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a b s t r a c t

The problem of variational data assimilation for a nonlinear evolution model is formu-
lated as an optimal control problem to find simultaneously unknown parameters and
initial state of the model. A response function is considered as a functional of the optimal
solution after assimilation. The sensitivity of the response function to the observation
data is studied. The gradient of the response function with respect to observations is
related to the solution of a non-standard problem involving the coupled system of
direct and adjoint equations. Based on the Hessian of the original cost function, the
solvability of the non-standard problem is studied. An algorithm to compute the gradient
of the response function with respect to observation data is formulated and justified. A
numerical example is presented for variational data assimilation problem for the Baltic
Sea thermodynamics model.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The methods of variational data assimilation have become a very important tool for state observation and parameter
estimation for geophysical models. The problems of variational data assimilation can be formulated as optimal control
problems (e.g. [1–6]) to find unknown model parameters such as initial and boundary conditions, right-hand sides in the
model equations, distributed coefficients, based on minimization of the cost function related to observations. A necessary
optimality condition reduces an optimal control problem to an optimality system which involves the model equations,
the adjoint problem, and input data functions. The optimal solution depends on the observation data, which may contain
uncertainties, and for the forecasts it is very important to study the sensitivity of the optimal solution and its functionals
with respect to observation errors [7].

The necessary optimality condition is related to the gradient of the original cost function, thus to study the sensitivity of
the optimal solution, one should differentiate the optimality system with respect to observations. In this case, we come to
the so-called second-order adjoint problem [8]. The first studies of sensitivity of the response functions after assimilation
with the use of second-order adjoint were done by [9] for variational data assimilation problem aimed at restoration
of initial condition, where sensitivity with respect to model parameters was considered. The equations of the forecast
sensitivity to observations in a four-dimensional (4D-Var) data assimilation were derived by [10]. Based on these results,
a practical computational approach was given by [11] to quantify the effect of observations in 4D-Var data assimilation.
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Sensitivity of the optimal solution is related to its statistical properties (see [12–16]). General sensitivity analysis in
variational data assimilation with respect to observations for a nonlinear dynamic model was given by [17] to control the
initial-value function. The paper [18] presented the sensitivity analysis with respect to observations in variational data
assimilation aimed at restoration of unknown parameters of a dynamic model.

This paper generalizes the results of [17] and [18] and presents the sensitivity analysis with respect to observations
in variational data assimilation aimed at simultaneous restoration of unknown parameters and initial state of a dynamic
model. The problems of parameter estimation are common inverse problems considered in geophysics and in engineering
applications (see [19–28]). Last years an interest is rising to the joint initial state and parameter estimation using
4D-Var [29–31].

We consider a dynamic formulation of variational data assimilation problem for joint parameter and initial state
estimation in a continuous form, but the presented sensitivity analysis formulas with respect to observations do not
follow from our previous results [17] and [18] and constitute a novelty of this paper. The main contribution of the paper,
as compared to [17] and [18], is a derivation of new formulas for the gradient of a response function with respect to
observations in variational data assimilation problem aimed at joint parameter and initial state estimation for a general
nonlinear dynamic model.

This paper is organized as follows. In Section 2, we give the statement of the variational data assimilation problem for a
nonlinear evolution model to estimate simultaneously the model parameters and the initial state. In Section 3, sensitivity
of the response function after assimilation with respect to observations is studied, and the theorem is proved to relate
the gradient to the solution of a non-standard problem. An algorithm to compute the gradient of the response function is
formulated, based on an operator equation involving the Hessian of the original cost function, and the solvability of the
non-standard problem is studied. In Section 4, we consider a simple example with known manufactured exact solution
and present some numerical results. Section 5 presents an application of the theory to the data assimilation problem for
the Baltic Sea thermodynamics model with a numerical example. The main results are discussed in the Conclusions.

2. Statement of the problem

Consider the mathematical model of a physical process that is described by the nonlinear evolution problem{
∂ϕ
∂t = F (ϕ, λ) + f , t ∈ (0, T )

ϕ
⏐⏐
t=0 = u,

(1)

where the initial state u is supposed to be from a Hilbert space X , the unknown function ϕ = ϕ(t) belongs to Y =

L2(0, T ; X) with the norm ∥ϕ∥Y = (ϕ, ϕ)1/2Y = (
∫ T
0 ∥ϕ(t)∥2

Xdt)
1/2, F is a nonlinear operator mapping Y × Yp into Y , Yp is

a Hilbert space (space of model parameters), f ∈ Y . We suppose that for given u ∈ X, f ∈ Y and λ ∈ Yp there exists a
unique solution ϕ ∈ Y to (1) with ∂ϕ

∂t ∈ Y . The function λ is an unknown model parameter, and we suppose that the
initial state u is also unknown.

We introduce the cost function as a functional on X × Yp in the form

J(u, λ) =
1
2
(V1(u − ub), u − ub)X +

1
2
(V2(λ− λb), λ− λb)Yp +

1
2
(V3(Cϕ − ϕobs), Cϕ − ϕobs)Yobs , (2)

where ub ∈ X, λb ∈ Yp are prior (background) functions, ϕobs ∈ Yobs is a prescribed function (observational data), Yobs is
a Hilbert space (observation space), C : Y → Yobs is a linear bounded operator (observation operator), V1 : X → X, V2 :

Yp → Yp and V3 : Yobs → Yobs are symmetric positive definite bounded operators. Usually, V1, V2, V3 are chosen as inverse
covariance operators of observation and background errors [7,30].

