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a b s t r a c t

A stabilizing/penalty term is often used in finite element methods with discontinu-
ous approximations to enforce connection of discontinuous functions across element
boundaries. Removing stabilizers from discontinuous Galerkin finite element methods
will simplify formulations and reduce programming complexity significantly. The goal
of this paper is to introduce a stabilizer free weak Galerkin (WG) finite element method
for second order elliptic equations on polytopal meshes. This new WG method keeps a
simple symmetric positive definite form and can work on polygonal/polyhedral meshes.
Optimal order error estimates are established for the corresponding WG approximations
in both a discrete H1 norm and the L2 norm. Numerical results are presented verifying
the theorem.

Published by Elsevier B.V.

1. Introduction

We consider Poisson equation with a homogeneous Dirichlet boundary condition in d dimension as our model problem
for the sake of clear presentation. This stabilizer free weak Galerkin method can also be used for other partial differential
equations. The Poisson problem seeks an unknown function u satisfying

−∆u = f in Ω, (1.1)
u = 0 on ∂Ω, (1.2)

where Ω is a polytopal domain in Rd.
The weak form of the problem (1.1)–(1.2) is to find u ∈ H1

0 (Ω) such that

(∇u, ∇v) = (f , v) ∀v ∈ H1
0 (Ω). (1.3)

The H1 conforming finite element method for the problem (1.1)–(1.2) keeps the same simple form as in (1.3): find
uh ∈ Vh ⊂ H1

0 (Ω) such that

(∇uh, ∇v) = (f , v) ∀v ∈ Vh, (1.4)

where Vh is a finite dimensional subspace of H1
0 (Ω). The functions in Vh are required to be continuous, which makes the

classic finite element formulation (1.4) less flexible in element constructions and in mesh generations. In contrast, finite
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element methods using discontinuous approximations have two advantages: 1. easy construction of high order elements
and avoiding constructing some special elements such as C1 conforming elements; 2. easy working on general meshes.
Therefore, discontinuous finite element methods are the most active research area in the context of finite element methods
for the past two decades. Discontinuous approximation was first used in finite element procedure as early as in 1970s
[1–4]. Local discontinuous Galerkin methods were introduced in [5]. Then a paper [6] in 2002 provides a unified analysis
of discontinuous Galerkin finite element methods for Poisson equation. More discontinuous finite element methods have
been developed such as hybridizable discontinuous Galerkin method [7], mimetic finite differences method [8], hybrid
high-order method [9], virtual element method [10], weak Galerkin method [11] and references therein.

One obvious disadvantage of discontinuous finite element methods is their rather complex formulations which are
often necessary to enforce weak continuity of discontinuous solutions across element boundaries. Most of discontinuous
finite element methods have one or more stabilizing terms to guarantee stability and convergence of the methods. Existing
of stabilizing terms further complicates formulations. Complexity of discontinuous finite element methods makes them
difficult to be implemented and to be analyzed. The purpose of this paper is to obtain a finite element formulation
close to its original PDE weak form (1.3) for discontinuous polynomials. We believe that finite element formulations
for discontinuous approximations can be as simple as follows:

(∇wuh, ∇wv) = (f , v), (1.5)

if ∇w , an approximation of gradient, is appropriately defined. The formulation (1.5) can be viewed as the counterpart of
(1.4) for discontinuous approximations. In fact such an ultra simple formulation (1.5) has been achieved for one kind of
WG method in [11], and for the conforming DG methods in [12,13]. The lowest order WG method developed in [11] has
been improved in [14] for convex polygonal meshes, in which non-polynomial functions are used for computing weak
gradient.

In this paper, we develop a WG finite element method that has an ultra simple formulation (1.5) and can work on
polytopal meshes for any polynomial degree k ≥ 1. The idea is to raise the degree of polynomials used to compute weak
gradient ∇w . Using higher degree polynomials in computation of weak gradient will not change the size, neither the
global sparsity of the stiffness matrix. On the other side, the simple formulation of the stabilizer free WG method (1.5)
will reduce programming complexity significantly. Optimal order error estimates are established for the corresponding
WG approximations in both a discrete H1 norm and the L2 norm. Numerical results are presented verifying the
theorem.

