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Abstract

This paper is concerned with a new generalization of rational Bernstein-
Bézier curves involving q-integers as shape parameters. A one parameter
family of rational Bernstein-Bézier curves, weighted Lupaş q-Bézier curves,
is constructed based on a set of Lupaş q-analogue of Bernstein functions
which is proved to be a normalized totally positive basis. The generalized
rational Bézier curve is investigated from a geometric point of view. The
investigation provides the geometric meaning of the weights and the repre-
sentation for conic sections. We also obtain degree evaluation and de Castel-
jau algorithms by means of homogeneous coordinates. Numerical examples
show that weighted Lupaş q-Bézier curves have more modeling flexibility
than classical rational Bernstein-Bézier curves and Lupaş q-Bézier curves,
and meanwhile they provide better approximations to the control polygon
than rational Phillips q-Bézier curves.

Keywords: Lupaş q-analogue of Bernstein operator, Weighted Lupaş
q-Bernstein basis, Normalized totally positive basis, Rational Bézier curve,
Conic sections, Degree elevation, de Casteljau algorithm, Shape parameter

1. Introduction

Bernstein polynomials and classical Bézier methods are of fundamental
importance for parametric curves and surfaces modeling in Computer Aided
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Geometric Design(CAGD). When representing a parametric curve or sur-
face, it is important which basis functions are used if we wish to preserve
the shape of the curve or surface. Totally positive bases present good shape
preserving properties due to the variation diminishing properties of totally
positive matrices. The shape of a parametrically defined curve mimics the
shape of its control polygon when the corresponding blending functions form
a totally positive system [1, 2]. Classical Bernstein polynomials of degree n
form a normalized totally positivity basis of the polynomial space of degree
n [3]. Classical rational Bézier curves and NURBS curves also have totally
positive bases and geometric convexity preserving property [4]. Now there
are many studies involving total positivity and the shape of curves [5, 6] and
the Bernstein-Bézier form. In this paper, we are going to construct a kind of
generalized rational Bernstein-Bézier curves with totally positive bases and
including q-integers as shape parameters.

Recently, the rapid development of q-calculus has led to the discovery of
new generalizations of Bernstein polynomials involving q-integers [7, 8]. The
applications of q-calculus in the area of approximation theory were initiated
by Lupaş [9], who first introduced the q-analogue of Bernstein polynomials,
Lupaş q-analogue of Bernstein operators. Ten years later Phillips [10] intro-
duced another generalization on Bernstein polynomials based on q-integers,
q-Bernstein polynomials, which became popular not only in the area of ap-
proximation theory [11, 12, 13, 14] but also in CAGD. In 2003, Oruç and
Phillips [15] constructed a generalized Bézier curve, Phillips q-Bézier curve,
using q-Bernstein polynomials as basis and applied the concept of total pos-
itivity to investigate the shape properties of the curve. In 2007, Dişibüyük
and Oruç generalized Phillips q-Bézier curves to their rational counterparts
[16] based on a de Casteljau type algorithm and then in 2008 they defined
tensor product q-Bernstein Bézier patches [17]. In 2012, Simeonova, Zafirisa
and Goldman [18] established q-blossoming, recursive evaluation algorithms
and recursive subdivision algorithms for Phillips q-Bézier curve. More inten-
sively, Phillips q-Bézier curve are generalized to the q-analogues of classical
B-splines, quantum B-splines [19], and several fundamental formulas for clas-
sical B-splines are extended to quantum B-splines [20]. Quantum splines are
piecewise polynomials whose quantum derivatives up to some order agree at
the joins. By putting a tolerance on the value of q, quantum splines allow
us to model tolerances, jumps, and even quantum leaps in the derivatives at
the joins.