Let us consider the following data assimilation problem with the aim to find the initial value u and the parameter λ:
for given f ∈ Y , ϕobs ∈ Yobs, ub ∈ X, λb ∈ Yp, find u ∈ X, λ ∈ Yp and ϕ ∈ Y such that they satisfy (1), and on the set of
solutions to (1), the functional J(u, λ) takes the minimum value, i.e.⎧⎪⎨⎪⎩

∂ϕ
∂t = F (ϕ, λ) + f , t ∈ (0, T )

ϕ
⏐⏐
t=0 = u,

J(u, λ) = inf
w∈X,v∈Yp

J(w, v).
(3)

We suppose that the solution of (3) exists. Let us note that the solvability of the parameter estimation problems (or
identifiability) has been addressed, e.g., in [32,33]. To derive the optimality system, we assume the solution ϕ and the
operator F (ϕ, λ) in (1)–(2) are regular enough, and for w ∈ X, v ∈ Yp find the gradient of the functional J with respect to
u and λ:

J ′u(u, λ)w = (V1(u − ub), w)X + (C∗V3(Cϕ − ϕobs), φ̃)Y , (4)

J ′λ(u, λ)v = (V2(λ− λb), v)Yp + (C∗V3(Cϕ − ϕobs), φ)Y , (5)
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where φ is the solution to the problem:{
∂φ
∂t = F ′

ϕ(ϕ, λ)φ + F ′

λ(ϕ, λ)v, t ∈ (0, T ),
φ
⏐⏐
t=0 = 0,

(6)

and φ̃ is the solution to the problem:{
∂φ̃
∂t = F ′

ϕ(ϕ, λ)φ̃, t ∈ (0, T ),
φ
⏐⏐
t=0 = w.

(7)

Here F ′
ϕ(ϕ, λ) : Y → Y , F ′

λ(ϕ, λ) : Yp → Y are the Fréchet derivatives of F [34] with respect to ϕ and λ, correspondingly,
and C∗ is the adjoint operator to C defined by (Cϕ,ψ)Yobs = (ϕ, C∗ψ)Y , ϕ ∈ Y , ψ ∈ Yobs.

Let us introduce the adjoint operator (F ′
ϕ(ϕ, λ))

∗
: Y → Y and consider the adjoint problem:{

∂ϕ∗

∂t + (F ′
ϕ(ϕ, λ))

∗ϕ∗
= C∗V3(Cϕ − ϕobs), t ∈ (0, T )

ϕ∗
⏐⏐
t=T = 0.

(8)

The problem (8) is adjoint with respect to the linearized (tangent linear) problems (6), (7), therefore, it is also linear in
ϕ∗, however, it is still nonlinear in ϕ.

In the below consideration, we assume that the direct and adjoint linear problems of the form{
∂φ
∂t − F ′

ϕ(ϕ, λ)φ = p, t ∈ (0, T )
φ
⏐⏐
t=0 = q,{

−
∂φ∗

∂t − (F ′
ϕ(ϕ, λ))

∗φ∗
= g, t ∈ (0, T )

φ∗
⏐⏐
t=T = 0

with p, g ∈ Y , q ∈ X have the unique solutions φ, φ∗
∈ Y and ∂φ

∂t ,
∂φ∗

∂t ∈ Y . From (4)–(8) we get

J ′u(u, λ)w = (V1(u − ub), w)X − (ϕ∗
⏐⏐
t=0, w)X , (9)

J ′λ(u, λ)v = (V2(λ− λb), v)Yp − (ϕ∗, F ′

λ(ϕ, λ)v)Y = (V2(λ− λb), v)Yp − ((F ′

λ(ϕ, λ))
∗ϕ∗, v)Yp , (10)

where (F ′

λ(ϕ, λ))
∗

: Y → Yp is the operator adjoint to F ′

λ(ϕ, λ). Thus, the gradient of J is defined by

J ′u(u, λ) = V1(u − ub) − ϕ∗
⏐⏐
t=0, J ′λ(u, λ) = V2(λ− λb) − (F ′

λ(ϕ, λ))
∗ϕ∗.

The necessary optimality condition [1] is gradJ = 0, therefore, J ′u(u, λ) = 0, J ′λ(u, λ) = 0. From (3)–(10) we obtain the
optimality system:{

∂ϕ
∂t = F (ϕ, λ) + f , t ∈ (0, T ),

ϕ
⏐⏐
t=0 = u,

(11){
∂ϕ∗

∂t + (F ′
ϕ(ϕ, λ))

∗
ϕ∗

= C∗V3(Cϕ − ϕobs), t ∈ (0, T )
ϕ∗
⏐⏐
t=T = 0,

(12)

V1(u − ub) − ϕ∗
⏐⏐
t=0 = 0, (13)

V2(λ− λb) − (F ′

λ(ϕ, λ))
∗
ϕ∗

= 0. (14)

We suppose that the system (11)–(14) has a unique solution ϕ, ϕ∗
∈ Y , u ∈ X, λ ∈ Yp. The system (11)–(14) may be

considered as a generalized model of the form A(U) = 0 with the state variable U = (ϕ, ϕ∗, u, λ), and it contains the
information on the observation data ϕobs ∈ Yobs. Below we study the sensitivity of functionals of the optimal solution with
respect to the observation data.

3. Sensitivity of response functions with respect to observations

In many applications the observation data cannot be measured precisely, and therefore, it is important to be able to
estimate the impact of uncertainties in observations on the outputs of the model after assimilation. Such outputs may be
response functions considered as functionals of the optimal solution.

We introduce a response function G(ϕ, u, λ), which is supposed to be a real-valued function and can be considered as
a functional on Z = Y × X × Yp. We are interested in the sensitivity of G with respect to ϕobs, with ϕ, u and λ obtained
from the optimality system (11)–(14). By definition, the sensitivity is defined by the gradient of G with respect to ϕobs:

dG
dϕobs

=
∂G
∂ϕ

∂ϕ

∂ϕobs
+
∂G
∂λ

∂λ

∂ϕobs
+
∂G
∂u

∂u
∂ϕobs

, (15)
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where ∂G
∂ϕ

: Z → Y , ∂G
∂λ

: Z → Yp,
∂G
∂u : Z → X , and ∂ϕ

∂ϕobs
, ∂λ
∂ϕobs

, ∂u
∂ϕobs

are the Gâteaux derivatives of ϕ, λ, u with
respect to ϕobs.

