 for ,372, we obtain fy(r) = 0
so we can apply the averaging theory of order 5, and its corresponding averaging function is

fs(r) = r(Gsr 4+ Gor? 4 (),
where
T 1 1 1 1
C = Z(Zoe1 + 205 + g + By),
T
C = Z(40111(0121)2 + Za}a;a; + Zallozzlﬂg + Za}((x;)z — a}a;ﬂi

+B1BsBa + 201305 — 201 B3 B3 + oy () — a1 (By)® — a1 B3y

—{—a}a;ﬁ; — 205}(,351)2 + a} ia; + 401}01% + 205}013 + 201},3;

+3B1B3 + (a3) g + 3(03)° By + 313 By + y ey + 20504000

—a;ﬂ;ﬁ; + 405;019/35] + ﬁ}a;ag + 405;()[% + otzloté + 304;;392

+2B1as B3 — 2035 + azaf — B3 B + Blogas + azes — BB

oyl — B2 + 2B{adBE + asal — Bl B + 2037 + 20507

+og B2 + agal + 3B BT+ 2Be0? + 3Pgas — 2B305 + 2Bsal + Blag + 4t + 30 + B3 +ag +3B3),
C = n(oe? +,3§’).

The averaging function of fifth order f5 (r) can have at most 2 solutions in I. Thus applying the averaging method of order 5 it
is proved that at most 2 small limit cycles can bifurcate from the uniform isochronous center at the origin and this number
can be reached.

In order to apply the averaging theory of order 6 we solve C; = 0 for /3;5, C3 = 0 for 673 and Cs for ﬂ;, resulting that
fs(r) = 0. Calculating the averaging function of sixth order we have

fo(r) = r(Dsr* 4 D4r® + D3r? 4 Dy),

where

_ _i 1.1 1.1 1.1 1.1 1.1
Ds = 38471(4504]%4—1920560;2 112050, — 1120405 — 1920, 5

+ 960 arg + 288argarg + 96agad — 192 — 192af — 96}
+192al B} 4 288ad B3 + 64ad B3 — 1681 81 + 3200 B2 + 960 B2
+237al 8! — 1681 B + 28801 B} + 288l Bl + 96ad BL — 962),

D _ 1 1 Ty, o1 14 581
4 = 80‘17[(“2 +/31)(054+:33+ ,35)7

1
Dy = —-m(108aj(@})’ + 364 (@)’ — 384ajaj(@})’

+ 7203 (@0])? + 25603 B3 (a])* + 1283 B4 (])* — 25604 B3 (o] )?

+ 3848, Ba (o)) + 319(cry) et} — 27(B1) ] — 2560, (3)%a]

— 2560, (ag) %} + 903 (B1)2al + 128, (B))* ] — 1288, (B1)* ]
— 128041(15] (0{})2 + 51205% (ﬂ;)za} — 5120{2104;055]05} — 2560@05%04}

+ 57204%0{%05} — 2560{}05%05} — 5120404%04} — 256(04%)2057105}
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— 2560 030] — 25603020] — 256050 + 256050 — 256a3a]

+867(y)? Bl + 256(ce3)* Bla] + 828 Bl + 12850, B3

+ 1283 B3] — 128, B B3] + 1283 Bler] — 2560 s Bt

+ 128038 0] — 1282 B ) — 1280381 Biar} — 25600, Bact]

—128aZBlal + 2560, B3 faa] — 2568, B3 Baci — 256(ay) Bacti

— 25602 Baa) + 828a, Bl + 60B] B + ]280¢4ﬂ3oz1

+ 25684 B2al + 1283 fia] — 128ad f2al + 2568, B;

— 128} f2a] + 2568 B2a) + 51284 p2a] — 25601258011

+768B3a; — 256B3a; + 3003 (B])* + 12802 (B,)>

+256a2(Ba)* — 128(ay) ajas — 384(ary) ajaa + 768(ay)

+256(0y) g — 482(aty)* @} — 256(a3)a? — 128(as) el

—256a3aa0? — 256a,a70% — 1283005 — 25600003

+ 15360y apas + 5120 505 — 512a5a; — 128a, 0,05

— 128,030 — 256a2a5a4 — 128030 — 25600402

— 128aja? — 256a7as — 128(a,) s — 128a5a; — 512a, a3

— 2560{7051 + 768%042 + 2560{80l2 128054053 128a3a4

— 128a5a4 — 128a4a5 - 1280{20¢8 — 5120‘1 - 3840{6 - 128058

— 256a2a4a5ﬂ; + 768(05;)20[6;31 + 256(012)204;,31 + 60a, 0 8]

—i—768016052 1+ 256a8a2 1 128a5a4 1 1280[4055 1

— 12802 B — 1283 B + 25603 (B])? B3 + 128a,03 B3

+ 2560383 — 256038, B3 + 128aja; B, — 128aiai B,

+128(B1)*B3 B3 — 768(cy) 5 5 — 12803007 By — 51205035

—5120}02 ) — 256021 — 5120}l Bl B — 256021

+ 25602 B3 B3 + 128(cy)? B4 Be + 12805 B, fa — 2560502 B

— 2560383 — 128}l B2 + 768alal B2 + 2560l ad B2 — 12802 B2

— 2560383 B7 — 12863 B3 1 — 25605 5 7 + 25603 B35 — 25601381 B3

— 12861 B4 B3 — 1286, B3 B; + 1280, 5 5 + 12853 B — 512005 5

— 2560282 — 2561 B1 B2 + 128a) B1 B2 + 12882 B2 — 25607 B2

— 384(cr;)* 5 — 38403 B5 — 384w, 81 B3 — 3841 S5 + 768ag 7

+ 25604 B3 + 25604 B3 + 12881 B3 + 12881 B2 + 12881 3

— 25604 B2 + 1288, B2 — 384w, B3 — 3848, B3 — 12887 — 38485,
Dy = 7 (af + f3).

