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a b s t r a c t

Tikhonov regularization and truncated singular value decomposition (TSVD) are two
elementary techniques for solving a least squares problem from a linear discrete ill-posed
problem. Based on these two techniques, a modified regularization method is proposed,
which is applied to an Arnoldi-based hybrid method. Theoretical analysis and numerical
examples are presented to illustrate the effectiveness of the method.
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1. Introduction

Consider a linear least-squares problem:

min
x∈Rn
∥Ax− b∥, A ∈ Rm×n, m ≥ n, (1)

where and throughout this paper, ∥ · ∥ denotes the Euclidean vector norm or the corresponding induced matrix norm. The
singular values of thematrixA are assumed of different orders ofmagnitude close to the origin and some of themmay vanish.
The minimization problem with a matrix of ill-determined rank is often referred to as a linear discrete ill-posed problem.
It may be obtained by discretizing linear ill-posed problems, such as Fredholm integral equations of the first kind with a
smooth kernel. This type of integral equations arises in science and engineering when one seeks to determine the cause (the
solution) of an observed effect represented by the right-hand side b (the data). Because the entries of b are obtained through
observation, they are typically contaminated by a measurement error and also by a discrete error. We denote these errors
by e ∈ Rn and the unavailable error-free right-hand side associated with b by b̂ ∈ Rn, i.e.,

b = b̂+ e. (2)

We assume that a bound δ for which

∥e∥ ≤ δ
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is available, and the linear system of equations with the unavailable error-free right-hand side

Ax = b̂ (3)

is consistent. Let x̂ denote a desired least-squares solution of (3) in the sense of the minimal Euclidean norm. We seek
an approximation to x̂ by computing an approximate solution of the available linear system of equations (1). Due to the
severe ill-conditioning of A and the error e on the right-hand side b, a solution of (1) typically does not yield a meaningful
approximation of x̂.

The discrete ill-posed problem (1) of small ormoderate size is often solved by the truncated singular value decomposition
(TSVD) or Tikhonov regularization, see [1,2] for details.

The basis of these two techniques is the singular value decomposition (SVD) defined as

A = UΣV T , (4)

where U = [u1, u2, . . . , um] ∈ Rm×m,UTU = I , V = [v1, v2, . . . , vn] ∈ Rn×n, V TV = I and

Σ = diag[σ1, σ2, . . . , σn].

Here (·)T denotes transposition of (·) and the singular values are ordered as

σ1 ≥ σ2 ≥ σl > σl+1 = · · · = σn = 0, l = rank(A).

The minimum-norm least-squares solution xLS of (1) is

xLS = A+b =
l

j=1

uT
j b

σj
vj,

where A+ =
l

j=1 vjσ
−1
j uT

j is the Moore–Penrose generalized inverse of A.
By ignoring some small singular values, we get the truncated SVD solution xk given by

xk = A+k b =
k

j=1

uT
j b

σj
vj (5)

where k(1 ≤ k ≤ l) is the truncated parameter and Ak =
k

j=1 ujσjv
T
j .

We note that xk ∈ span{v1, v2, . . . , vk}. The singular values σj and the coefficients uT
j b provide a valuable insight about

the properties of the linear discrete ill-posed problem (1); see, e.g., [3,2] for a discussion on applications of the TSVD to the
linear discrete ill-posed problems.

Instead of solving (1), Tikhonov regularization solves the minimization problem

min
x∈Rn
{∥Ax− b∥2 + µ2

∥Lx∥2}, (6)

which is commonly referred to as a regularization of the problem (1). The scalarµ > 0 is the regularization parameter, and
the matrix L ∈ Rp×n(p ≤ n) is referred to as the regularization matrix, which is chosen either to be the identity matrix I , or
a discrete approximation to a derivation operator. The minimization problem (6) is said to be in standard form when L = I
and in general form otherwise. Many examples of regularization matrices can be found in [4–7].

The matrix L is assumed to satisfy

N(A) ∩ N(L) = {0},

where N(·) denotes the null space of (·). Then the Tikhonov minimization problem (6) has a unique solution

xµ = (ATA+ µ2LT L)−1ATb; (7)

see, e.g., [1,2] for discussions on Tikhonov regularization.
The regularization parameter can be determined in a variety of ways; see, e.g., [8,1,2,9,10]. In our work, we apply the

discrepancy principle [1,2,10] to determine the truncation index k and the regularization parameter µ, so that

∥Axk − b∥ ≤ ηδ, (8)
∥Axµ − b∥ = ηδ, (9)

where xk and xµ are defined in (5) and (7) respectively, and η ≥ 1 is a user-specified constant independent of δ and is usually
fairly close to unity.