Let δϕobs be a perturbation on ϕobs, then we obtain from the optimality system (11)–(14):{
∂δϕ
∂t = F ′

ϕ(ϕ, λ)δϕ + F ′

λ(ϕ, λ)δλ, t ∈ (0, T )

δϕ
⏐⏐
t=0 = δu,

(16)⎧⎪⎨⎪⎩
−
∂δϕ∗

∂t − (F ′
ϕ(ϕ, λ))

∗δϕ∗
− (F ′′

ϕϕ(ϕ, λ)δϕ)
∗ϕ∗

= (F ′′

ϕλ(ϕ, λ)δλ)
∗ϕ∗

−C∗V3(Cδϕ − δϕobs),
δϕ∗

⏐⏐
t=T = 0,

(17)

V1δu − δϕ∗
⏐⏐
t=0 = 0, (18)

V2δλ− (F ′′

λϕ(ϕ, λ)δϕ)
∗ϕ∗

− (F ′′

λλ(ϕ, λ)δλ)
∗ϕ∗

− (F ′

λ(ϕ, λ))
∗δϕ∗

= 0, (19)

and (
dG

dϕobs
, δϕobs

)
Yobs

=

(
∂G
∂ϕ
, δϕ

)
Y

+

(
∂G
∂λ
, δλ

)
Yp

+

(
∂G
∂u
, δu

)
X
, (20)

where δϕ, δϕ∗, δλ, δu are the solutions of (16)–(19).
The following statement is valid.

Theorem 1. Let P1, P2 ∈ Y , P3 ∈ Yp, P4 ∈ X be the solutions of the following system of equations{
−
∂P1
∂t − (F ′

ϕ(ϕ, λ))
∗P1 − (F ′′

ϕϕ(ϕ, λ)P2)
∗ϕ∗

= (F ′′

λϕ(ϕ, λ)P3)
∗ϕ∗

− C∗V3CP2 +
∂G
∂ϕ
,

P1
⏐⏐
t=T = 0,

(21){
∂P2
∂t − F ′

ϕ(ϕ, λ)P2 − F ′

λ(ϕ, λ)P3 = 0, t ∈ (0, T )
P2
⏐⏐
t=0 − P4 = 0,

(22)

V1P4 − P1
⏐⏐
t=0 =

∂G
∂u
, (23)

V2P3 − (F ′′

ϕλ(ϕ, λ)P2)
∗ϕ∗

− (F ′′

λλ(ϕ, λ)P3)
∗ϕ∗

− (F ′

λ(ϕ, λ))
∗P1 =

∂G
∂λ
, (24)

where ϕ, ϕ∗
∈ Y , u ∈ X, λ ∈ Yp are the solution of the optimality system (11)–(14). Then the gradient of G with respect to

ϕobs is given by
dG

dϕobs
= V3CP2. (25)

Proof of this Theorem is presented in the Appendix.
We obtain a coupled system of two differential Eqs. (21) and (22) of the first order with respect to time, with additional

conditions (23)–(24). To study this non-standard problem (21)–(24) with mutually dependent initial conditions for P1, P2,
we reduce it to a single operator equation involving the Hessian of the original cost function.

Let us introduce the auxiliary variables v = P3 ∈ Yp, w = P4 ∈ X and rewrite the non-standard problem (21)–(24) in
an equivalent form:{

∂P2
∂t − F ′

ϕ(ϕ, λ)P2 = F ′

λ(ϕ, λ)v, t ∈ (0, T )
P2
⏐⏐
t=0 = w,

(26){
−
∂P1
∂t − (F ′

ϕ(ϕ, λ))
∗P1 − (F ′′

ϕϕ(ϕ, λ)P2)
∗ϕ∗

= (F ′′

λϕ(ϕ, λ)v)
∗ϕ∗

− C∗V3CP2 +
∂G
∂ϕ
,

P1
⏐⏐
t=T = 0,

(27)

V1w − P1
⏐⏐
t=0 =

∂G
∂u
, (28)

V2v − (F ′′

ϕλ(ϕ, λ)P2)
∗ϕ∗

− (F ′′

λλ(ϕ, λ)v)
∗ϕ∗

− (F ′

λ(ϕ, λ))
∗P1 =

∂G
∂λ

(29)

with the four unknowns: w ∈ X, v ∈ Yp, P1, P2 ∈ Y . Let us write (26)–(29) in the form of an operator equation for
U = (w, v)T . We define the operator H : X ×Yp → X ×Yp, which acts on U belonging to X ×Yp, by the successive solution
of the following problems:{

∂φ
∂t − F ′

ϕ(ϕ, λ)φ = F ′

λ(ϕ, λ)v, t ∈ (0, T )
φ
⏐⏐
t=0 = w,

(30)
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{
−
∂φ∗

∂t − (F ′
ϕ(ϕ, λ))

∗φ∗
− (F ′′

ϕϕ(ϕ, λ)φ)
∗ϕ∗

= (F ′′

λϕ(ϕ, λ)w)∗ϕ∗
− C∗V3Cφ,

φ∗
⏐⏐
t=T = 0,

(31)

HU =

(
V1w − φ∗

⏐⏐
t=0, V2v − (F ′′

ϕλ(ϕ, λ)φ)
∗ϕ∗

− (F ′′

λλ(ϕ, λ)w)∗ϕ∗
− (F ′

λ(ϕ, λ))
∗φ∗

)T

, (32)

where λ, u, ϕ and ϕ∗ are the solutions of the optimality system (11)–(14). It is easily seen that (26)–(29) is equivalent to
the following equation in X × Yp:

HU = F (33)

with F ∈ X × Yp defined by

F =

(
∂G
∂u

+ φ̃∗
⏐⏐
t=0,

∂G
∂λ

+ (F ′

λ(ϕ, λ))
∗φ̃∗

)T

, (34)

where φ̃∗
∈ Y is the solution to the adjoint problem:⎧⎨⎩ −
∂φ̃∗

∂t − (F ′
ϕ(ϕ, λ))

∗φ̃∗
=

∂G
∂ϕ
, t ∈ (0, T )

φ̃∗
⏐⏐
t=T = 0.

(35)

It is easy to make sure that the operator H defined by (30)–(32) is the Hessian of the original functional J considered
on the optimal solution u, λ of the problem (11)–(14): J ′′(u, λ) = H.

Lemma 1. Under the assumption that H is positive definite, the operator Eq. (33) is well posed: for every F ∈ X × Yp there
exists a unique solution U ∈ X × Yp and the estimate is valid:

∥U∥X×Yp ≤ c∥F∥X×Yp , c = const > 0. (36)

Proof. If the operator H is positive definite, then for any U ∈ X × Yp

(HU,U)X×Yp ≥ γ (U,U)X×Yp , γ = const > 0.