2. Weak Galerkin finite element schemes

Let Th be a partition of the domain Ω consisting of polygons in two dimension or polyhedra in three dimension
satisfying a set of conditions specified in [15]. Denote by Eh the set of all edges or flat faces in Th, and let E0

h = Eh\∂Ω
be the set of all interior edges or flat faces. For every element T ∈ Th, we denote by hT its diameter and mesh size
h = maxT∈Th hT for Th.

We start by introducing weak function v = {v0, vb} on element T ∈ Th such that

v =

{
v0 in T ,

vb on ∂T .

If v is continuous on Ω , then v = {v, v}.
For a given integer k ≥ 1, let Vh be the weak Galerkin finite element space associated with Th defined as follows

Vh = {v = {v0, vb} : v0|T ∈ Pk(T ), vb|e ∈ Pk(e), e ⊂ ∂T , T ∈ Th} (2.1)

and its subspace V 0
h is defined as

V 0
h = {v : v ∈ Vh, vb = 0 on ∂Ω}. (2.2)

We would like to emphasize that any function v ∈ Vh has a single value vb on each edge e ∈ Eh.
For given T ∈ Th and v = {v0, vb} ∈ Vh + H1(Ω), a weak gradient ∇wv ∈ [Pj(T )]d (j > k) is defined as the unique

polynomial satisfying

(∇wv, q)T = −(v0, ∇ · q)T + ⟨vb, q · n⟩∂T ∀q ∈ [Pj(T )]d, (2.3)

where j will be specified later.
Let Q0 and Qb be the two element-wise defined L2 projections onto Pk(T ) and Pk(e) with e ⊂ ∂T on T respectively.

Define Qhu = {Q0u,Qbu} ∈ Vh. Let Qh be the element-wise defined L2 projection onto [Pj(T )]d on each element T .
For simplicity, we adopt the following notations,

(v, w)Th =

∑
T∈Th

(v, w)T =

∑
T∈Th

∫
T
vwdx,

⟨v, w⟩∂Th =

∑
T∈Th

⟨v, w⟩∂T =

∑
T∈Th

∫
∂T

vwds.
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Weak Galerkin Algorithm 1. A numerical approximation for (1.1)–(1.2) can be obtained by seeking uh = {u0, ub} ∈ V 0
h

satisfying the following equation:

(∇wuh, ∇wv)Th = (f , v0) ∀v = {v0, vb} ∈ V 0
h . (2.4)

Lemma 2.1. Let φ ∈ H1(Ω), then on any T ∈ Th,

∇wφ = Qh∇φ. (2.5)

Proof. Using (2.3) and integration by parts, we have that for any q ∈ [Pj(T )]d

(∇wφ, q)T = −(φ, ∇ · q)T + ⟨φ, q · n⟩∂T

= (∇φ, q)T = (Qh∇φ, q)T ,

which implies the desired identity (2.5). □

3. Well posedness

For any v ∈ Vh + H1(Ω), let

|||v|||
2

= (∇wv, ∇wv)Th . (3.1)

We introduce a discrete H1 semi-norm as follows:

∥v∥1,h =

⎛⎝∑
T∈Th

(
∥∇v0∥

2
T + h−1

T ∥v0 − vb∥
2
∂T

)⎞⎠ 1
2

. (3.2)

It is easy to see that ∥v∥1,h defines a norm in V 0
h . The following lemma indicates that ∥ · ∥1,h is equivalent to the ||| · |||

in (3.1).