Although Lupaş q-analogue of Bernstein operators are the first q-analogue
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of Bernstein operators, which reduce to the classical Bernstein polynomial
when q = 1, they are less known [21, 22, 23, 24] than q-Bernstein polynomi-
als. However, Lupaş q-analogue of Bernstein operators have an advantage of
generating positive linear operators for all q > 0, whereas q-Bernstein poly-
nomials generate positive linear operators only if q ∈ (0, 1). In 2010, Phillips
[25] indicated that he was not aware of any work on the practical applica-
tion of Lupaş q-analogue of Bernstein operator in CAGD and hoped that
someone will pursue that. In 2014, Han, Chu and Qiu [26] introduced Lupaş
q-Bézier curves and obtained their degree evaluation and de Casteljau algo-
rithms. Lupaş q-Bézier curves are generalized Bézier curves based on Lupaş
q-analogue of Bernstein operators and share many properties with Bézier
curves, such as end-point property of interpolation and derivative, variation
diminishing property, etc. In this paper, in order to represent conic sections
exactly, we construct a one parameter family of rational Bernstein-Bézier
curves by adding weights to Lupaş q-analogue of Bernstein operators. We
call them weighted Lupaş q-Bézier curves rather than rational Lupaş q-Bézier
curves, because Lupaş q-analogue of Bernstein operators are rational func-
tions rather than polynomials as q-Bernstein polynomials are when q 6= 1.
The shape-preserving properties of the new curves are gained through the
view of normalized totally positive bases as well.

Let us now recall some preliminaries. Given a real number q > 0 and any
non-negative integer k, we define [k] as

[k] =

{
(1− qk)/(1− q), q 6= 1,
k, q = 1,

and call [k] a q-integer. Note that [k] is a continuous function of q. We next
define [k]! as

[k]! =

{
[k][k − 1] · · · [1], k ≥ 1,
1, k = 0,

and call [k]! a q-factorial. For integers 0 ≤ k ≤ n, the q-binomial coefficient[
n
k

]
is defined by

[n

k

]
=

[n][n− 1] · · · [n− k + 1]

[k]!
=

[n]!

[k]![n− k]!
,

and has the value 1 when k=0 and value 0 otherwise. It satisfies the Pascal-
type relations: [n

k

]
=

[n− 1

k − 1

]
+ qk

[n− 1

k

]
,
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and [n

k

]
= qn−k

[n− 1

k − 1

]
+

[n− 1

k

]
.

In 1987, Lupaş introduced a wonderful generalization of the Bernstein
polynomials involving q-integers but using rational functions rather than
polynomials. Let f ∈ C[0, 1], linear operator Ln,q(f ; t) : C[0, 1] → C[0, 1]
is defined by

Ln,q(f ; t) =

n∑

i=0

bn,i(t; q)fi, (1)

where

fi = f
( [i]

[n]

)
, bn,i(t; q) =

an,i(t; q)

wn(t; q)
,

an,i(t; q) =
[n

i

]
qi(i−1)/2ti(1− t)n−i,

wn(t; q) =

n∑

i=0

an,i(t; q) =

n∏

j=1

(1− t + qj−1t).

and Ln,q(f ; t) is called Lupaş q-analogue of Bernstein operator, bn,i(t; q) is
Lupaş q-analogue of Bernstein functions of degree n.

The layout of this paper is as follows : In Section 2, we introduce weighted
Lupaş q-analogue of Bernstein functions and prove they form a normalized
totally positive (NTP) basis of a rational space with common denominator.
By means of the NTP basis, we construct weighted Lupaş q-Bézier curves
in Section 3 and obtain their basic properties, degree elevation formula and
de Casteljau algorithms. In Section 4, we discuss the geometric meaning of
weights and represent conic sections using weighted Lupaş q-Bézier curves.
The effects on the shape of the curves by weights and q-integers are shown
in Section 5. We close in Section 6 with a short summary of our work, along
with a brief discussion of some promising problems for future research.

2. Weighted Lupaş q-Bernstein basis: a normalized totally positive
basis

2.1. Weighted Lupaş q-analogue of Bernstein functions

By adding positive weights, we obtain weighted Lupaş q-analogue of Bern-
stein functions from Lupaş q-analogue of Bernstein functions.
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Definition 2.1. Given a real number q > 0, t ∈ [0, 1], and any positive real
numbers ω0, ω1, · · · , ωn, we define weighted Lupaş q-analogue of Bernstein
functions of degree n as

rn,i(t; q) =
ωian,i(t; q)∑n
i=0 ωian,i(t; q)

, i = 0, 1, · · · , n. (2)

where
an,i(t; q) =

[n

i

]
qi(i−1)/2ti(1− t)n−i, i = 0, 1, · · · , n. (3)

From the properties of Lupaş q-analogue of Bernstein functions [26], we
can obtain the properties of weighted Lupaş q-analogue of Bernstein function
immediately as follows:

• Non-negative: rn,i(t; q) ≥ 0, i = 0, 1, · · · , n, t ∈ [0, 1].