Hence,

∥HU∥X×Yp ≥ γ ∥U∥X×Yp , (37)

and it means that Eq. (33) is uniquely and correctly solvable in X × Yp [35].
By definition, H is self-adjoint, i.e. H∗

= H. Then, the adjoint equation is also correctly solvable, which implies
that Eq. (33) is everywhere solvable [35], i.e. for every F ∈ X × Yp there exists a unique solution U ∈ X × Yp.

Let U ∈ X × Yp be the solution of (33) with the right-hand side F , then (37) gives (36) with c = 1/γ . The lemma is
proved.

Therefore, under the assumption that J ′′(u, λ) is positive definite on the optimal solution, the non-standard problem
(21)–(24) has a unique solution P1, P2 ∈ Y , P3 ∈ Yp, P4 ∈ X .

From the above consideration, we come to the following algorithm to compute the gradient of the response function
G:

(1) For ∂G
∂λ

∈ Yp,
∂G
∂ϕ

∈ Y , ∂G
∂u ∈ X solve the adjoint problem⎧⎨⎩ −

∂φ̃∗

∂t − (F ′
ϕ(ϕ, λ))

∗φ̃∗
=

∂G
∂ϕ
, t ∈ (0, T )

φ̃∗
⏐⏐
t=T = 0

(38)

and put

F =

(
∂G
∂u

+ φ̃∗
⏐⏐
t=0,

∂G
∂λ

+ (F ′

λ(ϕ, λ))
∗φ̃∗

)T

.

(2) Find U = (w, v)T by solving

HU = F

with the Hessian of the original functional J defined by (30)–(32).
(3) Solve the direct problem{

∂P2
∂t − F ′

ϕ(ϕ, λ)P2 = F ′

λ(ϕ, λ)v, t ∈ (0, T )
P2
⏐⏐
t=0 = w.

(39)
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(4) Compute the gradient of the response function as
dG

dϕobs
= V3CP2. (40)

The last formula allows us to estimate the sensitivity of the response functions related to the optimal solution after
assimilation, with respect to observation data.

4. Simple example

Let us consider a simple evolution problem for the ordinary differential equation⎧⎨⎩
dϕ
dt

+ aϕ = λg, t ∈ (0, T )

ϕ
⏐⏐
t=0 = u,

(41)

where u ∈ R; a, λ ∈ R, g = g(t) ≥ 0. Here, in the notations of Section 2, we have X = R, Y = L2(0, T ), Yp = R,
F (ϕ, λ) = −aϕ + λg , f = 0. Let us formulate the data assimilation problem to find the initial state u and the parameter
λ if we have observation data for ϕ at the end of the time interval t = T . We will minimize the cost function

J(u, λ) = inf
w,v∈R

J(w, v), (42)

where J(u, λ) =
α

2

⏐⏐u − ub
⏐⏐2 +

1
2

⏐⏐ϕ|t=T−ϕobs
⏐⏐2, α > 0, and ϕ is the solution to (41).

Thus, here we have V1 = α, V2 = 0, V3 = 1, Cϕ = ϕ|t=T .
In this case F ′

ϕ(ϕ, λ) = a, F ′

λ(ϕ, λ) = g , and the optimality system (11)–(14) has the form:{ dϕ
dt

+ aϕ = λg, t ∈ (0, T )

ϕ
⏐⏐
t=0 = u,

(43){ dϕ∗

dt
− aϕ∗

= 0, t ∈ (0, T )

ϕ∗
⏐⏐
t=T = ϕobs − ϕ

⏐⏐
t=T ,

(44)

α(u − ub) − ϕ∗
⏐⏐
t=0 = 0, (45)

(g, ϕ∗) =

∫ T

0
g(t)ϕ∗(t)dt = 0. (46)

It is easy to see that the problem of data assimilation (41)–(42) has a unique solution

λ = λopt =
ϕobs − ϕ0ub

ϕ1
, u = uopt = ub, (47)

where ϕ0 = e−aT , ϕ1 =
∫ T
0 e−a(T−t ′)g(t ′)dt ′.

Indeed, if u, λ have the form (47), the solution of problem (41) satisfies ϕ|t=T= ϕobs, and the functional J from (42)
attains its minimal value J = 0. In this case ϕ∗

= 0, and the optimality system (43)–(46) is satisfied. Also, we will see
below that the Hessian of J is positive definite, and it means the uniqueness of the solution u, λ.

Let us consider the response function in the form

G(ϕ, λ, u) =

∫ T

0
ϕ(t)dt. (48)

Let a ̸= 0. After assimilation, taking into account the solution of problem (41), we have

G(ϕ, λ, u) =
uopt

a
(1 − e−aT ) +

λopt

a

(∫ T

0
g(t)dt − ϕ1

)
, (49)

where uopt , λopt are given by (47). Then, by direct differentiation of G with respect to ϕobs we have the gradient

dG
dϕobs

=
1

aϕ1

(∫ T

0
g(t)dt − ϕ1

)
. (50)

Let us now apply the algorithm (38)–(40) to compute the gradient of the function G. Since
∂G
∂ϕ

= 1, (F ′
ϕ(ϕ, λ))

∗
= −a,

then on the first step of the algorithm, we solve the problem (38) and get the solution

φ̃∗(t) =
1
a
(1 − e−a(T−t)). (51)
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Taking into account that ∂G/∂λ = ∂G/∂u = 0 and (F ′

λ(ϕ, λ))
∗φ̃∗

= (g, φ̃∗), we get F =
(
φ̃∗(0), (g, φ̃∗)

)T , i.e., F = (f̃0, f̃ )T ,
where

f̃0 = φ̃∗

⏐⏐⏐⏐
t=0
, f̃ =

∫ T

0
gφ̃∗dt =

1
a

(∫ T

0
g(t)dt − ϕ1

)
. (52)

On the second step of the algorithm, one need to solve the equation HU = F with the Hessian H defined by the
formulas (30)–(32). Since all the second order derivatives of F (ϕ, λ) equal zero, then it is easily seen that H in this case
is defined by

HU =

(
αw − φ∗

⏐⏐
t=0,−

∫ T

0
g(t)φ∗(t)dt

)T

, U = (w, v)T ,

where φ∗ is the solution of the adjoint problem⎧⎨⎩
dφ∗

dt
− aφ∗

= 0, t ∈ (0, T )

φ∗
⏐⏐
t=T = −φ

⏐⏐
t=T ,

(53)

and φ is the solution of the forward problem⎧⎨⎩
dφ
dt

+ aφ = vg, t ∈ (0, T )

φ
⏐⏐
t=0 = w.