Lemma 3.1. There exist two positive constants C1 and C2 such that for any v = {v0, vb} ∈ Vh, we have

C1∥v∥1,h ≤ |||v||| ≤ C2∥v∥1,h. (3.3)

Proof. For any v = {v0, vb} ∈ Vh, it follows from the definition of weak gradient (2.3) and integration by parts that

(∇wv, q)T = (∇v0, q)T + ⟨vb − v0, q · n⟩∂T , ∀q ∈ [Pj(T )]d. (3.4)

By letting q = ∇wv in (3.4) we arrive at

(∇wv, ∇wv)T = (∇v0, ∇wv)T + ⟨vb − v0, ∇wv · n⟩∂T .

From the trace inequality (4.5) and the inverse inequality we have

∥∇wv∥
2
T ≤ ∥∇v0∥T∥∇wv∥T + ∥v0 − vb∥∂T∥∇wv∥∂T

≤ ∥∇v0∥T∥∇wv∥T + Ch−1/2
T ∥v0 − vb∥∂T∥∇wv∥T ,

which implies

∥∇wv∥T ≤ C
(
∥∇v0∥T + h−1/2

T ∥v0 − vb∥∂T

)
,

and consequently

|||v||| ≤ C2∥v∥1,h.

Next we will prove C1∥v∥1,h ≤ |||v|||. For v ∈ Vh and q ∈ [Pj(T )]d, by (2.3) and integration by parts, we have

(∇wv, q)T = (∇v0, q)T + ⟨vb − v0, q · n⟩∂T . (3.5)

Let n be the number of the edges/faces on a polygon/polyhedron. It has been proved in [13] that there exists q0 ∈ [Pj(T )]d,
j = n + k − 1, such that

(∇v0, q0)T = 0, ⟨vb − v0, q0 · n⟩∂T\e = 0, ⟨vb − v0, q0 · n⟩e = ∥v0 − vb∥
2
e , (3.6)

and

∥q0∥T ≤ Ch1/2
T ∥vb − v0∥e. (3.7)
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Substituting q0 into (3.5), we get

(∇wv, q0)T = ∥vb − v0∥
2
e . (3.8)

It follows from Cauchy–Schwarz inequality and (3.7) that

∥vb − v0∥
2
e ≤ C∥∇wv∥T∥q0∥T ≤ Ch1/2

T ∥∇wv∥T∥v0 − vb∥e,

which implies

h−1/2
T ∥v0 − vb∥∂T ≤ C∥∇wv∥T . (3.9)

It follows from the trace inequality, the inverse inequality and (3.9),

∥∇v0∥
2
T ≤ ∥∇wv∥T∥∇v0∥T + Ch−1/2

T ∥v0 − vb∥∂T∥∇v0∥T ≤ C∥∇wv∥T∥∇v0∥T .

Combining the above estimate and (3.9), by the definition (3.2), we prove the lower bound of (3.3) and complete the proof
of the lemma. □

Lemma 3.2. The weak Galerkin finite element scheme (2.4) has a unique solution.

Proof. If u(1)
h and u(2)

h are two solutions of (2.4), then εh = u(1)
h − u(2)

h ∈ V 0
h would satisfy the following equation

(∇wεh, ∇wv) = 0, ∀v ∈ V 0
h .

Then by letting v = εh in the above equation we arrive at

|||εh|||
2

= (∇wεh, ∇wεh) = 0.

It follows from (3.3) that ∥εh∥1,h = 0. Since ∥ · ∥1,h is a norm in V 0
h , one has εh = 0. This completes the proof of the

lemma. □

4. Error estimates in energy norm

Let eh = u − uh and ϵh = Qhu − uh. Next we derive an error equation that eh satisfies.

Lemma 4.1. For any v ∈ V 0
h , the following error equation holds true

(∇weh, ∇wv)Th = ℓ(u, v), (4.1)

where

ℓ(u, v) = ⟨(∇u − Qh∇u) · n, v0 − vb⟩∂Th .