Therefore f5(r) can have 3 solutions in I according to Proposition 12. By Theorem 13 (r, r3, r%, r°) is an ECT-system because
Wi(z) = z, Wa(z) = 223, W53(z) = 62°, W4(z) = 4877, are nonzero in I, where W;(z),j =1, 2, 3 denotes the Wronskian of
the first j functions in (r, 3, r*, r>). Moreover Dy, D3, D4 and Ds are linearly independent functions. In fact only D5 presents
the coefficients oy and o2, only D5 has the coefficient o3, and Dy is the only one with the coefficients o§ and 85. We claim
that D4 is also linearly independent of the other coefficients. Suppose that this is false. Then there exist real numbers k, [, m
not all zero such that D4, = kD + ID3 + mDs. But D, is the only one with the variables a? and /353, so in order to D4 does
not present these variables we must set k = 0. Since the other two functions D3 and Ds also have variables which uniquely
appears in their respective expressions, the same argument holds so I = m = 0. But then D4 = 0, which is a contradiction.
Therefore D1, D3, D4 and Ds are linearly independent functions. Hence applying the averaging theory of order 6 we can show
that at most 3 small limit cycles can bifurcate from the uniform isochronous center at the origin and this number can be
reached.
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Now we perform similar calculations to the Collins second form.

Collins second form
Consider system (4) with f (x, y) = x + Axy.

6
k=—y+X +A% + ) epix.y),

i=1

6
V=x4xy+ A+ ) gk, ),
i=1
where A € R\{0}, since for A = 0 system (14) is a quadratic system, which has been exhaustively studied.

Similarly to the previous procedures applied in the Collins first form, in order to analyze the Hopf bifurcation for system
(14), applying Theorem 10, we introduce a small parameter ¢ doing the change of coordinates x = ¢X, y = &Y. After
that we perform the polar change of coordinates X = rcos#,Y = rsin#, and by doing a Taylor expansion truncated at
the 6th order in ¢ we obtain an expression for dr/df similar to (8) with F = 0, k = 6. Using the same arguments as in
the proof of the Collins first form the differential equation dr/df = - - - satisfies the assumptions of Theorem 10. We take
I ={r:0 <r <ry < 1}, where the unperturbed system has periodic solutions passing through the point (r < rg, 8 = 0).

Applying Theorem 10 we obtain the averaging function of first order

fi(r) = wr(e] + By).

Clearly f1(r) has no solution in I. Setting 521 = —a} we obtain f;(r) = 0. So we can apply the averaging theory of order 2
using Theorem 10, obtaining

f(r) =mr@} +B3).

Again f,(r) has no solution in I. Doing /322 = —ocf we get f,(r) = 0. Then we can apply the averaging method of third order
fa(r) =r(Asr? + Ay),
where

_ T 1 1 1 1 1 1 1 1
As = Z(4Aozl + oy + 30 +og — 385 — Bs + B; +38y),
Ay =m(a}+B;).

Thus f3(r) can have one solutioninI if 0 < —A;/A3; < ro.In order to apply the averaging method of fourth order, we need to
have f3(r) = 0.We set 85 = —a3 and B, = —(4Ac] + o + 3 + g — 383 — B4 +3B4). The resulting averaging function
of fourth order is

fa(r) = r(Bsr* +By),
where
By = %(Ma}a; +4A0? + 30lad + 3818 — 30! + 3alal + 200l
+ 201 B3 + 31 Bs + ayay — a3 i + ayag + 30,85 — 20383
+azag — 3By + auas — Bafs + 205 s + Biog — 363 + af — B3 + 305 + BT + g + 3B3),
B = J'((oe;1 + ,3;).

Then f4(r) has one solution in I if 0 < —B;/B3 < 1. Solving B; = 0 for ,8;, and B; = O for /872, we obtain f;(r) = 0, and we
can apply the averaging theory of order 5. Its corresponding averaging function is

fs() =r(Gsr* + Gr* + (),
where
_ T 2 1 1 1 1 1 1 1

G5 = o, (124%] + 1840} — 17A; + 7Aaj — 19AB] + 12Aaq + 6Aa
+6ABs — 12B] + 6a) — 684 + 18a + 12a4 + 188d),
g

G = Z(Ma}(a;)z + 4Aa]a? + 4Aaja? 4 4Aad — 3(a))?B) — 3(B))*B1
+3(oz]1)2a; — 3(01})2551 + 35110111/3[} + 3011101210(; — 30(110121/3; + ﬂ73
—{—605}0[2105; + 204}0[2105; + 20{}0{21 ; + 20{}(0[;)2 — 3,31105}04 + Olg
—ajo3fy + BiBsBa + 200505 — 201 B3 5+ (0y)® — oy (By)?

—aiBsey + oo s — 200 (B3)” + o Bias + g + 2B505 + 3
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— 30185 + 30105 + 20107 + 201 B3 + 31 B3 + (¢3) ey — (@3)° B3
+ (@) g + 3(0)* g + 3610389 + yazaq + 2050505 + Brog

— ;B4 B3 + 4oy B + Bl + ayad — a3 + o + 30,3
+ 28103835 + 30307 + 36387 — 20385 + agag — B3 By + Bl
+ag05 + g0l — BiBS + asad — B2 + 2B adfa — 383 + 3613
+ 30(;0(% + a;ai — ﬂ;ﬂi + Za;ﬂsz + 2017101% + agﬁlz + 301110[% + ai
+3BgB7 — 3Baat +2B50] — P3aj + 3Pga; — 2B305 — B3 + 3ag),

G = n(e; + B3).

The averaging function fs () has at most 2 solutions in I. In order to apply the averaging method of order 6 we solve C; = 0
for ,35’, C;3 = 0 for 573, and Gs = 0 for ﬁ;, resulting f5(r) = 0. We remark that these expressions only hold for A # —3. The
results for A = —3 are presented later on. Calculating the averaging function of sixth order we obtain

fo(r) = r(Dsr* + D31 + D)

where the expressions of D; fori = 1, 3, 5 are very long and we do not give them here.

