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a b s t r a c t

In this paper, we establish some results regarding the existence of the solution to
variational inequality, optimization problem and elliptic boundary value problem in
Hilbert spaces. Our strategy consists in establishing new best proximity point results
in the metric spaces by introducing the concept of cyclic orbital simulative contractions.
We also provide nontrivial examples to show that our results are proper generalization.
Further, we improve the recent best proximity results for mappings satisfying proximal
simulative conditions due to Abbas et al. (2017), Samet (2015), and Tchier et al. (2016)
via new class of simulation functions. Our results unify, extend and generalize various
existing results.
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1. Introduction and preliminaries

Variational inequality theory is important due to the fact that it is a powerful unifying methodology for the study of
equilibrium problems and providing us algorithms with accompanying convergence analysis for computational purposes.
Therefore, it has attained extensive attention in recent years in the field of economics, management sciences, and so
on. In fact many equilibrium problems in economics, game theory, mechanics, traffic analysis, can be transformed into
variational inequality problems. Variational inequality is a formulation for solving the problem where we have to optimize
a functional. The theory is derived by using the techniques of nonlinear functional analysis such as fixed point theory and
the theory of monotone operators. It was first introduced by Hartman and Stampacchia [1] in 1966 in their seminal paper.
Later on, it was extended to vector variational inequality problems by Giannessi [2] in 1980. Since then a great deal of
research started in the area of vector variational inequality problems as a consequence of a lot of inclination of researchers
towards vector optimization. Many researchers have contributed in this direction including Chen [3], Giannessi [4–6], Yang
and Teo [7], Mishra and Wang [8], Chinaie et al. [9], Rezaie and Zafarani [10] and so on.

Here, in this paper, on account to get a new technique to solve variational inequality problems, optimization problems
and elliptic boundary value problems in Hilbert spaces, we establish new best proximity point results in the metric spaces.
A fundamental result in fixed point theory is the Banach Contraction Principle [11]. Many extensions and generalizations
of this contraction are made by several authors. In 2015, Khojasteh et al. [12] gave the notation of simulation function and
Z-contraction to unify the several existing fixed point results in the literature. We denote by ∆(Z), the set of all functions
ζ : [0,∞) × [0,∞) → R satisfying following conditions:
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Nomenclature

⪯ Partial order
A, B Closed non-empty subsets of X
d(x, y) Distance between two points x and y
d(x, B) Distance between a point x and a set B, i.e. inf{d(x, y) : y ∈ B}
dist(A, B) Distance between sets A and B, i.e. inf{d(x, y) : x ∈ A, y ∈ B}
d∗(x, y) d(x, y) − dist(A, B)
H Hilbert Space
Ik Identity operator of K
T Mapping, operator, gradient operator, cyclic contraction, cyclic orbital simulative contraction,

cyclic ϕ-contraction.

(ζ1) ζ (0, 0) = 0;
(ζ2) ζ (t, s) < s − t for all t, s > 0;
(ζ3) if {tn}, {sn} are two sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0 then

lim
n→∞

sup ζ (tn, sn) < 0.

The function ζ : [0,∞) × [0,∞) → R satisfying (ζ1)–(ζ3) is called a simulation function [12].

Definition 1.1 ([12]). Let (X, d) be a metric space, T : X → X an operator and ζ ∈ ∆(Z). Then T is called a Z-contraction
with respect to ζ if it satisfies

ζ (d(Tx, Ty), d(x, y)) ≥ 0, for all x, y ∈ X . (1.1)

Theorem 1.1 ([12]). Let (X, d) be a complete metric space and T : X → X be a Z-contraction with respect ζ . Then T has a
unique fixed point. Moreover, for every x0 ∈ X, the Picard sequence {T nx0} converges to this fixed point.

Recently, Roldán-López-de-Hierro et al. [13] modified the notion of a simulation function by replacing (ζ3) by (ζ ′3):

(ζ ′3) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0 and tn < sn, then

lim
n→∞

sup ζ (tn, sn) < 0.