Proof. For v = {v0, vb} ∈ V 0
h , testing (1.1) by v0 and using the fact that

∑
T∈Th

⟨∇u · n, vb⟩∂T = 0, we arrive at

(∇u, ∇v0)Th − ⟨∇u · n, v0 − vb⟩∂Th = (f , v0). (4.2)

It follows from integration by parts, (2.3) and (2.5) that

(∇u, ∇v0)Th = (Qh∇u, ∇v0)Th

= −(v0, ∇ · (Qh∇u))Th + ⟨v0,Qh∇u · n⟩∂Th

= (Qh∇u, ∇wv)Th + ⟨v0 − vb,Qh∇u · n⟩∂Th

= (∇wu, ∇wv)Th + ⟨v0 − vb,Qh∇u · n⟩∂Th . (4.3)

Combining (4.2) and (4.3) gives

(∇wu, ∇wv)Th = (f , v0) + ℓ(u, v). (4.4)

The error equation follows from subtracting (2.4) from (4.4),

(∇weh, ∇wv)Th = ℓ(u, v), ∀v ∈ V 0
h .

This completes the proof of the lemma. □

For any function ϕ ∈ H1(T ), the following trace inequality holds true (see [15] for details):

∥ϕ∥
2
e ≤ C

(
h−1
T ∥ϕ∥

2
T + hT∥∇ϕ∥

2
T

)
. (4.5)
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Lemma 4.2. For any w ∈ Hk+1(Ω) and v = {v0, vb} ∈ V 0
h , we have

|ℓ(w, v)| ≤ Chk
|w|k+1|||v|||. (4.6)

Proof. Using the Cauchy–Schwarz inequality, the trace inequality (4.5) and (3.3), we have

|ℓ(w, v)| =

⏐⏐⏐⏐⏐⏐
∑
T∈Th

⟨(∇w − Qh∇w) · n, v0 − vb⟩∂T

⏐⏐⏐⏐⏐⏐
≤ C

∑
T∈Th

∥(∇w − Qh∇w)∥∂T∥v0 − vb∥∂T

≤ C

⎛⎝∑
T∈Th

hT∥(∇w − Qh∇w)∥2
∂T

⎞⎠ 1
2
⎛⎝∑

T∈Th

h−1
T ∥v0 − vb∥

2
∂T

⎞⎠ 1
2

≤ Chk
|w|k+1|||v|||,

which proves the lemma. □

Lemma 4.3. Let w ∈ Hk+1(Ω), then

|||w − Qhw||| ≤ Chk
|w|k+1. (4.7)

Proof. It follows from (2.3), integration by parts, and (4.5),

(∇w(w − Qhw), q)T = −(w − Q0w, ∇ · q)T + ⟨w − Qbw, q · n⟩∂T

= (∇(w − Q0w), q)T + ⟨Q0w − Qbw, q · n⟩∂T

≤ ∥∇(w − Q0w)∥T∥q∥T + Ch−1/2
∥w − Q0w∥∂T∥q∥T

≤ Chk
|w|k+1,T∥q∥T .

Letting q = ∇w(w − Qhw) in the above equation and taking summation over T , we have

|||w − Qhw||| ≤ Chk
|w|k+1.

We have proved the lemma. □

Theorem 4.4. Let uh ∈ V 0
h be the weak Galerkin finite element solution of (2.4). Assume the exact solution u ∈ Hk+1(Ω). Then,

there exists a constant C such that

|||u − uh||| ≤ Chk
|u|k+1. (4.8)

Proof. It is straightforward to obtain

|||eh|||2 = (∇weh, ∇weh)Th (4.9)
= (∇wu − ∇wuh, ∇weh)Th

= (∇wQhu − ∇wuh, ∇weh)Th + (∇wu − ∇wQhu, ∇weh)Th

= (∇weh, ∇wϵh)Th + (∇wu − ∇wQhu, ∇weh)Th .