Therefore fg(r) has at most 2 solutions in I. Using the same arguments than in the proof of the Collins first form for f5 (1)
we can show that at most 2 small limit cycles can bifurcate from the uniform isochronous center at the origin and this
number can be reached.

Now we analyze the bifurcation of small limit cycles for the center of (14) in the case A = —3. We remark that until the
averaging method of order 5 the respective averaging functions for this special case can be obtained by pluggingA = —3 in
the equations of the general case, so we do not explicit them. Hence we solve C; = 0 for ,3;, C3 = 0 for /373, and Cs = 0 for
a;, and we get fs(r) = 0 when A = —3. Calculating the averaging function of sixth order we obtain

f5(T) = T(D®5T4 + 1)41’3 + 1)3r2 + cD]),

where again we do not provide the explicit expressions of D; for j = 1, 3, 4, 5 because they are too much long.
Therefore f5(r) has at most 3 solutions in I. Using similar arguments as those applied in the proof of the Collins first form
for fs(r) it is proved that at most 3 small limit cycles can bifurcate from the uniform isochronous center at the origin and
this number can be reached.
This completes the proof of Theorem 4.

4. Proof of Theorem 5

A first integral H and its corresponding integrating factor p for system (2) are H(x,y) = (x> +y?)/(1 —x?) and u =
—2/(x* — 1)2.When h € (0, 1) then H(x, y) = h are periodic solutions around the center (0, 0) contained in the open disc
of radius 1 centered at the origin. For proving Theorem 5 we shall use Theorem 11. Therefore applying the notation of Theo-
rem 11wehaveh; =0, h, = 1and p(R, #) = R/(R? cos®* §+1) forall0 < R < 1and @ e [0, 2). Then all the hypotheses of
Theorem 11 are satisfied for system (2). Using Theorem 11 we transform the perturbed differential system (5) into the form

5
Mi(0, o, )R
dR ;0 i(0,a, B)

do =¢ 1+ RZ cos? 0
where

Mo (0, o, B) = —v/1+ R2 cos2 0t cos 6 + Bo sin0),

M0, o, B) = —or1 €05* 0 — (crz + B1) cos O sin0 — B, sin® 6,

My, a, B) = (—1/4«5) J2+ R + R cos(20) (T + 3as + as

+ Ba) cos O + (g + a3 — a5 — B4) c0s(36) + 2(ay
+ Bo+ B3+ Bs + (@a + Bo + B3 — Bs) cos(20)) sinH),

— (201 + o) cos? @ — 2az + a7 + B1 + Bs) cos® O sin O
— (o1 + otg + B2 + B7) cos® B sin? 6 — (ay + atg + PBg) cos @ sin> O — Bgsin? b,

Mi(6, @, B) = (—1/2\6) 05 60+/2 + R? + R? c05(260) (g + 3 + s + (g + a3 — arg) C0S(26) + s 5in(26)),

Ms©,a, B) = (=1/4) cos0((3(a1 + ag) + ag) cos O
+ (()[1 + o — Olg) cos 30 + 2(0{2 + o7 + o9 + (O{z —+ o7 — Otg) Ccos 20) sin 9),

where & = («g, ..., a9)and 8 = (Bo, ..., Po).

+0(s%) (15)

M3(97 o, ﬂ)
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We must study the zeros of the averaged function f : (0, 1) — R defined by

5 .
o 2 Mi(6, a, HR
i=0
R) = —_——df
J®) /0 1+ R2cos? 6

By computing the previous integral, we obtain

FR) = (s — a1 — 3ag — Po — B7 + 3Bo)go — 7 (1 + s + ag)g1
+ 27 (ag — B9)g2 + 27 (ag — g — B7 + Bo)gs, (16)

where
@=R @ =R, o=R/1+R, g3:(1—\/1+R2)/R.

In order to find the maximum number of simple zeros of the function f we need to prove that the four functions g; : (0, 1) —
R,i€ {0,..., 3} givenin(16)are an ECT-system and according to Theorem 13 this is the case if each Wronskian Wj(go, . . .,
g) #0, je{0,...,3}. More precisely

Wp =R, W, = 2R, W, = —2R%/(1 + R%)%/?
W; = 1282 (8 +12R + 4R —8(1+ R —RY1+ R2) /(1 +R22,

For R € (0, 1) we have that all the Wronskians above are nonzero. Moreover the rank of the Jacobian matrix of the co-
efficients of g;,i = 0, ..., 3 in f(R) in the variables o, «g, as, B2, B7, Bg is 4. Thus applying the averaging theory of first
order and Theorem 13 it is proved that at most 3 medium limit cycles can bifurcate from the periodic solutions surrounding
the cubic uniform isochronous center of the Collins first form and this number can be reached. This completes the proof of
Theorem 5.

5. Proof of Theorem 6

We use the Collins first and second forms to prove Theorem 6. We shall apply to them the averaging theory of order 6.

Collins first form

In order to analyze the Hopf bifurcation for system (6) with f(x, y) = xy we introduce a small parameter ¢ doing the
change of coordinates x = eX, y = &Y. After that we perform the polar change of coordinates X = rcosf,Y = rsinf
and by doing a Taylor expansion truncated at the 5th order in & we obtain an expression for dr/df similar to (8) with
Fy = 0, k = 6. The explicit expression is quite large so we omit it.

In addition, to fulfill the conditions of Theorem 10 we apply the regularization theory. For this purpose we take the
function h(r) and A > 0 of Proposition 14 and transform system (6) with f (x, y) = xy in the C°°-system

_ X; + X X1 — X
T = 1+ 2+h(r) 12 2’

where X; and X, are given in (6) with f(x,y) = xy. For t < —\ this system is equal to X5, for t > A itis X; and it is a
smooth differential system otherwise. When A — 0 it tends to system (6) with f (x, y) = xy. We shall have I of Theorem 10
asI = {r : 0 < r < 1}. Now we have all the assumptions of Theorem 10 satisfied and applying it we obtain the averaging
function of first order

fi(r) = nre] + By + v +8).