Thus the truncation index k satisfies
n

j=k+1

(uT
j b)

2
≤ (ηδ)2 ≤

n
j=k

(uT
j b)

2.

Properties of this method are discussed in, e.g., [1,2].
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We can use a zero-finder, such as Newton’s method, to get the desired value of µ. Further discussion can be found
in [1,2,10].

Martin Fuhry in [6] proposed a new method to construct the regularization matrix for Tikhonov regularization that
bridges the gap between Tikhonov regularization and TSVD. He introduced

Lµ = DµV T (10)

with

D2
µ = diag[max{µ2

− σ 2
1 , 0},max{µ2

− σ 2
2 , 0}, . . . ,max{µ2

− σ 2
n , 0}], (11)

whereµ is the regularization parameter determinedby (9). Then the Tikhonov regularization problem (6) can be rewritten as

min
x∈Rn
{∥Ax− b∥2 + ∥Lµx∥2} (12)

with Lµ defined in (10).
By the singular value decomposition, (12) has a solution

xµ = V (ΣTΣ + D2
µ)
−1ΣTUTb. (13)

For σk > µ ≥ σk+1,

ΣTΣ + D2
µ = diag[σ 2

1 , σ
2
2 , . . . , σ

2
k , µ

2, . . . , µ2
] ∈ Rn×n. (14)

The matrix (14) is positive definite and the solution (13) is

xµ =
l

j=1

ϕµ,j
uT
j b

σj
vj, (15)

with the filter factors

ϕµ,j =


1, 1 ≤ j ≤ k,
σ 2
j

µ2
, k < j ≤ l.

Similarly, (1) can be rewritten as

x = V (ΣTΣ)−1ΣTUTb,

where

ΣTΣ = diag[σ 2
1 , . . . , σ

2
k , . . . , σ

2
n ]. (16)

By comparing (14) and (16),we find that some small singular valuesσi(k+1 ≤ i ≤ n) are replaced byµ. As a consequence,
useful information of the exact solution x̂may be lost, which may overdamp the solution components vj of small index.

In order to get an appropriate solutionwith improved accuracy, wemodify the regularizationmatrix (10) so as to include
more useful information. Theoretical analysis and numerical results show that our method can improve the accuracy of the
approximate solutions, almost with the same elapsed CPU time. In Section 3, we apply ourmodified Tikhonov regularization
to an Arnoldi-based hybrid method and a decomposition method discussed in [11].

This paper is organized as follows. In Section 2, our new regularization matrix based on (10) is discussed. In Section 3,
we describe the Arnoldi-based hybridmethod and review the decompositionmethod provided in [11]. Numerical examples
are presented in Section 4.

2. The modified regularization matrix

In this section, we first describe a modification of the regularization matrix (10), and then show in Section 2.2 how to
choose a parameter in the modified regularization matrix.

2.1. The modified regularization matrix

Let us introduce

L̃µ = D̃µV T , (17)

with

D̃2
µ = diag[(1− ω)max{µ2

− σ 2
1 , 0}, . . . , (1− ω)max{µ2

− σ 2
n , 0}],

where the value ofµ is the same as that in (11) and the scaleω(ω < 1) is a parameter.Whenω = 0, D̃µ is equal toDµ in (11).



X.-J. Yang, L. Wang / Journal of Computational and Applied Mathematics 288 (2015) 180–192 183

Replacing Lµ in (10) by L̃µ we obtain

xµ = V (ΣTΣ + D̃2
µ)
−1ΣTUTb. (18)

If σk > µ ≥ σk+1, then

ΣTΣ + D̃2
µ = diag[σ 2

1 , . . . , σ
2
k , (1− ω)µ

2
+ ωσ 2

k+1, . . . , (1− ω)µ
2
+ ωσ 2

n ],

which is a positive definite matrix and (18) is equivalent to

xµ,ω,j =
l

j=1

ϕ̃µ,ω,j
uT
j b

σj
vj, ω < 1, (19)

with the filter factors

ϕ̃µ,ω,j =


1, 1 ≤ j ≤ k,

σ 2
j

(1− ω)µ2 + ωσ 2
j
, k < j ≤ l.