We will bound each term in (4.9). Letting v = ϵh ∈ V 0
h in (4.1) and using (4.6) and (4.7), we have

|(∇weh, ∇wϵh)Th | = |ℓ(u, ϵh)|
≤ Chk

|u|k+1|||ϵh|||

≤ Chk
|u|k+1|||Qhu − uh|||

≤ Chk
|u|k+1(|||Qhu − u||| + |||u − uh|||)

≤ Ch2k
|u|2k+1 +

1
4
|||eh|||2. (4.10)

The estimate (4.7) implies

|(∇wu − ∇wQhu, ∇weh)Th | ≤ C |||u − Qhu||||||eh|||

≤ Ch2k
|u|2k+1 +

1
4
|||eh|||2. (4.11)
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Combining the estimates (4.10) and (4.11) with (4.9), we arrive at

|||eh||| ≤ Chk
|u|k+1,

which completes the proof. □

5. Error estimates in L2 norm

The standard duality argument is used to obtain L2 error estimate. Recall eh = {e0, eb} = u − uh and ϵh = {ϵ0, ϵb} =

Qhu − uh. The considered dual problem seeks Φ ∈ H1
0 (Ω) satisfying

−∆Φ = ϵ0, in Ω. (5.1)

Assume that the following H2-regularity holds

∥Φ∥2 ≤ C∥ϵ0∥. (5.2)

Theorem 5.1. Let uh ∈ V 0
h be the weak Galerkin finite element solution of (2.4). Assume that the exact solution u ∈ Hk+1(Ω)

and (5.2) holds true. Then, there exists a constant C such that

∥u − u0∥ ≤ Chk+1
|u|k+1. (5.3)

Proof. Testing (5.1) by ϵ0 and using the fact that
∑

T∈Th
⟨∇Φ · n, ϵb⟩∂T = 0 give

∥ϵ0∥
2

= −(∆Φ, ϵ0)
= (∇Φ, ∇ϵ0)Th − ⟨∇Φ · n, ϵ0 − ϵb⟩∂Th . (5.4)

Setting u = Φ and v = ϵh in (4.3) yields

(∇Φ, ∇ϵ0)Th = (∇wΦ, ∇wϵh)Th + ⟨Qh∇Φ · n, ϵ0 − ϵb⟩∂Th . (5.5)

Substituting (5.5) into (5.4) gives

∥ϵ0∥
2

= (∇wϵh, ∇wΦ)Th − ⟨(∇Φ − Qh∇Φ) · n, ϵ0 − ϵb⟩∂Th

= (∇weh, ∇wΦ)Th + (∇w(Qhu − u), ∇wΦ)Th + ℓ(Φ, ϵh)

= (∇weh, ∇wQhΦ)Th + (∇weh, ∇w(Φ − QhΦ))Th

+ (∇w(Qhu − u), ∇wΦ)Th + ℓ(Φ, ϵh)

= ℓ(u,QhΦ) + (∇weh, ∇w(Φ − QhΦ))Th + (∇w(Qhu − u), ∇wΦ)Th + ℓ(Φ, ϵh)

= I1 + I2 + I3 + I4. (5.6)

Next we will estimate all the terms on the right hand side of (5.6). Using the Cauchy–Schwarz inequality, the trace
inequality (4.5) and the definitions of Qh and Πh we obtain

I1 = |ℓ(u,QhΦ)| ≤
⏐⏐⟨(∇u − Qh∇u) · n, Q0Φ − QbΦ⟩∂Th

⏐⏐
≤

⎛⎝∑
T∈Th

∥(∇u − Qh∇u)∥2
∂T

⎞⎠1/2 ⎛⎝∑
T∈Th

∥Q0Φ − QbΦ∥
2
∂T

⎞⎠1/2

≤ C

⎛⎝∑
T∈Th

h∥(∇u − Qh∇u)∥2
∂T

⎞⎠1/2 ⎛⎝∑
T∈Th

h−1
∥Q0Φ − Φ∥

2
∂T

⎞⎠1/2

≤ Chk+1
|u|k+1|Φ|2.

It follows from (4.8) and (4.7) that

I2 = |(∇weh, ∇w(Φ − QhΦ))Th | ≤ C |||eh||||||Φ − QhΦ|||

≤ Chk+1
|u|k+1|Φ|2.
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Fig. 6.1. The first three levels of grids used in the computation of Table 6.1.