The function ζ : [0,∞)×[0,∞) → R satisfying (ζ1)-(ζ2) and (ζ ′3) is called a simulation function in the sense of Roldán-
López-de-Hierro. Note that every simulation function in the original sense of Khojasteh et al. [12] is also a simulation
function in the sense of Roldán-López-de-Hierro et al. [13], but the converse is not true.

Example 1.1 ([13]). Let ζ4 : [0,∞) × [0,∞) → R be defined by

ζ4(t, s) =

{
2s − 2t if s < t
ks − t otherwise,

where k ∈ R and k < 1. Then ζ4 satisfies (ζ1), (ζ2) and (ζ ′3) but does not satisfy (ζ3).

Further, in [14], Argoubi et al. noted that the condition (ζ1) was not used for the proof of Theorem 1.1. Also they noted
that taking x = y in (1.1), one has ζ (0, 0) ≥ 0 and hence, if ζ (0, 0) < 0, the set of operators T : X → X satisfying (1.1) is
empty. One of an interesting generalization of Banach’s contraction is given by Kirk et al. in [15]. They obtained existence
of unique fixed point in non-empty intersection A ∩ B for a mapping T : A ∪ B → A ∪ B satisfying T (A) ⊆ B, T (B) ⊆ A and
for some k ∈ (0, 1)

d(Tx, Ty) ≤ kd(x, y). (1.2)

Afterwards, Eldred and Veeramani [16] modified (1.2) to cyclic contraction in the case when A ∩ B = ∅ as:

d(Tx, Ty) ≤ kd(x, y) + (1 − k)dist(A, B), (1.3)

where k ∈ (0, 1). In this case, a unique best proximity point of T : A∪B → A∪B in A is found in a uniformly convex Banach
space. Recall that a point x ∈ A is called a best proximity point of T : A∪B → A∪B in A if d(x, Tx) = dist(A, B), when the sets
A and B intersects, the best proximity point reduces to fixed point. Next, Di Bari et al. [17] generalized the cyclic contraction
by introducing the cyclic Meir–Keeler contraction and proved the best proximity result for this contraction. Sanhan and
Mongkolkeha [18] introduced the Berinde’s cyclic contractions and proved best proximity theorems for these mappings
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with proximally complete property. In this direction, Hussain and Iqbal [19] introduced the concept of multivalued cyclic
F-contraction and obtained best proximity theorems for these mappings with proximally complete property. In [20],
Al-Thagafi and Shahzad found a best proximity point for cyclic ϕ-contractions which has a proximal property. Further,
in [21], Du and Lakzian, gave a notion of MT -cyclic contraction and established some existence and convergence theorems
of iterates of best proximity points for MT -cyclic contractions. For the theory of best proximity points via simulation
functions see [22–27] and references there in and for the best proximity point results for different proximal contractions
see [28–33] and references there in.

On the other side, Karpagam and Agrawal [34] generalized (1.2) by giving the notion of a cyclic orbital contraction as:
for some x ∈ A there exists kx ∈ (0, 1) such that

d(T 2nx, Ty) ≤ kxd(T 2n−1x, y), n ∈ N, y ∈ A, (1.4)

and T : A∪ B → A∪ B is such that T (A) ⊆ B and T (B) ⊆ A. They showed that A∩ B is non-empty and T has a unique fixed
point.

Continuing in this direction, in this paper, we introduce the notion of cyclic orbital simulative contraction and explore
the existence of best proximity points for these contraction. Our results generalize the main results of [12,16,20,21,34–36]
and [13]. We also improve the results of Abbas et al. [22], Samet [24] and Tchier et al. [25] via enriched class of simulation
functions.

2. Results for cyclic orbital simulative contraction

In this section, we prove the existence of best proximity points and fixed points for cyclic orbital simulative contraction.
Throughout this section, let (X, d) be a metric space, A and B be two non-empty subsets of X . Define dist(A, B) =

inf{d(x, y) : x ∈ A, y ∈ B} and d∗(x, y) = d(x, y) − dist(A, B).