Here, for 1 ≤ j ≤ k, the filter factors ϕ̃µ,ω,j are the same as ϕµ,j, while for k < j ≤ l, the filter factors satisfy

σ 2
j

µ2
<

σ 2
j

(1− ω)µ2 + ωσ 2
j
, 0 < ω < 1

σ 2
j

µ2
=

σ 2
j

(1− ω)µ2 + ωσ 2
j
, ω = 0

σ 2
j

µ2
>

σ 2
j

(1− ω)µ2 + ωσ 2
j
, ω < 0

H⇒


ϕ̃µ,ω,j < ϕµ,j, 0 < ω < 1
ϕ̃µ,ω,j = ϕµ,j, ω = 0
ϕ̃µ,ω,j > ϕµ,j, ω < 0.

The effect of the filter factors is to remove the SVD components corresponding to the smaller singular values, and thereby
to stabilize the solution.

Here by adjusting the parameterω, we could get the optimal filter factor and more useful information. So the solution of
(18) may be a better approximation to the desired solution x̂ than the solution of (13). The numerical examples in Section 4
will support this inference.

Theorem 2.1.
min
x∈Rn
{∥Ax− b∥2 + ∥L̃µx∥2}

is equivalent to

min
x∈Rn
{∥Ax− b∥2 + (1− ω)∥Lµx∥2}, ω < 1,

where L̃µ and Lµ are the regularization matrices in (10) and (17), respectively.
Proof.

∥L̃µx∥2 = ∥D̃µV T
∥
2
= (D̃µV T )T (D̃µV T ) = VD̃T

µD̃µV
T

= VD̃2
µV

T
= (1− ω)VD2

µV
T
= (1− ω)∥DµV T

∥
2

= (1− ω)∥Lµx∥2,

the second equality in the second line is due to D̃2
µ = (1− ω)D

2
µ. �

2.2. Choice of the parameter

In this subsection, we first use the discrepancy principle to determine the parameter ω so that xµ,ω,j satisfies the
discrepancy principle. Introduce the function

φ(ω) = ∥b− Axµ,ω,j∥2. (20)
Then (9) can be expressed as

φ(ω) = η2δ2. (21)

Theorem 2.2. Assume xµ,ω,j satisfies (19). Then the function (20) can be expressed as

φ(ω) =

l
j=k+1


1−

σ 2
j

(1− ω)µ2 + ωσ 2
j

2

(uT
j b)

2
+

m
j=n+1

(uT
j b)

2. (22)
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Consequently, as a function of ω, φ(ω) is strictly decreasing and (21) has a unique solution ω̃ in (−∞, 1), provided that

m
j=n+1

(uT
j b)

2 < (ηδ)2 <

l
j=k+1

(uT
j b)

2
+

m
j=n+1

(uT
j b)

2. (23)

Proof. The formula (22) follows from (19). Thus

∂

∂ω
φ(ω) =

l
j=k+1

2(ω − 1)(µ2
− σ 2

j )
2σ 2

j

[µ2 + ω(σ 2
j − µ

2)]3
(uT

j b)
2.

Clearly, φ is a monotonically decreasing function. Moreover, we obtain from (22) that

lim
ω→1

φ(ω) =

m
j=n+1

(uT
j b)

2,

lim
ω→−∞

φ(ω) =

l
j=k+1

(uT
j b)

2
+

m
j=n+1

(uT
j b)

2.

Since the function φ is decreasing, the upper and the lower bound of (23) have to be satisfied in order for (21) to have a
solution in (−∞, 1). �

Theorem 2.2 shows that the parameter ω can be determined by the discrepancy principle, but the function φ is not
convex, so the desired value of ω cannot be computed inexpensively by using a zero-finder, such as Newton’s method.

In this paper we use generalized cross validation (GCV) [1,2,12] to determine the parameter ω. Denote

A♯ = V (ΣTΣ + D̃2
µ)
−1ΣTUT . (24)

Then in (19), xµ,ω,j = A♯b.
According to the basic idea of GCV, ω can be determined by minimizing GCV function

G(ω) =
∥(Im − AA♯)b∥22
(trace(Im − AA♯))2

(25)

in the range (−∞, 1).
In order to get the specific form of (25), we first determine a suitable value of the regularization parameter µ such that

the associated solution xµ in (7) with L = I satisfies the discrepancy principle. By Proposition 2.1 in [10], the function
ψ(µ) = ∥Axµ − b∥2 − η2δ2 can be written as follows:

ψ(µ) = bT


1
µ2

AAT
+ I

−2
b− η2δ2.