(54)

Since φ
⏐⏐
t=T = wϕ0 + vϕ1 and∫ T

0
g(t)φ∗(t)dt = −φ

⏐⏐
t=T

∫ T

0
e−a(T−t)g(t)dt = −φ

⏐⏐
t=Tϕ1,

φ∗
⏐⏐
t=0 = −φ

⏐⏐
t=T e

−aT
= −φ

⏐⏐
t=Tϕ0,

we get

HU =
(
αw + ϕ2

0w + ϕ0ϕ1v, ϕ0ϕ1w + ϕ2
1v
)T
,

hence H is the 2 × 2 matrix

H =

(
α + ϕ2

0 ϕ0ϕ1
ϕ0ϕ1 ϕ2

1

)
. (55)

For α > 0, ϕ0, ϕ1 ̸= 0 the matrix H is positive definite, which confirms the existence and uniqueness of the solution
to problem (42).

The solution of the system HU = F has the explicit form

w = −
ϕ0 f̃
αϕ1

+
f̃0
α
, v =

(α + ϕ2
0 )

αϕ2
1

f̃ −
ϕ0

αϕ1
f̃0. (56)

On the third step of the algorithm, we need to solve problem (39). Since F ′

λ(ϕ, λ) = g , the solution of this problem for
t = T has the form

P2
⏐⏐
t=T = wϕ0 + vϕ1 = −

ϕ2
0 f̃
αϕ1

+
(α + ϕ2

0 )f̃
αϕ1

=
f̃
ϕ1
.

Finally, using (40), we get the gradient of G with respect to ϕobs:

dG
dϕobs

= CP2 = P2|t=T=
f̃
ϕ1
. (57)

From (52) and (57) we have

dG
dϕobs

=
1

aϕ1

(∫ T

0
g(t)dt − ϕ1

)
. (58)

Thus, the gradient obtained by the algorithm (38)–(40) exactly coincides with the value of the gradient obtained in
(50) by direct differentiation, which is the expected result.

For a numerical example, we consider the problem (41)–(42) and the response function G in the form (48) for
a = 1, g(t) = 1, α = 10−5. The exact value of the gradient dG

dϕobs
is defined by the formula (50). Easy to see that for

a = 1, g(t) = 1 it has the explicit form:
dG

dϕobs
=

T
1 − e−T − 1,
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Table 1
The experiment with different assimilation windows, α = 10−5 .
Assimilation window T = 1 T = 2 T = 5 T = 10 T = 100

Exact gradient 0.5819 1.313 4.034 9 99
Approximate gradient, τ = 0.1 0.5193 1.246 3.978 8.95 98.949
Approximate gradient, τ = 0.01 0.5815 1.302 4.027 8.995 98.997

Table 2
The experiment with different parameters α, T = 10, τ = 0.01.
Parameter α α = 10−5 α = 10−2 α = 1

Exact gradient 9 9 9
Approximate gradient 8.995 8.995 8.995

and it does not require a numerical integration. Approximate values of the gradient were obtained numerically with
the help of the algorithm (38)–(40), where the problems (38), (39) were solved using the simplest explicit scheme in
time. Table 1 presents for comparison the exact and approximate values of the gradient for different lengths T of the
assimilation window and for different time steps τ . One can see from the table that for each case the gradient values
obtained by the considered algorithm coincide with the exact values of the gradient with the accuracy O(τ ). Besides, the
gradient dG

dϕobs
rises with the increase of T , therefore, the sensitivity of the response function with respect to observation

errors is increasing, which is natural for a larger assimilation window T .
Note that in this example, the exact gradient defined by the formula (50) does not depend on α, however, the algorithm

(38)–(40) involve α as a parameter. Table 2 shows that the resulting approximate values of the gradient obtained by the
algorithm also do not change with α.

5. Application: data assimilation problem for a sea thermodynamics model

We consider the sea thermodynamics problem in the form [36]:

Tt + (Ū,Grad)T − Div(âT · Grad T ) = fT in D × (t0, t1),
T = T0 for t = t0 in D,

− νT
∂T
∂z

= Q on ΓS × (t0, t1),
∂T
∂n

= 0 on Γw,c × (t0, t1),

Ū (−)n T +
∂T
∂n

= QT on Γw,op × (t0, t1),

∂T
∂n

= 0 on ΓH × (t0, t1), (59)

where T = T (x, y, z, t) is an unknown temperature function, t ∈ (t0, t1), (x, y, z) ∈ D = Ω × (0,H), Ω ⊂ R2,
H = H(x, y) is the function of the bottom relief, Q = Q (x, y, t) is the total heat flux, Ū = (u, v, w), âT = diag((aT )ii),
(aT )11 = (aT )22 = µT , (aT )33 = νT , fT = fT (x, y, z, t) are given functions. The boundary of the domain Γ ≡ ∂D is
represented as a union of four disjoint parts ΓS , Γw,op, Γw,c , ΓH , where ΓS = Ω (the unperturbed sea surface), Γw,op is the
liquid (open) part of vertical lateral boundary, Γw,c is the solid part of the vertical lateral boundary, ΓH is the sea bottom,
Ū (−)
n = (|Ūn|− Ūn)/2, and Ūn is the normal component of Ū . The other notations and a detailed description of the problem

statement can be found in [37].
Problem (59) can be written in the form of an operator equation:

Tt + LT = F + BQ , t ∈ (t0, t1),
T = T0, t = t0,

(60)

where the equality is understood in the weak sense, namely,

(Tt , T̂ ) + (LT , T̂ ) = F (̂T ) + (BQ , T̂ ) ∀̂T ∈ W 1
2 (D), (61)

in this case L, F, B are defined by the following relations:

(LT , T̂ ) ≡

∫
D
(−TDiv(Ū T̂ ))dD +

∫
Γw,op

Ū (+)
n T T̂dΓ +

∫
D
âTGrad(T ) · Grad(̂T )dD,

F (̂T ) =

∫
Γw,op

QT T̂ dΓ +

∫
D
fT T̂ dD, (Tt , T̂ ) =

∫
D
Tt T̂ dD, (BQ , T̂ ) =

∫
Ω

Q T̂
⏐⏐
z=0dΩ,

and the functions âT , QT , fT , Q are such that equality (61) makes sense. The properties of the operator L were studied
by [37].
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Due to (61), Eq. (60) is considered in Y = L2(t0, t1; (W 1
2 (D))

∗), and the operator B : L2(Ω × (t0, t1)) → Y maps the
function Q ∈ L2(Ω × (t0, t1)) into the function BQ ∈ Y such that (BQ , T̂ ) =

∫
Ω
Q T̂
⏐⏐
z=0dΩ, ∀̂T ∈ W 1

2 (D). Problem (59) is
linear in T ,Q , however, written in the form (60), it is a particular case of the original problem (1), and all the reasoning
and the methodology presented in Sections 2–3 are easily transferred to the case of problem (60), understood in a weak
sense.

We consider the data assimilation problem for the sea surface temperature (see [37]). Suppose that the functions
Q ∈ L2(Ω× (t0, t1)) and T0 ∈ L2(D) are unknown in problem (59). Let also Tobs(x, y, t) ∈ L2(Ω× (t0, t1)) be the function on
Ω obtained for t ∈ (t0, t1) by processing the observation data, and this function in its physical sense is an approximation
to the surface temperature function on Ω , i.e. to T

⏐⏐
z=0. We admit the case when Tobs is defined only on some subset of

Ω × (t0, t1) and denote the indicator (characteristic) function of this set by m0. For definiteness sake, we assume that Tobs
is zero outside this subset.

Consider the data assimilation problem for the surface temperature in the following form: find T0 and Q such that⎧⎨⎩
Tt + LT = F + BQ in D × (t0, t1),

T = T0, t = t0
J(T0,Q ) = inf

w,v
J(w, v),

(62)

where

J(T0,Q ) =
α

2

∫ t1

t0

∫
Ω

|Q − Q (0)
|
2
dΩdt +

β

2

∫
D
|T0 − T (0)

|
2
dD +

1
2

∫ t1

t0

∫
Ω

m0|T
⏐⏐
z=0 − Tobs|

2dΩdt, (63)

and Q (0)
= Q (0)(x, y, t), T (0)

= T (0)(x, y, z) are given functions, α, β = const > 0.

Lemma 2. For α, β > 0 the variational data assimilation problem (62) has a unique solution.

Proof. Let T n
0 ,Q

n be a sequence minimizing J(T0,Q ), i.e. J(T n
0 ,Q

n) → infT0,Q J(T0,Q ), n → ∞. Since

J(T0,Q ) ≥
α

2

∫ t1

t0

∫
Ω

|Q − Q (0)
|
2
dΩdt +

β

2

∫
D
|T0 − T (0)

|
2
dD, ∀T0 ∈ L2(D),Q ∈ L2(Ω × (t0, t1)),

then, for α, β > 0, the sequence T n
0 ,Q

n is bounded: ∥T n
0 ∥L2(D) ≤ const, ∥Q n

∥L2(Ω×(t0,t1)) ≤ const . Hence, there exists a
weakly convergent subsequence (we denote it also by T n

0 ,Q
n). The Hilbert spaces L2(D) and L2(Ω × (t0, t1)) are weakly

closed, therefore, there exist elements T0 ∈ L2(D),Q ∈ L2(Ω × (t0, t1)) such that T n
0 → T0 weakly in L2(D), and

Q n
→ Q weakly in L2(Ω × (t0, t1)), i.e. (T n

0 , p)L2(D) → (T0, p)L2(D), (Q n, q)L2(Ω×(t0,t1)) → (Q , q)L2(Ω×(t0,t1))∀p ∈ L2(D), q ∈

L2(Ω × (t0, t1)). Let T n and T be the solutions of problem (60) for T n
0 ,Q

n and T0,Q , respectively. Then, for the difference
we have

(T n
− T )t + L(T n

− T ) = B(Q n
− Q ), t ∈ (t0, t1),

T n
− T = T n

0 − T0, t = t0.
(64)

The solution to problem (64) continuously depends on the initial value T n
0 − T0 and the flux Q n

− Q (a priori estimates
are valid in the corresponding functional spaces) [1], therefore, T n

→ T weakly in Y , and T n
|z=0→ T |z=0 weakly in

L2(Ω × (t0, t1)). The functional S(·) = ∥ · ∥
2 is known [1] to be lower semi-continuous in the weak topology, then

lim inf J(T n
0 ,Q

n) ≥ J(T0,Q ), and, therefore, infw,v J(w, v) ≥ J(T0,Q ). Hence, infw,v J(w, v) = J(T0,Q ), that is, T0,Q gets
the minimum to the functional J . This proves the lemma.

The optimality system determining the solution of the formulated variational data assimilation problem according to
the necessary condition gradJ = 0 has the form:

Tt + LT = F + BQ in D × (t0, t1),
T = T0, t = t0,

(65)

−(T ∗)t + L∗T ∗
= Bm0(Tobs − T ) in D × (t0, t1),
T ∗

= 0, t = t1,
(66)

α(Q − Q (0)) − T ∗
= 0 on Ω × (t0, t1), (67)

β(T0 − T (0)) − T ∗
⏐⏐
t=0 = 0 in D, (68)

where L∗ is the operator adjoint to L.
Here the boundary-value function Q plays the role of λ from Section 2, ϕ = T , the operator F has the form

F (T ,Q ) = −LT + BQ , and F ′

T = −L, F ′

Q = B. Since the operator F (T ,Q ) is linear in this case and F ′′

TT = F ′′

QQ = F ′′

QT = 0,
the Hessian H acting on some U = (w,ψ)T , w ∈ L2(D), ψ ∈ L2(Ω × (t0, t1)) is defined by the successive solution of the
following problems:{

∂φ
∂t + Lφ = Bψ, t ∈ (t0, t1)
φ
⏐⏐
t=t0

= w,
(69)
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{
−
∂φ∗

∂t + L∗φ∗
= −Bm0φ, t ∈ (t0, t1)