Clearly f; (r) has no solution in I. Thus there is no small limit cycles bifurcating from the uniform isochronous center at the
origin by the averaging theory of first order. Now setting y;| = —(«af + B, + 8,) we obtain f;(r) = 0. So we can apply the
averaging theory of second order, obtaining

f(r) =1(Ar + Ay),

where

2
Ay = g(a; — v+ By + 2B — 83 —28D),
T
A = @y + 207 +2m(@)" — ey + 217 — i+ afy + T
— 2 By — BiBY + 21 (B + 282 + als) + Bis] + 262).

Thus f,(r) has one solution in I if 0 < —A;/A; < 1. Therefore applying the averaging theory of order 2 it is proved that at
most 1 small limit cycle can bifurcate from the uniform isochronous center at the origin and this number can be reached.
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To apply the averaging method of third order we need that f,(r) = 0. Thus we solve A; = 0 for y41 and A, = 0 for ylz from
these coefficients. Calculating the next averaging function we have

f3(r) = r(Bsr* + Byr + By),

where
B—l 48] 1 1 1 1 gs1 4 51 s 1 1
3_871( By + 30 + B; + g + 3P, 5 + 387 + 38 + 3y +¥g),

2
B, = 7(05 —3B{B; +6ma,p; — o B, +6maja, + 2a s + 1270, Bs

- 5] +oys + 200ys + 67 By By + 3wy, — 4:321541 + 60 B3
+ 1271'/32,35 By8s — 5P 03 + 671,32a4 - 3ot4y2 + 28,04 + 3/33
+ 305 + 65 + 38183 + 38,85 — 3837, — 683y, + 381, + B3
+68,y3 + 28,75 — 385 — 3y; —657),

By = %n(mnz(a}ﬁ — 87 B () + 3072 (a])?B) — 4(a))* B,
+ 8n(a})2 14 3(/311)2,821 +4m (a})za} — 4(a])?8; — 4m(a])?y,
+3(8) %) — 167r/31a1ﬁ2 —2Bj018) + 3a}<a5>2 + 307 e ()
— 4] (By)* — 8Bl (By)* — Zﬁ}ala; + 167l a2,32 + 2] a)8]
+8m1,32151 - 2,3}/3215} — 801 By8) — 2jayy, — Aa|fE
+ 16710(1011 + dajat + 16710111,822 481 B2 — ol (8])?
— 4o 1(5 )? —011(7/2) +2,310‘1V2 8”0‘}5213/21 _20‘}511)’21
i3y — dogyy + 10m7(8)° + 3()B; + 4m (8,75
—4(B,)*8; — 2By By + 8Ty (By)* + 20{2,3281 + doya}
— 4B, B} + 4oy B2 + 167152/32 BI(8H? — 4B, (83)*
—205f37) + 4Py5; — 4Poi + 167Tﬂ20l1 + daid;
_4051)’2 +4520‘2 +4:3251 +8a1 +8,32 ,32(72) +2ﬂ1],3213/21
— 4w (B))’y, — 2B381vs —4B3v) —4Byvi +8y) +85)).
Since f3(r) can have at most 2 solutions in I, we conclude that at most 2 small limit cycles can bifurcate from the uniform
isochronous center at the origin and this number can be reached. In order to apply the averaging theory of order 4 we need

that f3(r) = 0, so we vanish its coefficients B;, B, and B; by conveniently isolating 62, 8§ and 8; from these coefficients. The
resulting averaging function of fourth order is

fa(r) = T'(C4r3 + C3r2 + Gr 4+ Gy),

where the expressions of C; forj = 1, ..., 4 are too long and we do not provide them here.

Of course f4(r) can have at most 3 solutions in I, so at most 3 small limit cycles can bifurcate from the uniform isochronous
center at the origin and this number can be reached. In order to apply the averaging method of order 5 we must have that
fa(r) = 0. Thus we solve C; = 0, C; = 0, C3 = 0 and C4, = O isolating /3;, ,3;, ,392 and ,351 respectively. Now we can apply the
averaging theory of order 5, and its averaging function is

fs(r) = r(Dsr* 4 D4r® + D3r* 4 Dyor + Dy),

where again we do not provide the explicit expressions of D; forj = 1, ..., 5. Hence f5(r) has at most 4 solutions in I. Doing
analogous arguments than in the proof of Theorem 4 it is proved that at most 4 small limit cycles can bifurcate from the
uniform isochronous center at the origin using the averaging theory of order 5, and this number can be reached.

To apply the averaging theory of order 6 we solve D; = 0 for 85, D, = 0 for 82, D3 = 0 for 83, D4 for 62, and Ds = 0 for
yg, so we get fs(r) = 0. Calculating the averaging function of order 6 we obtain

fo(r) = r(Eer” + Est* + Eqr® + Esr® + Epr + Ey).

We do not provide the expressions of E; fori = 1, ..., 6 because they are too long. Thus fg(r) has at most 5 solutions in I.
Doing analogous arguments than in the proof of Theorem 4 we can show that at most 5 small limit cycles can bifurcate from
the uniform isochronous center at the origin using the averaging theory of order 6, and this number can be reached.

Collins second form

Similarly to the previous arguments used in the Collins first form case, to study the Hopf bifurcation for system (6) with
f(x,y) = x 4+ Axy we introduce a small parameter & by doing the change of coordinates x = ¢X,y = ¢Y and then the
standard polar change of coordinates X = r cos 6, Y = r sin . Doing a Taylor expansion truncated at the 5th order in ¢ we
obtain an expression for dr/d6 similar to (8) with Fy = 0. The explicit expression is very large so we omit it. We shall have
I of Theorem 10asI = {r : 0 < r < rp < 1}, where the unperturbed system has periodic solutions passing through the
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point (r < rg, & = 0). Moreover we also apply the regularization theory to fulfill the other conditions of Theorem 10 as
previously done for the Collins first form. Hence, applying Theorem 10 we obtain the averaging function of first order

1 1 1 1 1
fi(r) = 57”(0‘1 + B, +8+ ).