By using the SVD (4) of A, we have

ψ(µ) = bT


1
µ2

UΣΣTUT
+ I

−2
b− η2δ2

=

n
i=1

b̃2i
1
µ2 σ

2
i + 1

2 − η
2δ2, (26)

where b̃ = [b̃1, b̃2, . . . , b̃n]T = UTb.
To get the regularization parameter µ, Newton’s method is used to solve ψ(µ) = 0 with initial approximation µ0 = 0.

Then we can determine the parameter k such that σk > µ ≥ σk+1.
Then by (24) and the SVD of A, the numerator of (25) can be written as

∥(Im − AA♯)b∥22 =
n

i=k+1


µ2
− σ 2

i

(1− ω)µ2 + ωσ 2
i
uT
i b

2

, (27)

while the denominator of (25) satisfies

(trace(Im − AA♯))2 =


n

i=k+1

µ2
− σ 2

i

(1− ω)µ2 + ωσ 2
i

2

. (28)
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Combining (27) and (28), we obtain

Theorem 2.3. If we use GCV to determine the parameter ω, then the GCV function is

G(ω) =

n
i=k+1


µ2
−σ 2

i
(1−ω)µ2+ωσ 2

i
uT
i b

2


n

i=k+1

µ2−σ 2
i

(1−ω)µ2+ωσ 2
i

2 , ω < 1. (29)

Some optimization methods can be used to get the minimizer of the GCV function. In this paper, we use MATLAB code
fminbnd to find the parameter ω in the range (−∞, 1).

The process of determining ω can be summarized in the following algorithm.

Algorithm 2.1 Determining of the parameter ω
1. Compute the SVD (4) of A;
2. Determine the regularization parameter µ by using Newton’s method to the equation
ψ(µ) = ∥Axµ − b∥2 − η2δ2 = 0;
3. Determine the parameter k such that σk > µ ≥ σk+1;
4. Compute the GCV function G(ω) in (29);
5. Use MATLAB code fminbnd to find the minimizer of function G(ω) in the range (−∞, 1).

3. Arnoldi-based hybrid method

It is well-known that GMRES semiconverges for ill-posed problem (see [13–17]), i.e., the iterates first seem to converge
to the true solution vector before they are misled by noisy components in the data and subsequently deteriorate early.
The semiconvergence behavior of GMRES can be stabilized by using a hybrid method (see [14,18]) that combines an Arnoldi
process with a direct regularization scheme. In the following, we review the process of the Arnoldi-based hybridmethod.

The problem (1) can be reduced to a problem of smaller size by applying a few steps, say l, of Arnoldi process with respect
to A starting from the initial vector u1 = r0/∥r0∥, r0 = b − Ax0, and x0 is the initial approximate solution. This yields the
decomposition

AUl = Ul+1Hl, (30)

where Ul+1 = [u1, u2, . . . , ul, ul+1] ∈ Rn×(l+1) has orthonormal columns, which span the Krylov subspace

Kl(A, b) = span{b, Ab, . . . , Al−1b}. (31)

The matrix Ul ∈ Rn×l consists of the first l columns of Ul+1. We assume that l is sufficiently small so that Hl ∈ R(l+1)×l is an
upper Hessenberg matrix with nonvanishing subdiagonal entries; see, e.g., [19] for details.

Substitute x = Uly into (1), the least squares problem (1) can be approximated by a smaller problem

min
y∈Rl
∥Hly− e1∥b∥ ∥,

where e1 = [1, 0, . . . , 0]T is the first Cartesian basis vector in Rl+1. Thus each iteration of GMRES requires solving a least
squares problem involving an upper HessenbergmatrixHl. Since the original problem is ill-posed, thematrixHl may become
very ill-conditioned. Therefore, a regularization method must be used to compute

y = ∥b∥ ∥ HĎ
l e1.

The stopping index l for the Arnoldi process can be determined by the discrepancy principle, i.e., the iterations can be
terminated as soon as an approximate solution xj satisfies

∥Axj − b∥ ≤ ηδ, (32)

where η ≥ 1 is a user-specified constant independent of δ; see [15] for a validity of this stopping criterion.
In this paper, we denote three Tikhonov regularization methods with regularization matrices Lµ = µI , (10), and (17) as

ST, TT and TTw respectively, and we use the three methods to stabilize the GMRES iteration. Such three hybridmethods are
represented by GMRES+ ST, GMRES+ TT, and GMRES+ TTw respectively.