• Partition of unity :
∑n

i=0 rn,i(t; q) = 1, t ∈ [0, 1].

• End-point property :

rn,i(0; q) =

{
1, i = 0,
0, i 6= 0;

and rn,i(1; q) =

{
1, i = n,
0, i 6= n.

• q-inverse symmetry : When ωi = ωn−i, for i = 0, 1, · · · , n, we have

rn,n−i(t; q) = rn,i(1− t; 1/q).

• Reducibility : When all of the weights ωi = ω 6= 0 (i = 0, 1, · · · , n),
formula (2) reduces to Lupaş q-analogue of Bernstein function; when
q = 1, formula (2) reduces to the classical rational Bernstein functions.

Figure 1 shows the quadratic weighted Lupaş q-analogue of Bernstein
functions with q = 0.2 and q = 5, respectively: ω0 = ω1 = ω2 = 1 for blue
lines and ω0 = ω2 = 1, ω1 = 2 for red dashed lines.

Let Ωn(t; q) denote the denominator of weighted Lupaş q-analogue of

Bernstein function of degree n, and Bn,i(t) =
(

n
i

)
ti(1− t)n−i be the classical

Bernstein polynomials of degree n, we have

ωian,i(t; q) = λn,iBn,i(t), (4)

where
λn,i =

ωi(
n
i

)
( ∑

K∪L=1,2,··· ,n
|K|=(n−i),|L|=i

∏

k∈K

1
∏

l∈L

ql−1
)
, i = 0, 1, · · · , n.
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Figure 1: Quadratic weighted Lupaş q-analogue of Bernstein functions with q = 0.2 and
q = 5.

Then weighted Lupaş q-analogue of Bernstein function of degree n can be
written as

rn,i(t; q) =
λn,iBn,i(t)

Ωn(t; q)
, i = 0, 1, · · · , n. (5)

Thus, we can use weighted Lupaş q-analogue of Bernstein functions to span
the space of rational functions of degree n with the same denominator Ωn(t; q),

Rn = span
{

rn,i(t; q)|i = 0, 1, · · · , n
}

=
{
P (t)/Ωn(t; q)|P (t) ∈ Pn

}
, (6)

where Pn is the space of polynomials of degree n. Since weighted Lupaş q-
analogue of Bernstein functions of degree n are linearly independent, they
are the basis of the space Rn.

2.2. Total positivity of weighted Lupaş q-analogue of Bernstein basis func-
tions

In order to discuss the total positivity of weighted Lupaş q-analogue of
Bernstein functions, we first recall some definitions [27] about totally positive
matrix, totally positive function sequences, and totally positive basis.

Definition 2.2. A real matrix A is called totally positive (respectively, strictly
totally positive) if all its minors are nonnegative (respectively, positive), that
is,

A

(
i1, i2, · · · , ik
j1, j2, · · · , jk

)
= det




ai1,j1 · · · ai1,jk

· · · · · · · · ·
aik,j1 · · · aik,jk


 ≥ 0 (resp., > 0), (7)
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for all i1 < i2 < · · · < ik and j1 < j2 < · · · < jk.

Karlin [28] pointed out that whether a matrix A is strictly totally positive
by testing the positivity of only those minors that are formed from consecu-
tive rows and columns, rather than having to examine all minors. That is, a
real matrix A is strictly totally positive if

A

(
i, i + 1, i + 2, · · · , i + k
j, j + 1, j + 2, · · · , j + k

)
> 0,

for all i, j and k. A better criterion was given in [29] and a criterion for
nonsingular totally positive matrices can be seen in [30].