Therefore f;(r) has no solution in I. Setting yll = —(a} + /321 + 521) we have f;(r) = 0. So we can apply the averaging theory
of order 2 obtaining

f(r) =r(Ar + Av),
where

2
= 3(=3B + Bs + oy 283 438 — 85— 285 — ),

b4

Al = Z(Zﬂ(a})z + 05}(_/31] + Oé; + 471',321 =+ 5} — yzl) _ ﬂ]l'B; + 27.[('321)2

+ay By + B381 + 207 + 265 — Byyy + 2y +25)).

Thus f,(r) can have one solution in [ if 0 < —A;/A; < 1y, i.e. applying the averaging theory of order 2 we can show that at
most 1 small limit cycle can bifurcate from the uniform isochronous center at the origin and this number can be reached.
To apply the averaging theory of order 3 we solve A; = 0 and A, = 0 isolating y41 and ;/12 respectively. Calculating the next
averaging function we have

f3(r) = r(Bsr* + Byr + By),
where

_ T 1 1 1 1 1 1 1 1 1 1
B3 = 8(_4A52_4A82_3'32_2'33 + 20, + Bs +3ag + B; + g + 3B,
+ 381 — 481 — 381 + 81 4388 + 3y + ).

B = +§(9511f321 - 18770‘1],32 +°‘1O‘3 3:31;33 + 6770‘1133 },34}
+6ralay + 20]ad + 12710(1;35 —ayd, +a1y3 + 2alys — 187 (B,)?
+ 677:32153 4/32:34 + 30‘20‘4 + 127”32,35 + 60‘2135 ﬁzl‘s}t - Sﬁzlo‘;
+ 67 Bya, — 3oy, + 2,32055 983 + 362 + 303 + 6% — 98,5,
+ 3815; + 35251 + 9182 Vz - 3531 Vzl - 6:351 7/21 + 3531 7/21 - 90‘;:321
+Byys + 68,5 +2Byys + 985 — 3y5 — 3y — 687),
B, = +f—6(10n2(a})3 — 8B () + 3072 (a))?B) — 4(a))?B,
+87 () ’ay + 3(,3})2/321 + 47 (a7)*8] — 4(a})2521 — 47 (a))’y)
— 167 ai B, — 2B a]s] +3a](a2) + 307%a] (B,)* — 4l (B))?
— 8Bl (By)? — 2Biaja) + 16m laaBa + 2]a)8] + Sna}ﬁga}
—2,3]1/32]8] 80{1,3261 a2y2 40! ,31 + 167'[04 +4ot}a§
+167T°‘}52 451:32 1(5) - 1(3 )2—051()/2)
+2,310‘1)’2 8oy By, — 2 311/2 + 4oy BT — 4oty + 1077 %
+3(cy)° B, +4ﬂ(ﬂ§)281 - 4(ﬁ2) 28, — 2Bz, +8Mz(ﬁz
+ 20[2/3281 + daja? — 4B A7 + day B2 + 167 B) B2 — B (81)2
—4B,(8))* — 20,8, 75 +4ﬂ282 4,31(11 + 1671/320{1
+daid) — daiy; +4fyo; + 4655, +8ay + 86, + 3(5)’e
- ,321 (Vzl)z + Zﬁl :32 J/z 4r (,32) 2 zﬁzéll Yo — ﬁz Vz ﬁz Vz + 8V1 + 85; 3)-
Then f3(r) has at most 2 solutions in, i.e. applying the averaging theory of order 3 it is proved that at most 2 small limit cycles

can bifurcate from the uniform isochronous center at the origin and this number can be reached. To apply the averaging
method of order 4 we solve B; = 0, B, = 0 and B; = 0 isolating &3, 8_;{, 8; respectively. The next averaging function is

f4(r) = r(C4r3 + C3T'2 + Czr + C1)

We do not provide the expressions of Cj for j = 1, ..., 4 because they are too long.

Of course f;(r) has at most 3 solutions in I, that is, applying the averaging theory of order 4 we can show that at most 3
small limit cycles can bifurcate from the uniform isochronous center at the origin and this number can be reached. To apply
the averaging method of order 5 we solve C; = 0, G, = 0, C3 = 0 and C, = 0 isolating B3, B2, B2 and B4 respectively. The
next averaging function is

fs(r) = r(Dsr* + Dgr® + D3r* + Dor + Dy),
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where again we do not give the expressions of D; for j = 1, ..., 5. Hence f5(r) has at most 4 solutions in I. Using analogous
arguments than in the proof of Theorem 4 we can show that at most 4 small limit cycles can bifurcate from the uniform
isochronous center at the origin and this number can be reached.

In order to apply the averaging theory of order 6 we solve D; = 0 for 85, D, = 0 for 82, D3 = 0 for 83, D4 for 62, and

Ds = 0 for ys], so we get f5(r) = 0. Calculating the averaging function of order 6 we obtain
fo(r) = r(Eer” + Est* 4+ Eqr® + Esr® + Eyr + Ey).

We do not provide the expressions of E; fori = 1, ..., 6 because they are too long. Thus fg(r) has at most 5 solutions in I.
Doing analogous arguments than in the proof of Theorem 4 it follows that at most 5 small limit cycles can bifurcate from
the uniform isochronous center at the origin using the averaging theory of order 6, and this number can be reached.

This ends the proof of Theorem 6.

6. Proof of Theorem 7

We proceed as in the proof of Theorem 5 in Section 4 since the unperturbed system (2) is the same. Hence a first
integral H, its corresponding integrating factor u, and a function p satisfying the hypotheses of Theorem 11 are H(x,y) =
X +y>)/A=x), u=-2/x*>—1)?%and p(R,0) = R/(R* cos?§ 4+ 1) forall0 < R < 1and 6 € [0, 27).