The following algorithm implements the Arnoldi-based hybrid method.
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Algorithm 3.1 Arnoldi-based hybrid method
1. Input:maxiter , parameter ω, η and δ, and initial guess x0,

METHOD ∈ {GMRES+ ST,GMRES+ TT,GMRES+ TTw};
2. Compute r0 = b− Ax0, β = ∥r0∥, v1 = r0/β;
3. V = [ ]; V = [V , v1]; H = [ ];
4. For i = 1 : maxiter
5. k = size(H, 2)+ 1;
6. v = AV (:, k);
7. h = zeros(k+ 1, 1);
8. For j = 1 : k
9. h(j, 1) = V (:, j)Tv;
10. v = v − h(j, 1)V (:, j);
11. End
12. h(k+ 1, 1) = ∥v∥;
13. v = v/∥v∥;
14. V = [V , v];
15. H = [H, h(1 : k, 1); [zeros(1, k− 1), h(k+ 1, 1)]];
16. If METHOD = GMRES+ ST then
17. Compute yµ,l = min ∥Hy− e1∥b∥ ∥ by (7);
18. x = V (:, 1 : i)yµ,l;
19. Elseif METHOD = GMRES+ TT then
20. Compute yµ,l = min ∥Hy− e1∥b∥ ∥ by (13);
21. x = V (:, 1 : i)yµ,l;
22. Else METHOD = GMRES+ TTw then
23. Compute yµ,ω,l = min ∥Hy− e1∥b∥ ∥ by (18);
24. x = V (:, 1 : i)yµ,ω,l;
25. End
26. If ∥b− Ax∥ ← ηδ;
27. break;
28. End
29. End

3.1. Selective regularization by augmentation

For some linear discrete ill-posed problem (1) the null space N(L) is important, because the solution component in N(L)
is determined independently ofµ and is therefore not damped. We may choose L so that N(L) represents important known
features of the desired solution x̂. This section describes how N(L) can be incorporated into the solution process by using
the decomposition method described in [11], which has been applied in iterative and direct methods for solving ill-posed
problems, see [20–22].

Let the matrix W ∈ Rn×l, l ≪ n, has orthonormal columns, which span N(L) or represent pertinent features of x̂. These
features may be jumps, spikes, or just linear increase. Introduce the QR factorization

AW = QR,

where Q ∈ Rm×l is orthonormal in columns and R ∈ Rl×l is upper triangular. We assume that W is chosen so that R is
nonsingular. Define the orthogonal projectors

PW = WW T , P⊥W = I −WW T , PQ = QQ T , P⊥Q = I − PQ .

Then (1) can be written as

min
x∈Rn
∥Ax− b∥2 = min

x∈Rn
∥PQAx− PQ b∥2 + ∥P⊥Q Ax− P⊥Q b∥2

= min
x∈Rn
∥PQAPW x− (PQ b− PQAP⊥W x)∥2 + ∥P⊥Q AP⊥W x− P⊥Q b∥2,

where we have used the fact P⊥Q APW = 0. It follows that

min
x∈Rn
∥PQAPW x− (PQ b− PQAP⊥W x)∥ = ∥Ry− Q T (b− AP⊥W x)∥, (33)
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where y = W T x. Because R is nonsingular, we may choose y for any P⊥W x so that the right-hand side in (33) vanishes. Thus
we get

min
x∈Rn
∥Ax− b∥ = min

x∈Rn
∥P⊥Q AP⊥W x− P⊥Q b∥. (34)

The projected problem on the right-hand side is also an ill-posed problem,which can be solved by an iterative regularization
method or a direct regularization method. Serena Morigi [13] used TSVD and Baglama J [11] used GMRES-type iterative
regularization methods to the projected problems (34). In our work, we apply three direct methods ST, TT and TTw to this
problem, andmake some comparisons. Denote the computed approximate solution of (33) and (34) by x′ and x′′ respectively.
Thus the corresponding solution of (1) is given by x = x′ + x′′.

4. Numerical experiments

In this section, we first discuss the flop counts for the methods in Sections 2 and 3. Then we give some examples to
illustrate the effectiveness of our method.

We consider the computational complexity for the casem = n. Note that the main arithmetic work for each of the three
Tikhonov regularizationmethods ST, TT and TTw is the SVD factorization (4) which needs O(n3) flops, see in [23, p. 254], and
the evaluation of every solution of (7), (15) and (19) can be carried out in O(n2) flops. Each of the three direct methods has
the complexity of order of n3. We assume the number of iteration in Algorithm 3.1 is l. Here and in the sequel, l represents
lST , lTT , and lTTω for GMRES + ST, GMRES + TT, and GMRES + TTw respectively. The dominant arithmetic work for each
of the three hybrid methods is the Gram–Schmidt procedure in the 4th to 13th lines of Algorithm 3.1 which needs O(nl2)
flops, see in [24, p. 165], and the computation for the solution of the smaller problem (32) in the 17th, 20th and 23th lines
of Algorithm 3.1, where O(l4) flops are required. In summary, each of the three hybridmethods has the complexity of order
nl2 + l4 which is determined by the iteration number l.