Definition 2.3. We call that a sequence
(
U0(t), U1(t) · · · , Un(t)

)
of real-

valued functions on an interval I is totally positive if, for any points 0 < t0 <

t1 < · · · < tn, the collocation matrix
(
Uj(ti)

)n

i,j=0
is totally positive. When

the totally positive functions
(
U0(t), U1(t) · · · , Un(t)

)
are linearly indepen-

dent, we refer to them as a totally positive basis (TP basis); if the totally
positive basis satisfy

∑n
i=0 Ui(t) = 1, we refer to it as a normalized totally

positive basis (NTP basis).

Then we obtain the total positivity of weighted Lupaş q-analogue of Bern-
stein basis functions directly from the definition of NTP basis.

Theorem 2.1. Given a real number q > 0, t ∈ [0, 1], weighted Lupaş q-
analogue of Bernstein basis functions rn,0(t; q), rn,1(t; q), · · · , rn,n(t; q) form a
normalized totally positive basis of the rational function space Rn.

Proof. For 0 ≤ t0 < t1 < · · · < tn ≤ 1, let An denote the collocation matrix{
rn,j(ti; q)

}n

i,j=0
, that is

An =




rn,0(t0; q) rn,1(t0; q) · · · rn,n(t0; q)
rn,0(t1; q) rn,1(t1; q) · · · rn,n(t1; q)

...
...

...
...

rn,0(tn; q) rn,1(tn; q) · · · rn,n(tn; q)


 . (8)

In order to get totally positive basis, we need to prove An is a totally positive
matrix for any n. We use induction on n. The result holds for n = 1, since
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all its elements are nonnegative and

det(A1) =
ω0

ω0(1− t0) + ω1t0
· ω1

ω0(1− t1) + ω1t1
· (t1 − t0) ≥ 0.

Let us assume that the matrix An is totally positive for some n ≥ 2, that
is to say, all its elements and its minors are nonnegative.

For An+1, all its elements and the minors of order k(2 ≤ k ≤ n) are
nonnegative. Further,

det(An+1) = ρ1 · ρ2 · ρ3 · det(D), (9)

where

ρ1 =
n+1∏

j=0

ωj∑n+1
i=0 ωian+1,i(ti; q)

≥ 0,

ρ2 =
[n + 1

0

]
·
[n + 1

1

]
· · · · ·

[n + 1

n + 1

]
≥ 0,

ρ3 = q0 · q1 · · · · · qn(n+1)/2 ≥ 0

and

D =




(1− t0)
n+1 t0(1− t0)

n · · · tn+1
0

(1− t1)
n+1 t1(1− t1)

n · · · tn+1
1

...
...

...
...

(1− tn+1)
n+1 tn+1(1− tn+1)

n · · · tn+1
n+1


 .

We know that the matrix D is a collocation matrix of basis functions (1 −
t)n+1, t(1 − t)n, · · · , tn+1 about any points 0 ≤ t0 < t1 < · · · < tn < tn+1 ≤
1, and so the matrix D is a totally positive matrix, det(D) ≥ 0, thus
det(An+1) ≥ 0, matrix An+1 is a totally positive matrix. To sum up, the
collocation matrix An is a totally positive matrix for arbitrary n.

Since
∑n

i=0 rn,i(t; q) = 1, weighted Lupaş q-analogue of Bernstein basis
function rn,0(t; q), rn,1(t; q), · · · , rn,n(t; q) form a normalized totally positivity
basis of the rational function space Rn.

Remark 2.1. From Theorem 2.1 and the reducibility of weighted Lupaş q-
analogue of Bernstein functions of degree n, when all of weights ωi = ω 6=
0 (i = 0, 1, · · · , n), we obtain that Lupaş q-analogue of Bernstein basis is a
NTP basis. Since the curves constructed by a NTP basis have the variation
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diminishing property [32], Lupaş q-Bézier curves are variation diminishing,
which had been proved in [26]. Consequently, they are convexity-preserving
and monotonicity-preserving as well.

By means of the total positivity of weighted Lupaş q-analogue of Bernstein
functions, we can gain these shape-preserving properties of weighted Lupaş
q-Bézier curves in the following section.