Applying Theorem 11 we transform the perturbed differential system (7) into the form

5

Y Mi(0, o, BR

i=0
‘LR _ ¢ 51+R2c0526
Y Ni(@,y, )R
i=0

g=
1+ RZcos? 0
where the functions M;(0, «, ) coincide with the ones given in system (15), and N; (0, y, §) = M;(@, v, ) fori =0, ..., 5,
Wlth)/ = ()/0,...,)/9),8 = (80,...,89).
The discontinuous differential system (17) is under the assumptions of Theorem 11. Hence we must study the zeros of
the averaged functionf : (0,1) > R

+0(ehH ify >0,

+0(H ify<o,

5 5
2 MO, «, HR 2 N0, v, OR
R=| =2 —— i / e —T
J® _/0 1+ R? cos? 6 + . 1+ R’cos?6

We compute these integrals obtaining
fR) = w(as —as — P7+ Bo+ v6 — ¥s — 87 + S9)80 + 7 /2(cts
—a1 =3 —Po—Pr+3Bo—vitrvs— 35— —&
+389)g1 — 7 /2(1 +ag +as + 1+ vs + vs)g + (Bs
—ag—fo— B3+ ya+ 8o+ 8 —35)g +m(as — o+ s
—89)8a + (Ya — ota)gs + (@a — Bo+ B3 — Bs — ya+ 8o — 03 + 85)8 + (g — 285 — va + 285)87, (18)
where

o=(1-VI+R)R  &a=R &=FR,
gB=VI+R,  G=RVI+R,  g&=RVI+R,

g6 = (arcsinhR)/R, g7 = RarcsinhR.

In order to find the maximum number of simple zeros of function f we need to prove that the eight functions g; : (0, 1) —
R,i€ {0,...,7}givenin(18)form an ECT-system and according to Theorem 13 this is the case if each Wronskian W;(go, . . .,
g) #0, je{0,...,7}. More precisely

Wo=(1—-K)/R, W;=@2K—-2—-R"/RK),

Wy = 2K3(1 — 6K? + 8K3 — 3K*),

W3 = 6R>K~7(8 — 8K + 4R°K + R*(16 — 7K) + 4R*(6 — 5K)),

W, = —36R 2K '°(4R°K + R*(76 — 56K) + R*(40 — 17K) — 40(K — 1)),

Ws = 1080R K> (24(K — 1) + R*(R*K (3R> — 5) + 4(4K — 7))),

Ws = 25920R 'K 2°(64(1 — K) + R*(R*K (6R*> — 17) + 32(7 — 6K)) + 105R>arcsinhR),

W5 = 1244160R 8K 26 (4R® — 515R* — 12R® — 256(K — 1) + R*(896K — 243) + 105RK (2R* — 5)arcsinhR),
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where K = +/1 4+ R2.For 0 < R < 1 we have that all the Wronskians above are nonzero. Moreover the rank of the Jacobian
matrix of the coefficients of g; fori € {0, ..., 7} in (18) in the variables «1, a4, g, g, Bo, B2, B3, Bs, B7, Bos V1, Va» Ve Vs>
8o, 82, 83, &5, 67, 89 is 8. Hence applying the averaging theory of first order and Theorem 13 it is proved that at most 7 medium
limit cycles can bifurcate from the periodic solutions of the cubic uniform isochronous center of the Collins first form and
this number can be reached. This completes the proof of Theorem 7.

7. Proof of Theorem 8

We analyze each distinct case in order to compute the first integrals, considering the condition

alaz — a5a3 + a1a,a4 = 0 (19)
presented in Theorem 2.
Case 1: a3 — a7 # 0. The condition (19) can be expressed as

a1a;0a4
a3 = — > > (20)
ay —
and in polar coordinates the system can be written as
dr asr3(—a; cos O + a; sin@)(a; cosf + a; sinf
— = 1%(a; cosO + ay sinf) + — (=a 12 )2( ! 2 ). (21)
do ay —a;

Subcase 1.1: a4 # 0.
Subcase 1.1.1: a4 # ai — ag. It is easy to verify that the H presented in this subcase is a first integral of system (21).

Subcase 1.1.2: a4 = af — ag. In polar coordinates system (1) is written as

dr 3 5

w0 Ar® + Br
where A = (a1a; sin” 6 + (a2 — a3) sin cos @ — aja, cos? ) /4, B = a; cos + a, sin 0. This is an Abel differential equation
satisfying

MB(é?) — A(G)@ =a

ao dao

with a = 1/4. Therefore the H given in this subcase is a first integral for this system, for more details see [19].
Subcase 1.2: a4 = 0. System (21) is reduced to

ar _ r?(ay cos @ + a sinh)

de ’
and the H given in this subcase is a first integral for this system.

Case2:a —aZ =0,

B(0)°,

Subcase 2.1: a, = a;. The expression (19) is reduced to a%a4 = 0. Therefore we have the following possibilities.
Subcase 2.1.1: a; = 0. Applying the condition a; = a, = 0 in system (1), we obtain in polar coordinates
dr 3 2 . )
0 =r7(az cos“ 6 + a4 sinf cos 6 — as sin” H).
The expression of H in this subcase is a first integral of this system.
Subcase 2.1.2: a; # 0, a4 = 0. Under this condition, system (1) is expressed in polar coordinates as follows

ﬂ_ 2 ; 3 20 cin2
0= r“a,(cos @ + sinf) + r’[asz(cos” 6 — sin”“ 0)].

Subcase 2.1.2.1: a3 (af + 4as3) # 0.1t is easy to check that the H given in this subcase is a first integral of the system.
Subcase 2.1.2.2: a3 = 0. In this case system (1) becomes in polar coordinates
dr 5
— =r“ay(cosf + sinf),
0 1( )
and the H given in this subcase is a first integral for this system.
Subcase 2.1.2.3: a3 = —a% /4. In polar coordinates system (1) is written as

ar G rlay cos(20)r — 4(cos6 + sin6)]
— = ——Qaqr~|ay CoS r— COS Sin .
do g vt
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Applying the same arguments as in subcase 1.1.2 we have that this is an Abel differential equation with A(9) = (—1/4)a%
cos(20), B(f) = ay(cosf + sinf) and a = 1/4. Therefore the H given in this subcase is a first integral for this system,
see [19].