To bound I3, we define a L2 projection element-wise onto [P1(T )]d denoted by Rh. Then it follows from the definition of
weak gradient (2.3)

(∇w(Qhu − u), Rh∇wΦ)T = −(Q0u − u, ∇ · Rh∇wΦ)T + ⟨Qbu − u, Rh∇wΦ · n⟩∂T = 0.

Using the equation above and (4.7) and the definition of Rh, we have

I3 = |(∇w(Qhu − u), ∇wΦ)Th |

= |(∇w(Qhu − u), ∇wΦ − Rh∇wΦ)Th |

= |(∇w(Qhu − u), ∇Φ − Rh∇Φ)Th |

≤ Chk+1
|u|k+1|Φ|2.

It follows from (4.6), (4.7) and (4.8) that

I4 = |ℓ(Φ, ϵh)| ≤ Ch|Φ|2|||ϵh|||

≤ Ch|Φ|2(|||eh||| + |||u − Qhu|||)

≤ Chk+1
|u|k+1∥Φ∥2.

Combining all the estimates above with (5.6) yields

∥ϵ0∥
2

≤ Chk+1
|u|k+1∥Φ∥2.

It follows from the above inequality and the regularity assumption (5.2).

∥ϵ0∥ ≤ Chk+1
|u|k+1.

The triangle inequality implies

∥e0∥ ≤ ∥ϵ0∥ + ∥u − Q0u∥ ≤ Chk+1
|u|k+1.

We have completed the proof. □

6. Numerical experiments

We solve the following Poisson equation on the unit square:

− ∆u = 2π2 sinπx sinπy, (x, y) ∈ Ω = (0, 1)2, (6.1)

with the boundary condition u = 0 on ∂Ω .
In the first computation, the level one grid consists of two unit right triangles cutting from the unit square by a forward

slash. The high level grids are the half-size refinements of the previous grid. The first three levels of grids are plotted in
Fig. 6.1. The error and the order of convergence are shown in Table 6.1. The numerical results confirm the convergence
theory.

In Fig. 6.2, we plot the finite element solution and the discretization errors on triangular and on polygonal grids. We
can see, with same number of unknowns, the solutions on triangular grids are more accurate than those on polygonal
grids. This can also be seen from the two data tables.

In the next computation, we use a family of polygonal grids (with 12-side polygons) shown in Fig. 6.3. The numerical
results in Table 6.2 indicate that the polynomial degree j for the weak gradient needs to be larger, which confirms the
theory: j depending on the number of edges of a polygon. The convergence history confirms the theory.
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Fig. 6.2. Top: The P1 weak Galerkin solution on the fifth level triangular grid. Middle: The error of P1 weak Galerkin solution (dof 3008) on the
fifth level triangular grid. Bottom: The error of P1 weak Galerkin solution (dof 3456) on the fifth level 12-gon grid.

Table 6.1
Error profiles and convergence rates for (6.1) on triangular grids.
Level ∥uh − Q0u∥ Rate |||uh − u||| Rate

by P1 elements with P2
1 weak gradient ⇒ singular

by P1 elements with P2
2 weak gradient

6 0.4295E−03 1.99 0.5369E−01 1.00
7 0.1075E−03 2.00 0.2684E−01 1.00
8 0.2688E−04 2.00 0.1342E−01 1.00

by P2 elements with P2
2 weak gradient ⇒ singular

by P2 elements with P2
3 weak gradient

6 0.2383E−05 3.01 0.1013E−02 2.00
7 0.2971E−06 3.00 0.2532E−03 2.00
8 0.3709E−07 3.00 0.6330E−04 2.00

by P3 elements with P2
3 weak gradient ⇒ singular

by P3 elements with P2
4 weak gradient

6 0.2468E−07 4.02 0.1430E−04 3.00
7 0.1532E−08 4.01 0.1789E−05 3.00
8 0.9550E−10 4.00 0.2237E−06 3.00

by P4 elements with P2
4 weak gradient ⇒ singular

by P4 elements with P2
5 weak gradient

5 0.8154E−08 4.99 0.2441E−05 4.00
6 0.2551E−09 5.00 0.1526E−06 4.00
7 0.8257E−11 4.99 0.9539E−08 4.00



X. Ye and S. Zhang / Journal of Computational and Applied Mathematics 371 (2020) 112699 9

Fig. 6.3. The first three polygonal grids for the computation of Table 6.2.