3. Weighted Lupaş q-Bézier curves

3.1. Definition and some basic properties

Definition 3.1. Given n + 1 vectors Pi ∈ R3(i = 0, 1, · · · , n) a real number
q > 0, and real positive numbers ω0, ω1, · · · , ωn, we define weighted Lupaş
q-Bézier curve of degree n as

R(t; q) =
n∑

i=0

Pirn,i(t; q), 0 ≤ t ≤ 1. (10)

Pi (i = 0, 1, 2, · · · , n) are control points and can form a control polygon by
adjacently joining up. ωi (i = 0, 1, 2, · · · , n) are weights which can bring more
flexibility to curve modeling.

Weighted Lupaş q-Bézier curve inherits the following properties of Lupaş
q-Bézier curve:

• Geometrical invariant and affine invariant .

• Convex hull property : R(t; q) lies in the convex hull of its control
polygon.

• The end-point interpolation property :

R(0; q) = P0, R(1; q) = Pn.

• q-inverse symmetry : When ωi = ωn−i, the weighted Lupaş q-Bézier
curve obtained by reversing the order of the control points is the same
as the weighted Lupaş q-Bézier curve just by altering the parameter as
1/q.
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• Reducibility : when all of weights ωi = ω 6= 0 (i = 0, 1, · · · , n),
formula (10) reduces to Lupaş q-Bézier curve; when q = 1, formula
(10) reduces to classical rational Bézier curve.

Moreover, weighted Lupaş q-Bézier curve shares the end-point property
of derivative with classical rational Bézier curve and Lupaş q-Bézier curve.

Theorem 3.1. The end-point property of derivative:

R
′
(0; q) =

[n]ω1(P1 −P0)

ω0

, R
′
(1; q) =

[n]ωn−1(Pn −Pn−1)

ωnqn−1
.

Proof. Let

R(t; q) =
∑n

i=0 Pirn,i(t; q) =
∑n

i=0 ωian,i(t;q)Pi∑n
i=0 ωian,i(t;q)

, Q(t;q)
W(t;q)

,

where an,i(t; q) =
[

n
i

]
qi(i−1)/2ti(1− t)n−i, i = 0, 1, · · · , n, and obviously

an,i(0; q) =

{
1, i = 0,
0, i 6= 0,

an,i(1; q) =

{
qn(n−1)/2, i = n,

0, i 6= n.
Since

R(t; q)W(t; q) = Q(t; q),

By evaluating the derivatives on both sides, we have

R
′
(t; q)W(t; q) + R(t; q)W

′
(t; q) = Q

′
(t; q).

Because

[an,i(t; q)]
′
=

[n]

[i]
·
[n− 1

i− 1

]
· qi(i−1)/2 · iti−1(1− t)n−i

− [n]

[n− i]
· (n− i) ·

[n− 1

i

]
· qi(i−1)/2ti(1− t)n−i−1

, cn,ian−1,i−1(t; q)− dn,n−ian−1,i(t; q),

where cn,i = [n]
[i]
· qi−1 · i, dn,n−i = [n]

[i]
· i,

so

Q
′
(t; q) =

n∑

i=0

ωia
′
n,i(t; q)Pi =

n−1∑

i=0

(ωi+1cn,i+1Pi+1 − ωidn,n−iPi)an−1,i(t; q),
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W
′
(t; q) =

n∑

i=0

ωia
′
n,i(t; q) =

n−1∑

i=0

(ωi+1cn,i+1 − ωidn,n−i)an−1,i(t; q).

Therefore we obtain our results

R
′
(0; q) =

[n]ω1(P1 −P0)

ω0

, R
′
(1; q) =

[n]ωn−1(Pn −Pn−1)

ωnqn−1
.

Because weighted Lupaş q-Bézier curve has {rn,i(t; q)}n
i=0 as its NTP basis,

we obtain the following variation diminishing property.

Theorem 3.2. Weighted Lupaş q-Bézier curves are variation diminishing,
which means that the number of times any straight line crosses the weighted
Lupaş q-Bézier curve is no more than the number of times it crosses the
control polygon.

Consequently, a weighted Lupaş q-Bézier curve is convexity-preserving
and monotonicity-preserving.