2.1. Best proximity point results

We start this section with the following lemma.

Lemma 2.1. Let ζ : [0,∞) × [0,∞) → R be a function such that ζ (t, s) < s − t for all t, s > 0. If {tn}, {sn} are sequences
in (0,∞) such that limn→∞ tn = limn→∞ sn > 0, then for a ≥ 0 with a < tn < sn following holds

lim
n→∞

ζ (tn − a, sn − a) ≤ 0.

Proof. Let limn→∞ tn = limn→∞ sn = C > 0, then

lim
n→∞

ζ (tn − a, sn − a) ≤ lim
n→∞

(sn − tn) = C − C = 0. □

We denote by Z the collection of all functions ζ : [0,∞) × [0,∞) → R satisfying (ζ2) and the following:

(ζ4) If {tn}, {sn} are sequences in (0,∞) such that tn < sn for each n and limn→∞ sn > 0, then

lim
n→∞

ζ (tn, sn) = 0 implies lim
n→∞

tn < lim
n→∞

sn.

Example 2.1. Let ζk : [0,∞) × [0,∞) → R be defined by

ζk(t, s) =

⎧⎪⎨⎪⎩
ks − t if t, s > 0 : t ≤ s
1
k (s − t) if t, s > 0 : t > s,

1 if t = s = 0,

where k ∈ (0, 1). Then ζk(t, s) < s − t for all t, s > 0. Let {tn}, {sn} be two sequences in (0,∞) be such that tn < sn and
limn→∞ sn = C > 0, we have

0 = lim
n→∞

(ksn − tn) = lim
n→∞

ksn − lim
n→∞

tn,

which implies

lim
n→∞

tn = lim
n→∞

ksn = kC < C = lim
n→∞

sn.

Thus, ζk ∈ Z.
On the other side, let {tn}, {sn} be sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0, then

lim
n→∞

(sn − tn) = lim
n→∞

sn − lim
n→∞

tn = 0
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and for sn < tn, we have

lim
n→∞

sup ζk(tn, sn) = lim
n→∞

sup
(
1
k
(sn − tn)

)
= 0.

Therefore, (ζ3) does not hold and ζk /∈ ∆(Z). Also, ζ (0, 0) = 1 ̸= 0, hence ζk is not a simulation function in the sense of
Roldán-López-de-Hierro.

Remark 2.1. Note that if ζ ∈ Z, then ζ (t, s) < s − t < 0 for all 0 < s ≤ t .

Definition 2.1. Let A and B be non-empty subsets of a metric space (X, d). A mapping T : A ∪ B → A ∪ B is said to be
cyclic orbital simulative contraction if T (A) ⊆ B, T (B) ⊆ A and for some x0 ∈ A there exists ζ ∈ Z such that

ζ (d∗(T 2nx0, Ty), d∗(T 2n−1x0, y)) ≥ 0, n ∈ N, y ∈ A. (2.1)

Remark 2.2.

(1) Every cyclic contraction [16] is cyclic orbital simulative contraction for ζ = ζk. Indeed, let T be a cyclic contraction
on A ∪ B, so for all x, y ∈ A ∪ B (1.3) holds. Then for each n ∈ N, we get d∗(T nx, Ty) < d∗(T n−1x, y) and
d(T 2nx, Ty) ≤ kd(T 2n−1x, y) + (1 − k)dist(A, B), which implies

0 ≤ k(d(T 2n−1x, y) − dist(A, B)) − (d(T 2nx, Ty) − dist(A, B))

= ζ (d∗(T 2nx, Ty), d∗(T 2n−1x, y)).

(2) Every cyclic orbital contraction [34] is cyclic orbital simulative contraction for

ζ (t, s) =

{1 if s = t = 0
kxs − t if s, t > 0 : t < s
2(s − t) if s, t > 0 : t ≥ s,

where kx ∈ (0, 1) for some x ∈ A. Indeed, let T be cyclic orbital contraction on A ∪ B, so for some x ∈ A there exits
kx ∈ A such that

d(T 2nx, Ty) ≤ kxd(T 2n−1x, T )

≤ kxd(T 2n−1x, T ) + (1 − kx)dist(A, B),

which implies ζ (d∗(T 2nx, Ty), d∗(T 2n−1x, y)) ≥ 0.