Subcase 2.2: a, = —a;.
Subcase 2.2.2: a; # 0, a4 = 0. In polar coordinates system (1) becomes
dr

a0 = r2a;(cos @ — sin ) + r3[as(cos? & — sin’ H)].
Subcase 2.2.2.1: az(4as — af) # 0. The expression of H presented in this subcase is a first integral of the system.
Subcase 2.2.2.2;: a3 = 0. System (1) becomes in polar coordinates

dr 24, (cos § in6)

— =r“ay(cos — sin

do !

and the expression of H in this subcase is a first integral of this system.

Subcase 2.2.2.3: a3 = af /4. In polar coordinates system (1) can be written as

dr air?(cos® — sin@) + 1[azr3 cos(20)]
— = —si - .
o~ ! 4!

Applying the same arguments as in subcase 1.1.2 we have that this is an Abel differential equation with A(6) = 1/4(af
cos(26)), B(#) = a;(cos® — sinf) and a = 1/4. Using the results presented in [19], we conclude that the H given in this
subcase is a first integral for the system, see [19].

8. Proof of Theorem 9

We provide all the possible phase portraits for the planar cubic differential systems with a uniform isochronous center
at the origin, in the Poincaré disc, by studying the finite and infinite singular points of such systems.
Finite singular points

In polar coordinates a planar cubic differential system with a uniform isochronous center at the origin can always be
written as 7 = rf (r cos 6, r sin0), & = 1. Hence, since & = 1 there are no finite singular points except at the origin.
Infinite singular points

For studying the infinite singular points in the Poincaré disc, we use the definitions and notations given in Chapter 5
of [13].

We perform the analysis of the vector field at infinity. In the chart U; the differential system (1) becomes

=1+ u*)?, b = (—as5 — aqu + asu® — ayv — auv + wvHv, (22)

and therefore (u, 0), for all u € R is an infinite singular point of the differential system (1) in U;, which means that the
equator of S? is formed by singularities. In order to obtain the phase portraits, we perform a change of coordinates of the
form dt = vds, and system (22) becomes

v =1+ 1), v = —a;3 — aqu + a3u® — aqv — Guv + uv?, (23)
where the prime denotes derivative with respect to s.
In the chart U, system (1) becomes
it =—(14u)v?, b = (a3 — autl — asU°> — G,V — a uv — uv?)v.

We only need to study the point (0, 0) of U,. By performing a change of coordinates of the form dt = vds we obtain the
system

v =—(1+u?)v, v = a3 — aqu — asu® — av — ayuv — uv’. (24)
In order to study the singular points at infinity of systems (23) and (24), we have to consider several cases. We apply

Theorems 2.15, 2.19 and 3.15 of [13] for the characterization of the local phase portraits at each singular point.

CaseI: af - ai # 0. The condition (19) is written as (20). If a; = 0, then a3 = 0, and hence system (1) degenerates to a
quadratic differential system, which has already been exhaustively studied, as previously mentioned in this article. There-
fore, we are going to omit the cases in which a, = 0.

Subcase L.1: a;a; # 0. The expression (23) for our system in U; becomes

v =1+ 1),

, a10a,04 a1a2a4 2

v = — aqu — u® —av — axuv + uv-.
2 2 2 2

ay—a; ag — 0
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The singular points at the infinity are p; = (—a;/ay, 0) and p, = (ay/ay, 0). The linear parts of system (25) at p; and p,
are, respectively

2 2
a a
a aq

2 2 ’ 2 2 2 2
(a7 + a3)ay 0 (@ +aj)ay i+
2 2 2 2
a; —a a — a; aq

These singularities are studied later on. For U, the expression (24) becomes

v ==+ v,

a1a;0a4 a1a,04
=55 —au+ 2uz—azv—aluv—uvz.
g —a ay —a

Since we are assuming a;a, # O, the origin of U, is not a singular point.

Subcase I.1.1: a4(a3 — a3) > 0.

2_pa2
aj—A’

2
Subcase I.1.1.1.1: a; > 0. p; is a saddle and p,, is a stable node.
Subcase I.1.1.1.2: a; < 0. p; is a saddle and p, is an unstable node.
aZ2—A2
1
2
Subcase 1.1.2: a;(a2 — A?) < 0. p; is a focus/center and p; is saddle.

Subcase 1.2: a; = 0. In chart U, we have

Subcase.1.1.1: a4 <

Subcase I.1.1.2: a4 > . p1 is a saddle and p, is a focus.

U=>0+uv), v =—a4u—auv+u? (26)

and therefore the only infinite singular point is the origin, which we will designate by Oy, . Similarly, in chart U, we have
the origin Oy, as the unique infinite singular point, since the expression of the vector field becomes

v =—-1+uH)v, V= —aull — apv — uv2. (27)

The linear parts of systems (26) and (27) at the origin are respectively

0 1 0 -1
—ay 0/’ —a4 —ay)°

Hence we have the following cases.
Subcase 1.2.1: a4 > 0. Oy, is a focus/center and Oy, is a saddle.

2
Subcase 1.2.2: —%2 <ag <0
Subcase 1.2.2.1: a; > 0. Oy, is a saddle and Oy, is a stable node.

Subcase 1.2.2.2: a, < 0. Oy, is a saddle and Oy, is an unstable node.

2
Subcasel.2.3: a4 < —%2. Oy, is a saddle and Oy, is a focus.
Subcase 1.3: a, = 0. In chart Uy, we have

u=>0+u?, v =—au—av+u?, (28)

and therefore the only infinite singular point is the origin, which we will designate by Oy, . Similarly, in chart U, we have
the origin Oy, as the unique infinite singular point, since the expression of the vector field becomes

U=—-1+udv, v =—au—auv—uw’ (29)

The linear parts of systems (28) and (29) at the origin are respectively

0 1 0 -1
—a4 —a1)’ —ay 0 ’

Hence we have the following cases.