The error-free b̂ is available by

b̂ = Ax̂. (35)

The error vector e has normally distributed entries with zero mean and is scaled so that the contaminated b, defined by (2),
has a specified noise level relative error

ϵ = ∥e∥/∥b̂∥. (36)

The initial approximate solution x0 = 0 in Algorithm 3.1 is used for all the iterative methods and the parameter η is set to
1 in all examples. The regularization parameter µ and the truncated index k are determined by the discrepancy principle.
The parameter ω in (17) is determined by the GCV function.

In this section, we give two kinds of comparison of numerical results. One is among the three Tikhonov regularization
methods, the other is among GMRES and the three hybridmethods.

The first three examples compare three Tikhonov regularization methods.

Example 4.1. The Fredholm integral equation of the first kind 6

−6
K(s, t)x(t)dt = g(s), −6 ≤ s ≤ 6, (37)

with the kernel and the solution given by

k(s, t) := x(s− t),

x(t) :=


1+ cos

π
3
t

, |t| < 3,

0, otherwise.

The right-hand side function g(s) is defined by (37). This integral equation is discussed by Phillips [25].

We discretize the integral equation by the Galerkinmethodwith orthonormal box functions as test and trial functions by
theMATLAB program phillips from Regularization Tools [26] and obtain thematrix A ∈ R200×200 and the discretized solution
x̂ of the error-free linear system (3). The error-free right-hand side b̂ is given by (35). The associated contaminated vector b
in (1) is obtained by adding 0.1% normally distributed zero mean ‘‘noise’’ e to b̂; cf. (2). Thus, ϵ = 1 · 10−3 in (36).

Table 1 reports the relative errors and the CPU time of Example 4.1. The table shows that the approximate solution
computed by TTw is the most accurate, and the elapsed CPU time is almost the same as those of the ST and the TT methods.

Example 4.2. The Fredholm integral equation of the first kind 1

0
K(s, t)x(t)dt = g(s), 0 ≤ s ≤ 1, (38)
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Table 1
Relative errors and CPU time of the numerical solutions for Example 4.1.

Tikhonov regularization Relative error CPU (s)

ST (Lµ = µI) 1.10 · 10−2 0.124
TT (Lµ defined by (10)) 1.10 · 10−2 0.127
TTw (Lµ defined by (17)) 9.70 · 10−3 0.124

Table 2
Relative errors and CPU time of the numerical solutions for Example 4.2.

Tikhonov regularization Relative error CPU (s)

ST (Lµ = µI) 1.61 · 10−1 0.110
TT (Lµ defined by (10)) 1.52 · 10−1 0.108
TTw (Lµ defined by (17)) 9.30 · 10−2 0.111

Table 3
Relative errors and CPU time of the numerical solutions for Example 4.3.

Tikhonov regularization Relative error CPU (s)

ST (Lµ = µI) 1.62 · 10−1 0.021
TT (Lµ defined by (10)) 1.37 · 10−1 0.022
TTw (Lµ defined by (17)) 5.06 · 10−2 0.022

with the kernel and the solution given by

k(s, t) := d(d2 + (s− t)2)−3/2, d = 0.25.

x(t) := sin(π t)+
1
2
sin(2π t).

The right-hand side function g(s) is defined by (38). This integral equation is discussed by Wing [27].

We discretize the integral equation by the Galerkin method with orthonormal box functions as test and trial functions
by the MATLAB code gravity from [26] and obtain the matrix A ∈ R200×200 and the discretized solution x̂ of the error-free
linear system (3). The error-free right-hand side b̂ is given by (35). The associated contaminated vector b in (1) is obtained
by adding 50% normally distributed zero mean ‘‘noise’’ e to b̂; cf. (2). Thus, ϵ = 5 · 10−1 in (36).

Table 2 reports the relative errors and the CPU time of Example 4.2. The table shows that the approximate solution
computed by TTw is the most accurate, and the elapsed CPU time is almost the same as those of the ST and the TT methods.

Example 4.3. We consider the equation Ax = b.