φ∗
⏐⏐
t=t1

= 0,
(70)

HU = (βw − φ∗
⏐⏐
t=0, αψ − B∗φ∗)T . (71)

To illustrate the above-presented theory, we consider the problem of sensitivity of functionals of the optimal solution
Q to the observations Tobs. Let us introduce the following response function:

G(T ) =

∫ t1

t0

dt
∫
Ω

k(x, y, t)T (x, y, 0, t)dΩ, (72)

where k(x, y, t) is a weight function related to the temperature field on the sea surface z = 0. For example, if we are
interested in the mean temperature of a specific region of the sea ω for z = 0 in the interval t̄ − τ ≤ t ≤ t̄ , then as k we
take the function

k(x, y, t) =

{
1
/
(τmes ω) if (x, y) ∈ ω, t̄ − τ ≤ t ≤ t̄

0 else,
(73)

where mes ω denotes the area of the region ω. Thus, the functional (72) is written in the form:

G(T ) =
1
τ

∫ t̄

t̄−τ
dt

(
1

mes ω

∫
ω

T (x, y, 0, t)dΩ

)
. (74)

Formula (74) represents the mean temperature averaged over the time interval t̄ − τ ≤ t ≤ t̄ for a given region ω. The
response functions of this type are of most interest in the theory of climate change [34,38].

In our notations the functional (72) may be written as

G(T ) =

∫ t1

t0

(Bk, T )dt = (Bk, T )Y , Y = L2(D × (t0, t1)).

We are interested in the sensitivity of the response function G(T ), obtained for T after data assimilation, with respect
to the observation function Tobs.

By definition, the sensitivity is given by the gradient of G with respect to Tobs:

dG
dTobs

=
∂G
∂T

∂T
∂Tobs

. (75)

Since ∂G
∂T = Bk, then according to the theory presented in Section 5, to compute the gradient (75) we need to perform

the following steps:
(1) For k defined by (73) solve the adjoint problem⎧⎨⎩ −

∂φ̃∗

∂t + L∗φ̃∗
= Bk, t ∈ (t0, t1)

φ̃∗
⏐⏐
t=t1

= 0
(76)

and put Φ = (φ̃∗
⏐⏐
t=0, B

∗φ̃∗)T .
(2) Find U = (w, v)T by solving HU = Φ with the Hessian defined by (69)–(71).
(3) Solve the direct problem{

∂P2
∂t + LP2 = Bv, t ∈ (t0, t1)

P2
⏐⏐
t=t0

= w.
(77)

(4) Compute the gradient of the response function as

dG
dTobs

= m0P2
⏐⏐
z=0. (78)

The last formula allows us to estimate the sensitivity of the functionals related to the mean temperature after data
assimilation, with respect to the observations on the sea surface.

For numerical experiments have used the three-dimensional numerical model of the Baltic Sea hydrothermodynamics
developed at the INM RAS on the base of the splitting method [39] and supplied with the assimilation procedure [37] for
the surface temperature Tobs with the aim to reconstruct the heat fluxes Q and the initial state T0.

The parameters of the considered domain of the Baltic Sea and its geographic coordinates can be described as follows:
σ -grid is 336 × 394 × 25 (the latitude, longitude, and depth, respectively). The first point of the ‘‘grid C’’ [39] has the
coordinates 9.406◦ E and 53.64◦ N. The mesh sizes in x and y are constant and equal to 0.0625 and 0.03125 degrees. The



Please cite this article as: V. Shutyaev, F.-X. Le Dimet and E. Parmuzin, Sensitivity of response functions in variational data assimilation for joint parameter
and initial state estimation, Journal of Computational and Applied Mathematics (2019) 112368, https://doi.org/10.1016/j.cam.2019.112368.

V. Shutyaev, F.-X. Le Dimet and E. Parmuzin / Journal of Computational and Applied Mathematics xxx (xxxx) xxx 11

Fig. 1. The gradient of the response function G(T ).

time step is∆t = 5 minutes. The assimilation procedure worked only during some time windows. To start the assimilation
procedure, the function T (0) was taken as a model forecast for the previous time interval.

The Baltic Sea daily-averaged nighttime surface temperature data were used for Tobs. These are the data of the Danish
Meteorological Institute based on measurements of radiometers (AVHRR, AATSR and AMSRE) and spectroradiometers
(SEVIRI and MODIS) [40]. Data interpolation algorithms were used [41] to convert observations on computational grid of
the numerical model of the Baltic Sea thermodynamics. The mean climatic flux obtained from the NCEP (National Center
for Environmental Prediction) reanalysis was taken for Q (0).

Using the hydrothermodynamics model mentioned above, which is supplied with the assimilation procedure for the
surface temperature Tobs, we have performed calculations for the Baltic Sea area where the assimilation algorithm worked
only at certain time moments t0; in this case t1 = t0 + ∆t . The aim of the experiment was the numerical study of the
sensitivity of functionals of the optimal solution Q , T0 to observation errors in the interval (t0, t1).

We use the discretize-then-optimize approach, and for numerical experiments all the presented equations are under-
stood in a discrete form, as finite-dimensional analogues of the corresponding problems, obtained after approximation.
This allows us to consider model equations as a perfect model, with no approximation errors.

Let us present some results of numerical experiments.
The calculation results for t0 = 41 h 40 min (500 time steps for the model) are presented in Fig. 1 showing the gradient

of the response function G(T ) defined by (74) and related to the mean temperature after data assimilation, with respect
to the observations on the sea surface, according to (76)–(78). Here ω = Ω , τ = ∆t , t̄ = t1, α = β = 10−5.

We can see the sub-areas (in red) in which the response function G(T ) is most sensitive to errors in the observations
during assimilation. The largest values of the gradient of G(T ) correspond to the points x, y lying near the boundary of
the domain. This result is confirmed by the direct computation of the response function G(T ) according to (74) obtained
after assimilation, by introducing perturbations into the observation data Tobs.

The above studies allow to determine the sea sub-areas in which the response function related to the optimal solution
is most sensitive to errors in the observations during variational data assimilation.