Subcase 1.3.1: a4 < 0. Oy, is a saddle and O, is a focus/center.
2
Subcase.3.2: 0 < a4 < %‘.

Subcase 1.3.2.1: a; > 0. Oy, is a stable node and Oy, is a saddle.
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Subcase 1.3.2.2: a; < 0. Oy, is an unstable node and Oy, is a saddle.

2
Subcase1.3.3: a4 > %‘. Oy, is a focus and Oy, is a saddle.

CasellI: af — a§ = 0. The condition (19) is simplified to a;a,a, = 0 and therefore the following cases might occur.
SubcaseIl.1: a; = a; = 0and a; # 0.
Subcase I1.1.1: a3 # 0. p; is a focus/center and p, is a saddle. In fact the expression (23) for our system in U; becomes

v =1+ 1), v = —a;3 — aqu + azu® + w’. (30)

The singular points at the infinity are p1, = ((as4 F , /4a§ + ai)/2a3, 0). The linear parts of system (30) at p; and p, are,

respectively
ay (a4 —\/4dd + ai)
0 2+ 3 ,
202
—\/4d: + a3 0
ay <a4 +/4d3 + ai)

0 2+
2a2

\4dd +d; 0

It is easy to see that p; is a focus/center and p, is a saddle.
For U, the expression (24) becomes

v =—1+ud)v, v = a5 — aqu — asu® — w’.

The singular points at the infinity are p3 4 = ((—as¥F,/4d3 + a3)/2as, 0). Since —as F,/4a3 + a3 # Oforallas, as € R\{0},
the origin of U, is not a singular point and hence, the only infinite singular points are p; and p;.
Subcase I1.1.2: a3 = 0. The expression (23) for our system in U; becomes

v =1+ 1), v = —aqu + uv?, (31)
and therefore the origin Oy, is the unique infinite singular point in U,. Similarly, in the chart U, the origin Oy, is an infinite
singular point because system (24) becomes

v =—1+ud)v, v = —aqu — w’. (32)

The linear parts of systems (31) and (32) at the origin are respectively

Y ()

Hence we have the following cases.
Subcase I1.1.2.1: a3 < 0. Oy, is a saddle and Oy, is a focus/center.
Subcase I1.1.2.2: a5 > 0. Oy, is a focus/center and Oy, is a saddle.

Subcase I1.2: a, = —a; # 0 and a4 = 0. We are only interested in the cases that a; # 0, because as previously mentioned,
when a3 = a, = 0 system (1) becomes a quadratic differential system, which has already been exhaustively studied.
The expression (23) for our system in U; becomes

v =1+, v = —a3 — a;v + asu® + ajuv + uv?. (33)

The singular points at the infinity are p; , = (F1, 0). The linear parts of system (33) at p; and p, are, respectively

0 2 0 2
—2a; —2a1)’ 2a3 0)°

For U, the expression (24) becomes
v =—(1+ud)v, v = a3 + ayv — asu® — aguv — uv’.

The singular points at infinity are p; 4 = (51, 0). The origin of U is not a singular point and hence, the only infinite singular
points are p; and p,. These singularities are studied in what follows.
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Subcase I.2.1: a3 < 0. p; is a saddle and p, is a focus/center.
Subcase [1.2.2: 0 < a3 < a3/4.

Subcase I1.2.2.1: a; > 0. p; is a stable node and p,, is a saddle.
Subcase I1.2.2.2: a; < 0. p; is an unstable node and p, is a saddle.
Subcase I1.2.3: a3 > af /4. p1 is a focus and p,, is a saddle.

Subcase I1.3: a, = a; # 0 and a5 = 0. Again we are only interested in the cases that a; # 0.
The expression (23) for our system in U; becomes

v =1+ u), v = —a; — a;v + asu® — a;uv + uv’. (34)

The singular points at infinity are p; » = (51, 0). The linear parts of system (34) at p; and p, are, respectively

0 2 0 2
—2a3; 0)° 2a3 —2a,)°

These singularities are studied later on.
For U, the expression (24) becomes

v =—-1+uHv, v = a3 + ayv — azu® — a;uv — wv’ (35)
The singular points at infinity for (35) are p3 4 = (51, 0). The origin of U, is not a singular point.
Subcase I1.3.1: a3 > 0. p; is a focus/center and p; is a saddle.
Subcase I1.3.2: —a3/4 < a; < 0.
Subcase I1.3.2.1: a; > 0. p; is a saddle and p,, is a stable node.
Subcase I1.3.2.2: a; < 0. p; is a saddle and p, is an unstable node.
Subcase I1.3.3: a3 < —af /4. p1 is a saddle and p; is a focus.
Subcase 11.4: a; = a, = a4 = 0. Again we are only interested in the cases that a; # 0. In this case system (1) has the
particular form
X=—y+ax’ —asxy?,  y=x+ax’ — asxy’.

The expression (23) for our system in U; becomes

v =1+ ud), v = —a3 + asu® + uv’. (36)
The singular points at the infinity are p; , = (51, 0). The linear parts of system (34) at p; and p; are, respectively

0 2 0 2
—2(13 0/’ 2(13 0/

These singularities are studied in the next subcases.
For U, the expression (24) becomes
v =—14ud)v, v = a5 — azu® — w?.
The singular points at infinity are p; 4 = (51, 0). The origin of U, is not a singular point.
Subcase I1.4.1: a3 > 0. p; is a focus/center and p; is a saddle.

Subcase [1.4.2: a; < 0. p; is a saddle and p,, is a focus/center.

Finally, the global phase portraits for the uniform isochronous cubic polynomial systems are obtained using the study
of the finite and infinite singular points in the local phase portraits and the first integrals calculated in Theorem 8. Hence
Theorem 9 is proved.
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