But a cyclic orbital simulative contraction need neither be a cyclic orbital contraction or nor a cyclic contraction as
shown in Example 2.3.

Lemma 2.2. Let A and B be non-empty subsets of a metric space (X, d) and T : A ∪ B → A ∪ B be a cyclic orbital simulative
contraction mapping. If x0 ∈ A satisfies (2.1), then for each n ∈ N

d∗(T nx0, T n+1x0) < d∗(T n−1x0, T nx0).

Proof. Let x0 ∈ A and n ∈ N, here arises two cases:
Case:I n is even, n = 2m, where m ∈ N

then from (2.1), we have

0 ≤ ζ (d∗(T nx0, T n+1x0), d∗(T n−1x0, T nx0))

= ζ (d∗(T 2mx0, T (T 2mx0)), d∗(T 2m−1x0, T 2mx0))

< d∗(T 2m−1x0, T 2mx0) − d∗(T 2mx0, T (T 2mx0)).

This implies that

d∗(T 2mx0, T (T 2mx0)) < d∗(T 2m−1x0, (T 2mx0)).

Case:II n + 1 is even, n = 2m − 1, where m ∈ N, then from (2.1), we have

0 ≤ ζ (d∗(T n+1x0, T nx0), d∗(T nx0, T n−1x0))

= ζ (d∗(T 2mx0, T (T 2m−2x0)), d∗(T 2m−1x0, T 2m−2x0))

< d∗(T 2m−1x0, T 2m−2x0) − d∗(T 2mx0, T (T 2m−2x0)).

This implies that

d∗(T 2mx0, T (T 2m−2x0)) < d∗(T 2m−1x0, (T 2m−2x0)).

This completes the proof. □
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Lemma 2.3. Let A and B be non-empty subsets of a metric space (X, d) and T : A ∪ B → A ∪ B be a cyclic orbital simulative
contraction mapping. If x0 ∈ A satisfies (2.1), then for n ∈ N there exist a sequence {T nx0} in A ∪ B such that

lim
n→∞

d(T nx0, T n+1x0) = dist(A, B).

Proof. Let x0 ∈ A satisfies (2.1). Since T (A) ⊆ B and T (B) ⊆ A, we have a sequence T nx0 in X such that T 2nx0 contained
in A and T 2n+1x0 contained in B. If for n ∈ N, d(T nx0, T n+1x0) = d(T n−1x0, T nx0) = dist(A, B), then proof is complete.
Assume that d(T nx0, T n+1x0) > dist(A, B). From Lemma 2.2, we get {d∗(T nx0, T n+1x0)} is a monotonically decreasing
sequence of non-negative real numbers which is bounded below by 0. Then there exists r ≥ 0 such that for each n ∈ N,
d∗(T nx0, T n+1x0) → r as n → ∞. We assert that r = 0, if not then

lim
n→∞

d∗(T n−1x0, T nx0) = lim
n→∞

d∗(T nx0, T n+1x0) = r > 0 (2.2)

and for each n ∈ N we have two cases:
Case:I n is even, n = 2m, where m ∈ N

Since d∗(T 2mx0, T 2m+1x0) → r and d∗(T 2m−1x0, T 2mx0) → r as n → ∞ then from (2.1) and Lemma 2.1, we have

0 ≤ lim
n→∞

ζ (d∗(T 2mx0, T 2m+1x0), d∗(T 2m−1x0, T 2mx0))

= lim
n→∞

ζ (d(T 2mx0, T 2m+1x0) − dist(A, B), d(T 2m−1x0, T 2mx0) − dist(A, B)) ≤ 0.