Let A ∈ R100×100 be a Hilbert matrix computed with the MATLAB program hilb(100) and the solution x̂ = [1, 1, . . . , 1] ∈
R100. The condition number of matrix A is 1.46e+20. The error-free right-hand side vector b̂ is given by (35). The associated
contaminated vector b in (1) is obtained by adding 10% normally distributed zero mean ‘‘noise’’ e to b̂; cf. (2). Thus,
ϵ = 1 · 10−1 in (36).

Table 3 reports the relative errors and the CPU time of Example 4.3. The table shows that the approximate solution
computed by TTw is the most accurate, and the elapsed CPU time is almost the same as those of the ST and the TT methods.

The following three examples illustrate the effect of three hybrid methods.

Example 4.4. The Fredholm integral equation of the first kind π
2

−
π
2

K(s, t)x(t)dt = g(s), −
π

2
≤ s ≤

π

2
, (39)

with the kernel and the solution given by

k(s, t) := (cos(s)+ cos(t))

sin(u)

u

2

, u = π(sin(s)+ sin(t)).

x(t) := sin(t).

The right-hand side function g(s) is defined by (39). This integral equation is discussed by Shaw [28].

We discretize the integral equation by the Galerkinmethodwith orthonormal box functions as test and trial functions by
theMATLAB program shaw from Regularization Tools [26] and obtain thematrix A ∈ R2000×2000 and the discretized solution
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Table 4
Arnoldi steps, relative errors and CPU time of the numerical solutions for Example 4.4.

Method Arnoldi step Relative error CPU (s)

GMRES 10 2.85 · 10−1 0.295

hybridmethod
GMRES+ ST 11 2.16 · 10−2 0.504
GMRES+ TT 19 1.01 · 100 0.790
GMRES+ TTw 15 1.99 · 10−2 0.644

Fig. 1. Example 4.4: Norm of relative errors in iterates generated by GMRES, GMRES+ ST, GMRES+ TT and GMRES+ TTw.

x̂ of the error-free linear system (3). The error-free right-hand side b̂ is given by (35). The associated contaminated vector b
in (1) is obtained by adding 0.001% normally distributed zero mean ‘‘noise’’ e to b̂; cf. (2). Thus, ϵ = 1 · 10−5 in (36).

Table 4 reports the Arnoldi steps, the relative errors and the CPU time of Example 4.4. We note that GMRES requires
the fewest Arnoldi step and CPU time, while it achieves the larger relative error than GMRES+ ST and GMRES + TTw. We
also can see that GMRES + TT does not reduce the relative error as much as the other two hybrid methods. Furthermore,
GMRES+ TTw achieves the slightly smaller relative error than GMRES+ ST.

Fig. 1 displays the relative error for iterates xj determined by the three hybrid methods. This figure shows that both
GMRES+ ST and GMRES+ TTw can stabilize the semiconvergence of GMRES.

Example 4.5. The Fredholm integral equation of the first kind
∞

0
K(s, t)x(t)dt = g(s), s ≥ 0, (40)

with the kernel and the solution given by

k(s, t) := exp(−st),
x(t) := exp(−t/2).

The right-hand side function g(s) is defined by (40). This integral equation is discussed by Varah [29].

We discretize the integral equation by the Galerkin method with orthonormal box functions as test and trial functions
by the MATLAB program ilaplace from Regularization Tools [26] and obtain the matrix A ∈ R2000×2000 and the discretized
solution x̂ of the error-free linear system (3). The error-free right-hand side b̂ is given by (35). The associated contaminated
vector b in (1) is obtained by adding 0.1% normally distributed zero mean ‘‘noise’’ e to b̂; cf. (2). Thus, ϵ = 1 · 10−3 in (36).

Table 5 reports the Arnoldi steps, the relative errors and the CPU time of Example 4.5. GMRES requires the fewest Arnoldi
steps and CPU time, while it achieves the worst relative error. For the three hybrid methods, GMRES+ TTw yields the best
approximate solution, and the elapsed CPU time is almost the same as those of the other two hybrid methods.

Fig. 2 displays the relative error for iterates xj determined by the three hybridmethods. The figure indicates that GMRES+
TTw can stabilize the semiconvergence of GMRES, but GMRES+ ST and GMRES+ TT still have a little semiconvergence.
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Table 5
Arnoldi steps, relative errors and CPU time of the numerical solutions for Example 4.5.