3.2. Degree elevation and de Casteljau algorithm

By means of homogeneous coordinate expression, the degree elevation
algorithm and de Casteljau algorithm for a weighted Lupaş q-Bézier curve
are straightforward generalizations of those for a Lupaş q-Bézier curve which
are investigated in [26].

Degree elevation

Let R(t; q) =
∑n

i=0 Pirn,i(t; q) =
∑n

i=0 ωiPian,i(t;q)∑n
i=0 ωian,i(t;q)

, 0 ≤ t ≤ 1, where

an,i(t; q) =
[n

i

]
qi(i−1)/2ti(1− t)n−i, i = 0, 1, · · · , n,

then

R(t; q) =

∑n+1
i=0 ω∗i P

∗
i an+1,i(t; q)∑n+1

i=0 ω∗i an+1,i(t; q)
, i = 0, 1, · · · , n + 1, (11)

where

ω∗i =
(
1− [n + 1− i]

[n + 1]

)
ωi−1 +

[n + 1− i]

[n + 1]
ωi,

P∗i =
((

1− [n + 1− i]

[n + 1]

)
ωi−1Pi−1 +

[n + 1− i]

[n + 1]
ωiPi

)/
ω∗i .
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Figure 2: Degree elevation of cubic weighted Lupaş q-Bézier curves.

For q = 0.5, Figure 2 show degree elevation of cubic weighted Lupaş q-
Bézier curve (left) with weights ω0 = 1, ω1 = 2, ω2 = 1, ω3 = 1 and cubic
Lupaş q-Bézier curve (right).

de Casteljau algorithm
Weighted Lupaş q-Bézier curve of degree n can be written as two kinds

of linear combination of two weighted Lupaş q-Bézier curves of degree n− 1.
The algorithms can be expressed as:





ω0
i (t; q) ≡ ω0

i ≡ ωi, i = 0, 1, · · · , n,
ωk

i (t; q) = (1− t)ωk−1
i (t; q) + qn−ktωk−1

i+1 (t; q),
k = 1, 2, · · · , n, i = 0, 1, · · · , n− k.





Pi
0(t; q) ≡ Pi

0 ≡ Pi, i = 0, 1, · · · , n,

Pi
k(t; q) =

(
(1− t)ωk−1

i (t; q)Pi
k−1(t; q) + qn−ktωk−1

i+1 (t; q)Pi+1
k−1(t; q)

)/
ωk

i (t; q),

k = 1, 2, · · · , n, i = 0, 1, · · · , n− k.

or





ω0
i (t; q) ≡ ω0

i ≡ ωi, i = 0, 1, · · · , n,
ωk

i (t; q) = qi(1− t)ωk−1
i (t; q) + qitωk−1

i+1 (t; q),
k = 1, 2, · · · , n, i = 0, 1, · · · , n− k.





Pi
0(t; q) ≡ Pi

0 ≡ Pi, i = 0, 1, · · · , n,

Pi
k(t; q) =

(
qi(1− t)ωk−1

i (t; q)Pi
k−1(t; q) + qitωk−1

i+1 (t; q)Pi+1
k−1(t; q)

)/
ωk

i (t; q),

k = 1, 2, · · · , n, i = 0, 1, · · · , n− k.
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then

R(t; q) =

∑n−1
i=0 ω1

i Pi
1an−1,i(t; q)∑n−1

i=0 ω1
i an−1,i(t; q)

= · · · =
∑n−k

i=0 ωk
i Pi

kan−k,i(t; q)∑n−k
i=0 ωk

i an−k,i(t; q)
= · · · = P0

n(t; q).

(12)
For q = 2 and t = 0.5, Figure 3 show the de Casteljau algorithm of a

cubic weighted Lupaş q-Bézier curve (left) with weights ω0 = 1, ω1 = 2, ω2 =
2, ω3 = 1 and a cubic Lupaş q-Bézier curve (right).

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Figure 3: The de Casteljau algorithm of cubic weighted Lupaş q-Bézier curves.