Case:II n + 1 is even, n = 2m − 1, , where m ∈ N
Since d(T 2m−1x0, T 2mx0), d(T 2m−2x0, T 2m−1x0) → r as n → ∞ then from (2.1) and Lemma 2.1, we have

0 ≤ lim
n→∞

ζ (d∗(T 2m−1x0, T 2mx0), d∗(T 2m−2x0, T 2m−1x0))

= lim
n→∞

ζ (d(T 2m−1x0, T 2mx0) − dist(A, B), d(T 2m−2x0, T 2m−1x0) − dist(A, B)) ≤ 0.

Hence, for each n ∈ N, we have

lim
n→∞

ζ (d∗(T nx0, T n+1x0), d∗(T n−1x0, T nx0)) = 0,

from (ζ4), we get

lim
n→∞

d∗(T nx0, T n+1x0) < lim
n→∞

d∗(T n−1x0, T nx0),

which is a contradiction to (2.2). Hence d∗(T nx0, T n+1x0) → 0 as n → ∞ and consequently, d(T nx0, T n+1x0) → dist(A, B)
as n → ∞. □

Next we prove the existence of the best proximity point for cyclic orbital simulative contraction.

Theorem 2.1. Let A and B be non-empty subsets of a metric space (X, d) and T : A∪ B → A∪ B be a cyclic orbital simulative
contraction. For x0 ∈ A satisfying (2.1), if {T 2nx0} and {T 2n+1x0} have convergent subsequences in A and B respectively, then
there exists (x, y) ∈ A × B such that d(x, Tx) = dist(A, B) and d(y, Ty) = dist(A, B) with d(x, y) = dist(A, B).

Proof. Since T (A) ⊆ B and T (B) ⊆ A, we have a sequence {T nx0} in A ∪ B such that {T 2nx0} contained in A and {T 2n+1x0}
contained in B. Let {T 2nkx0} be a subsequence of {T 2nx0} such that

lim
k→∞

T 2nkx0 = x (2.3)

for some x ∈ A. Since

dist(A, B) ≤ d(x, T 2nk−1x0) ≤ d(x, T 2nkx0) + d(T 2nkx0, T 2nk−1x0). (2.4)

Letting k → ∞ in (2.4) and using Lemma 2.3 with (2.3), we get

lim
k→∞

d(x, T 2nk−1x0) = dist(A, B). (2.5)

Now,

dist(A, B) ≤ d(T 2nkx0, Tx) ≤ d(T 2nk−1x0, x), (2.6)

so, by letting k → ∞ in (2.6) with (2.5) implies d(x, Tx) = dist(A, B). Similarly, if {T 2nk+1x0} be a subsequence of T 2n+1x0
such that T 2nk+1x0 → y ∈ B as k → ∞. We can prove that d(y, Ty) = dist(A, B). Moreover,

d(x, y) = lim
n→∞

d(T 2nkx0, T 2nk+1x0) = dist(A, B). □
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Example 2.2. Let X = {(x, y) : −1 ≤ x, y ≤ 1} with metric d, defined as

d((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|

for all (x1, y1), (x2, y2) ∈ X . Consider A = {(1, 0), (0, 1)} and B = {(−1, 0), (0,−1)}. Then (X, d) is a metric space and
dist(A, B) = 2. Define T : A ∪ B → A ∪ B and ζ : [0,∞) × [0,∞) → R by T (x, y) = (−y,−x) and

ζ (t, s) =

{1 if s = t = 0
s − qt if s, t > 0 : s ≥ t
q(s − t) if s, t > 0 : s < t,

where q > 1. Then T (A) = B, T (B) = A, ζ ∈ Z and also for n ∈ N,

T 2n(1, 0) = (1, 0), T 2n−1(1, 0) = (0,−1), T 2n(0, 1) = (0, 1), T 2n−1(0, 1) = (−1, 0),

T 2n(−1, 0) = (−1, 0), T 2n−1(−1, 0) = (0, 1), T 2n(0,−1) = (0,−1), T 2n−1(0,−1) = (1, 0).