Method Arnoldi step Relative error CPU (s)

GMRES 14 145.09 · 100 0.422

hybridmethod
GMRES+ ST 15 58.38 · 100 0.689
GMRES+ TT 21 1.72 · 100 0.944
GMRES+ TTw 19 1.91 · 10−1 0.880

Table 6
Arnoldi steps, relative errors and CPU time of the numerical solutions for Example 4.6.

Method Arnoldi step Relative error CPU (s)

GMRES 10 5.79 · 100 0.229

hybridmethod
GMRES+ ST 10 4.64 · 100 0.508
GMRES+ TT 14 9.21 · 10−1 0.615
GMRES+ TTw 14 4.36 · 10−1 0.659

Fig. 2. Example 4.5: Norm of relative errors in iterates generated by GMRES, GMRES+ ST, GMRES+ TT and GMRES+ TTw.

Example 4.6. The Fredholm integral equation of the first kind
∞

0
K(s, t)x(t)dt = g(s), s ≥ 0, (41)

with the kernel and the solution given by

k(s, t) := exp(−st),
x(t) := exp(−t/8).

The right-hand side function g(s) is defined by (41).

We modify the code ilaplace from Regularization Tools [26] and discretize the integral equation by the Galerkin method
with orthonormal box functions as test and trial functions, then we obtain the matrix A ∈ R2000×2000 and the discretized
solution x̂ of the error-free linear system (3). The error-free right-hand side b̂ is given by (35). The associated contaminated
vector b in (1) is obtained by adding 1% normally distributed zero mean ‘‘noise’’ e to b̂; cf. (2). Thus, ϵ = 1 · 10−2 in (36).

Table 6 reports the Arnoldi steps, the relative errors and the CPU time of Example 4.6. Neither GMRES nor GMRES+ ST
produce iterations with small relative errors. GMRES+ TTw yields the smaller relative errors than that of GMRES+ TT.

Fig. 3 displays the relative error for xj determined by the three hybridmethods. The figure indicates that bothGMRES+ TT
and GMRES+ TTw can stabilize the semiconvergence of GMRES, but they still have a little semiconvergence.

Now, the last example illustrates the benefit of the augmentation of the generalized Krylov subspace.
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Fig. 3. Example 4.6: Norm of relative errors in iterates generated by GMRES, GMRES+ ST, GMRES+ TT and GMRES+ TTw.

Table 7
Relative errors and CPU time of the numerical solutions without augmenta-
tion for Example 4.7.

Method Relative error CPU (s)

ST (Lµ = µI) 2.90 · 10−1 0.145
TT (Lµ defined by (10)) 2.81 · 10−1 0.141
TTw (Lµ defined by (17)) 2.79 · 10−1 0.145

Example 4.7. Consider the Fredholm integral equation of the first kind 1

0
K(s, t)x(t)dt = g(s), 0 ≤ s ≤ 1, (42)

with the kernel and the solution given by

k(s, t) :=

s(t − 1), s < t,
t(s− 1), s ≥ t,

x(t) := t.

The right-hand side function g(s) is defined by (42). This integral equation is discussed by Delves and Mohamed [30].

We discretize the integral equation by the Galerkin method with orthonormal box functions as test and trial functions
by the MATLAB program deriv 2 from Regularization Tools [26] and obtain the matrix A ∈ R200×200 and the discretized
solution x̃ of the error-free linear system (3). The associated contaminated vector b in (1) is obtained by adding 5% normally
distributed zero mean ‘‘noise’’ e to b̂; cf. (2). Thus, ϵ = 5 · 10−2 in (36).

We first compute an approximate solution by using the three direct methods ST, TT and TTω.
A more accurate approximation to x̂ can be computed by splitting the problem as described in Section 3.1. Define

W ∈ R200×3 through the QR-factorization of

Ŵ =


1 1 1
1 2 4
...

...
...

1 200 2002

 , Ŵ = WR̂, (43)

i.e.,W is orthonormal in columns and R̂ ∈ R3×3 is upper triangular.
Tables 7 and 8 show that the augmentation improves the quality of the computed approximate solution and reduces the

CPU time. TTw achieves the best approximate solution both with and without augmentation, while the gain for decompo-
sition method is larger.
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Table 8
Relative errors and CPU time of the numerical solutions augmented with W
given by (43) for Example 4.7.

Decomposition method withW in (43) Relative error CPU (s)

ST (Lµ = µI) 1.25 · 10−2 0.137
TT (Lµ defined by (10)) 1.50 · 10−2 0.143
TTw (Lµ defined by (17)) 7.90 · 10−3 0.140
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