4. Weights and conic section

In order to constitute NTP basis, the real weights ω0, ω1, · · · , ωn in the
weighted Lupaş q-Bézier curve must be positive. However, except that the
two end weights ω0 and ωn must be positive, the use of zero weights, for i =
1, · · · , n−1, does not cause any embarrassment [31] and results in interesting
curve shapes. Similar discussions for classical rational Bézier curves was
described in [33].

For a fixed q > 0, ω0, ωn > 0, and ωi ≥ 0(i = 1, · · · , n− 1), if ωi increases
(decreases), the point R(t; q) moves closer to (farther from) the control point
Pi, hence the curve is pulled toward (pushed away from) the control point
Pi. That is

lim
ωi→+∞

R(t; q) =





P0, t = 0;
Pi, t ∈ (0, 1);
Pn, t = 1.

Figure 4 shows cubic weighted Lupaş q-Bézier curves when the weight ω2

changes. This motivates the following investigation on the geometric meaning
of the weights.
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Figure 4: Cubic weighted Lupaş q-Bézier curves with different ω2.

4.1. The geometric meaning of the weights

Given Pi ∈ R3(i = 0, 1, · · · , n) and q > 0, let us choose n fixed weights
{ωj|j = 0, · · · , i− 1, i + 1, · · · , n} so that ω0, ωn > 0 and ωj ≥ 0. Then for a
fixed t ∈ (0, 1) define the following points (Figure 5):

S := R(t; q; ωi = 0),M := R(t; q; ωi = 1),Si := R(t; q; ωi arbitrary).

Since

Si = R(t; q; ωi) =

∑n
j=0 ωjPjan,j(t; q)∑n

j=0 ωjan,j(t; q)
=

∑n
j 6=i ωjPjan,j(t; q)∑n

j=0 ωjan,j(t; q)
+

ωiPian,i(t; q)∑n
j=0 ωjan,j(t; q)

,

S = R(t; q; 0) =

∑n
j 6=i ωjPjan,j(t; q)∑n

j 6=0 ωjan,j(t; q)
,

and

M = R(t; q; 1) =

∑n
j 6=i ωjPjan,j(t; q)∑n

j=0 ωjan,j(t; q)
+

Pian,j(t; q)∑n
j=0 ωjan,j(t; q)

,

we get
Si = (1− µ)S + µPi,M = (1− ν)S + νPi;

where

µ =
ωian,j(t; q)∑n

j=0 ωjan,j(t; q)
, 1− µ =

∑n
j 6=i ωian,j(t; q)∑n
j=0 ωjan,j(t; q)

,

ν =
an,j(t; q)∑n

j=0 ωjan,j(t; q)
, 1− ν =

∑n
j 6=i ωjan,j(t; q)∑n
j=0 ωjan,j(t; q)

.
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So, M and Si lie on the same line passing through S and Pi. Furthermore,

|MPi|
|SM| :

|SiPi|
|SSi|

=
1− ν

ν
:

1− µ

µ

=

∑n
j 6=i ωjan,j(t; q)

an,j(t; q)
:

∑n
j 6=i ωjan,j(t; q)

ωian,j(t; q)

= ωi. (13)

Readers familiar with projective geometry, will recognize that (13) is the
cross-ratio, the most important quantity of projective geometry, of the four
points Pi,S,M,Si in this order. Using the identity (13), the effect of pulling
becomes quite clear: as Si moves toward Pi, µ approaches 1 and thus ωi

tends to infinity as ν constant for a fixed t ∈ (0, 1).
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control point
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2
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w
2
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Figure 5: The geometric meaning of ω2.

4.2. Conic sections

We use quadratic weighted Lupaş q-Bézier curves, R(t; q) =
∑2

i=0 ωia2,i(t;q)Pi∑2
i=0 ωia2,i(t;q)

,

to represent conic sections, and the type of conic can be determined by look-
ing at the denominator Ωn(t; q) (see [34] Chapter 7), which can be written
as

Ω2(t; q) =
2∑

i=0

ωia2,i(t; q)