Table 6.2
Error profiles and convergence rates for (6.1) on polygonal grids shown in Fig. 6.3.
Level ∥uh − Q0u∥ Rate |||uh − u||| Rate

by P1 elements with P2
2 weak gradient ⇒ singular

by P1 elements with P2
3 weak gradient

5 0.9671E−03 1.98 0.1350E+00 1.00
6 0.2425E−03 2.00 0.6750E−01 1.00
7 0.6067E−04 2.00 0.3375E−01 1.00

by P2 elements with P2
3 weak gradient ⇒ singular

by P2 elements with P2
4 weak gradient

5 0.5791E−05 3.00 0.3247E−02 2.00
6 0.7233E−06 3.00 0.8120E−03 2.00
7 0.9040E−07 3.00 0.2030E−03 2.00

by P3 elements with P2
4 weak gradient ⇒ singular

by P3 elements with P2
5 weak gradient

4 0.8809E−06 4.00 0.3575E−03 2.99
5 0.5509E−07 4.00 0.4475E−04 3.00
6 0.3447E−08 4.00 0.5595E−05 3.00

References

[1] I. Babuška, The finite element method with penalty, Math. Comp. 27 (1973) 221–228.
[2] J. Douglas Jr., T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Comput. Methods Appl. Sci. (1976) 207–216.
[3] W. Reed, T. Hill, Triangular Mesh Methods for the Neutron Transport Equation, Technical Report la-UR-73-0479, Los Alamos Scientific Laboratory,

Los Alamos, NM, 1973.
[4] M. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15 (1978) 152–161.
[5] B. Cockburn, C. Shu, The local discontinuous Galerkin finite element method for convection–diffusion systems, SIAM J. Numer. Anal. 35 (1998)

2440–2463.
[6] D. Arnold, F. Brezzi, B. Cockburn, D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39

(2002) 1749–1779.
[7] B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and conforming Galerkin methods for second

order elliptic problems, SIAM J. Numer. Anal. 47 (2009) 1319-1365.
[8] K. Lipnikov, G. Manzini, F. Brezzi, A. Buffa, The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes,

J. Comput. Phys. 230 (2011) 305–328.
[9] D. Pietro, A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes, C. R. Math. 353 (2015) 31–34.

[10] L. Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini, A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci.
23 (2013) 119–214.

[11] J. Wang, X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math. 241 (2013) 103–115.
[12] X. Ye, S. Zhang, A conforming discontinuous Galerkin finite element method, Int. J. Numer. Anal. Model. 17 (1) (2020) 110–117.
[13] X. Ye, S. Zhang, A conforming discontinuous Galerkin finite element method: Part II, Int. J. Numer. Anal. Model. 17 (2) (2020) 281–296.
[14] J. Liu, S. Tavener, Z. Wang, Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes, SIAM J. Sci. Comput.

40 (2018) 1229–1252.
[15] J. Wang, X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp. 83 (2014) 2101–2126.

http://refhub.elsevier.com/S0377-0427(19)30704-6/sb1
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb2
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb3
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb3
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb3
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb4
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb5
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb5
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb5
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb6
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb6
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb6
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb7
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb7
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb7
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb8
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb8
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb8
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb9
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb10
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb10
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb10
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb11
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb12
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb13
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb14
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb14
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb14
http://refhub.elsevier.com/S0377-0427(19)30704-6/sb15

	A stabilizer-free weak Galerkin finite element method on polytopal meshes
	Introduction
	Weak Galerkin finite element schemes
	Well posedness
	Error estimates in energy norm
	Error estimates in L2 norm
	Numerical experiments
	References