6. Conclusions

Numerical algorithms are considered to study the sensitivity of functionals of the optimal solution of variational data
assimilation problem aimed at the reconstruction of unknown parameters and initial state of the model. The optimal
solution obtained as a result of assimilation depends on the observations that may contain uncertainties. Computing
the gradient of the functionals with respect to observations reduces to the solution of a non-standard problem which
is a coupled system involving direct and adjoint equations with mutually dependent variables. Solvability of the non-
standard problem is related to the properties of the Hessian of the original cost function. An algorithm to compute the
gradient of the response function is developed. Numerical example for variational data assimilation problem related to
sea surface temperature for the Baltic Sea thermodynamics model demonstrates the result of the gradient computation of
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the response function associated with the mean surface temperature. The presented algorithm may be used to determine
the sea sub-areas in which the response functions of the optimal solution are most sensitive to errors in the observations
during variational data assimilation.
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Appendix. Proof of Theorem 1

Consider the system of perturbations (16)–(19). We have here 4 problems and 4 unknowns δu, δλ, δϕ, δϕ∗. The function
δϕobs is included in the right-hand side of (17), therefore, all the unknowns δu, δλ, δϕ, δϕ∗ will depend on δϕobs. The
expression (20) involves δϕobs in the left-hand side, and we would like to represent the right-hand side of (20) through
δϕobs also, to obtain the explicit formula for the gradient dG

dϕobs
. Let us introduce four adjoint variables P1 ∈ Y , P2 ∈ Y ,

P3 ∈ Yp and P4 ∈ X . By taking the inner product of (16) by P1, (17) by P2, (19) by P3 and of (18) by P4 and adding them,
we get:(

∂δϕ

∂t
− F ′

ϕ(ϕ, λ)δϕ − F ′

λ(ϕ, λ)δλ, P1

)
Y

+

(
−
∂δϕ∗

∂t
− (F ′

ϕ(ϕ, λ))
∗δϕ∗

− (F ′′

ϕϕ(ϕ, λ)δϕ)
∗ϕ∗

−

− (F ′′

ϕλ(ϕ, λ)δλ)
∗ϕ∗

+ C∗V3(Cδϕ − δϕobs), P2

)
Y

+

(
V2δλ− (F ′′

λϕ(ϕ, λ)δϕ)
∗ϕ∗

−

− (F ′′

λλ(ϕ, λ)δλ)
∗ϕ∗

− (F ′

λ(ϕ, λ))
∗δϕ∗, P3

)
Yp

+

(
V1δu − δϕ∗

⏐⏐
t=0, P4

)
X

= 0.

Using integration by parts and adjoint operators, we obtain(
δϕ,−

∂P1
∂t

− (F ′

ϕ(ϕ, λ))
∗P1 − (F ′′

ϕϕ(ϕ, λ)P2)
∗ϕ∗

− (F ′′

λϕ(ϕ, λ)P3)
∗ϕ∗

+ C∗V3CP2

)
Y
+

+

(
δϕ
⏐⏐
t=T , P1

⏐⏐
t=T

)
X

−

(
δu, P1

⏐⏐
t=0

)
X

+

(
δϕ∗,

∂P2
∂t

− F ′

ϕ(ϕ, λ)P2 − F ′

λ(ϕ, λ)P3

)
Y
+

+

(
δϕ∗

⏐⏐
t=0, P2

⏐⏐
t=0

)
X

+

(
δλ, V2P3 − (F ′′

ϕλ(ϕ, λ)P2)
∗ϕ∗

− (F ′′

λλ(ϕ, λ)P3)
∗ϕ∗

− (F ′

λ(ϕ, λ))
∗P1

)
Yp

−

(
δϕobs, V3CP2

)
Yobs

+

(
δu, V1P4

)
X

−

(
δϕ∗

⏐⏐
t=0, P4

)
X

= 0. (79)

Hence,(
−
∂P1
∂t

− (F ′

ϕ(ϕ, λ))
∗P1 − (F ′′

ϕϕ(ϕ, λ)P2)
∗ϕ∗

− (F ′′

λϕ(ϕ, λ)P3)
∗ϕ∗

+ C∗V3CP2, δϕ
)

Y
+

+

(
V2P3 − (F ′′

ϕλ(ϕ, λ)P2)
∗ϕ∗

− (F ′′

λλ(ϕ, λ)P3)
∗ϕ∗

− (F ′

λ(ϕ, λ))
∗P1, δλ

)
Yp

+

+

(
V1P4 − P1|t=0, δu

)
X

+

(
P1
⏐⏐
t=T , δϕ

⏐⏐
t=T

)
X

+

(
∂P2
∂t

− F ′

ϕ(ϕ, λ)P2 − F ′

λ(ϕ, λ)P3, δϕ
∗

)
Y
+

+

(
P2
⏐⏐
t=0 − P4, δϕ∗

⏐⏐
t=0

)
X

=

(
V3CP2, δϕobs

)
Yobs

. (80)

We would like the first three summands in the left-hand side of (80) be equal to the right-hand side of (20), keeping the
others summands to be zero, therefore, we put

−
∂P1
∂t

− (F ′

ϕ(ϕ, λ))
∗P1 − (F ′′

ϕϕ(ϕ, λ)P2)
∗ϕ∗

− (F ′′

λϕ(ϕ, λ)P3)
∗ϕ∗

+ C∗V3CP2 =
∂G
∂ϕ
,

V1P4 − P1
⏐⏐
t=0 =

∂G
∂u
,

and

V2P3 − (F ′′

ϕλ(ϕ, λ)P2)
∗ϕ∗

− (F ′′

λλ(ϕ, λ)P3)
∗ϕ∗

− (F ′

λ(ϕ, λ))
∗P1 =

∂G
∂λ
, P1

⏐⏐
t=T = 0,
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∂P2
∂t

− F ′

ϕ(ϕ, λ)P2 − F ′

λ(ϕ, λ)P3 = 0, P2
⏐⏐
t=0 − P4 = 0.

Thus, if P1, P2, P3, P4 are the solutions of (21)–(24), we get from (80):(
∂G
∂ϕ
, δϕ

)
Y

+

(
∂G
∂λ
, δλ

)
Yp

+

(
∂G
∂u
, δu

)
X

=

(
V3CP2, δϕobs

)
Yobs

,

and due to (20) the gradient of G is given by (25). The theorem is proved.
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