= (1− t)2ω0 + [2]t(1− t)ω1 + qt2ω2

= (ω0 − [2]ω1 + qω2)t
2 + ([2]ω1 − 2ω0)t + ω0. (14)
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The roots of equation (14) are

t1,2 =
(2ω0 − [2]ω1)± ω1

√
[2]2 − 4qk

2(ω0 − [2]ω1 + qω2)
, (15)

where k = ω0ω2/ω
2
1 is the conic shape factor. It is customary to choose

ω0 = ω2 = 1. Then if ω1 = 1, R(t; q) is a parabola. Assuming ω1 6= 1, R(t; q)
implies that

• if k > [2]2

4q
, then R(t; q) has no real solutions, there are no points at

infinity on the curve, hence it is an ellipse;

• if k = [2]2

4q
, then R(t; q) has one real solution, there is one point on the

curve at infinity, and it is a parabola;

• if k < [2]2

4q
, then R(t; q) has two roots , the curve has two points at the

infinity, and it is a hyperbola.

Expressing these conditions in terms of ω1, we have

• ω2
1 < 4q

[2]2
⇒ R(t; q) is an ellipse;

• ω2
1 = 4q

[2]2
⇒ R(t; q) is a parabola;

• ω2
1 > 4q

[2]2
⇒ R(t; q) is a hyperbola.

Figure 6 shows conic sections which are generated by quadratic weighted
Lupaş q-Bézier curves with ω0 = ω2 = 1, ω1 choose −1/2, 0, 2

√
2/3 and

√
3

(bottom to top), respectively. Notice that ω1 can be zero or negative. ω1 = 0
yields a straight line segment from P0 to P2. ω1 < 0 yields the complemen-
tary arc traversed in the reverse order and the convex hull property does not
hold.

5. Shape effects

Now weighted Lupaş q-Bézier curve have q and weights ωi(i = 0, 1, · · · , n)
as its shape parameters, we have more freedom to control the shape of the
curve. We illustrate weighted Lupaş q-Bézier curves with different q and
weights in Figure 7, the value of q is sometimes dominant (left), while weights
may be dominant with non-significant changes of q (right).
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Figure 6: Conic sections generated by different ω1.
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Figure 7: Weighted Lupaş q-Bézier curves with different q and weights.

According to the reducibility of weighted Lupaş q-Bézier curve, when all
of the weights ωi = ω 6= 0 (i = 0, 1, · · · , n), the curve reduces to Lupaş
q-Bézier curve; when q = 1, the curve reduces to classical rational Bézier
curve. In Figure 8, we compare classical rational Bézier curve (top left) with
weighted Lupaş q-Bézier curves sharing same q = 2 (top right), sharing same
weights w = [1 5 7 5 1] (bottom left), having different values of q and weights
(bottom right).

We illustrate the superiority of weighted Lupaş q-Bézier curve (right) to
mimic the shape of its control polygon over rational Phillips q-Bézier curves
(left) in Figure 9.
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Figure 8: Comparison between classical rational Bézier curves (top left) and weighted
Lupaş q-Bézier curves.

Figure 9: Comparison between rational Phillips q-Bézier curves (left) and weighted Lupaş
q-Bézier curves (right).

6. Conclusions and future work

In this paper, we present a one parameter family of rational Bernstein-
Bézier curves based on weighted Lupaş q-analogue of Bernstein basis. Weighted
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Lupaş q-Bézier curves share many properties with classical rational Bézier
curves (the case q = 1). They are affine invariant, lie in the convex hull of
their control points, satisfy the variation diminishing property, satisfy the
end-point interpolation and derivative properties. In addition, these curves
possess analogous algorithms for degree elevation, recursive evaluation and
can represent conic sections exactly. Numerical examples show that weighted
Lupaş q-Bézier curves have more modeling flexibility than classical ratio-
nal Bernstein-Bézier curves and Lupaş q-Bézier curves, and meanwhile they
provide better approximations to the control polygon than rational Phillips
q-Bézier curves.

Since the rth derivative of a weighted Lupaş q-Bézier curve at an endpoint
depends only on the r +1 control points near (and including) that endpoint,
rather than that of rational Phillips q-Bézier curve [16] or h-Bézier curve
(Pólya curves) [35] which involve all the control points, we will discuss the
smooth blending of weighted Lupaş q-Bézier curves in the following paper.
We also hope to construct a new generalization of B-spline based on Lupaş
q-analogue of Bernstein operators.
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