Now for (1, 0) ∈ A we have for all n ∈ N

ζ (d∗(T 2n(1, 0), T (1, 0))), d∗(T 2n−1(1, 0), (1, 0)) = ζ (d∗((1, 0), (0,−1)), d∗((0,−1), (1, 0)))
= ζ (0, 0) = 1 > 0

and
ζ (d∗(T 2n(1, 0), T (0, 1)), d∗(T 2n−1(1, 0), (0, 1))) = ζ (d∗((1, 0), (−1, 0)), d∗((0,−1), (0, 1)))

= ζ (0, 0) = 1 > 0.

So, there exist (1, 0) ∈ A and ζ ∈ Z such that (2.1) holds for all y ∈ A. Hence T is cyclic orbital simulative contraction. Also
{T 2n(1, 0)} and {T 2n+1(1, 0)} have convergent subsequences in A and B respectively. Thus, all the conditions of Theorem 2.1
hold true and there exists (1, 0) ∈ A and (0,−1) ∈ B such that

d((1, 0), T (1, 0)) = d((1, 0), (0,−1)) = 2 = dist(A, B)
d((0,−1), T (0,−1)) = d((0,−1), (1, 0)) = 2 = dist(A, B)

with

d((1, 0), (0,−1)) = 2 = dist(A, B).

On the other hand, there exists no ζ ∈ ∆(Z) such that T is a Z-contraction. Indeed, for x = (1, 0) and y = (−1, 0)

ζ (d(T (1, 0), T (−1, 0)), d((1, 0), (−1, 0))) = ζ (2, 2) < 0.

Example 2.3. Let X = {0, 1, 2, 3} with metric d, given as

d(x, y) =

{0 if x = y
2 if x, y ∈ {1, 2}
1 otherwise,

A = {0, 1} and B = {2, 3}. Then (X, d) is a complete metric space, A and B are closed subsets of X with dist(A, B) = 1.
Define T : A ∪ B → A ∪ B and ζ : [0,∞) × [0,∞) → R by T0 = 3, T1 = 2, T2 = 1, T3 = 0 and ζ = ζk. Then T (A) = B,
T (B) = A, ζ ∈ Z and also for n ∈ N, T 2n0 = 0, T 2n−10 = 3, T 2n1 = 1, T 2n−11 = 2, T 2n2 = 2, T 2n−12 = 1, T 2n3 = 3 and
T 2n−13 = 0. Now for 0 ∈ A we have for all n ∈ N

ζ (d∗(T 2n0, T0), d∗(T 2n−10, 0)) = ζ (d∗(0, 3), d∗(3, 0)) = ζ (0, 0) = 1 > 0

and

ζ (d∗(T 2n0, T1), d∗(T 2n−10, 1)) = ζ (d∗(0, 2), d∗(3, 1)) = ζ (0, 0) = 1 > 0.

So, there exists 0 ∈ A and ζ ∈ Z such that (2.1) holds for all y ∈ A. Hence T is cyclic orbital simulative contraction. Also
{T 2n0} and {T 2n+10} have convergent subsequences in A and B respectively. Thus, all the conditions of Theorem 2.1 hold
true and there exists 0 ∈ A and 3 ∈ B such that

d(0, T0) = d(0, 3) = 1 = dist(A, B)
d(3, T3) = d(3, 0) = 1 = dist(A, B)

with

d(0, 3) = 1 = dist(A, B).

On the other hand, we have

d(T 2n0, T1)
d(T 2n−10, 1)

=
d(0, 2)
d(3, 1)

= 1
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and also

d(T 2n1, T0)
d(T 2n−11, 0)

=
d(1, 3)
d(2, 0)

= 1.

Hence there exists no x ∈ A such that (1.4) holds for all y ∈ A. Therefore, T is not a cyclic orbital contraction.
Also, for 1 ∈ A and 2 ∈ B, we have

d∗(T1, T2)
d∗(1, 2)

=
d∗(2, 1)
d∗(1, 2)

= 1,

so, T is not a cyclic contraction.
It is also interesting to note that for ζ = ζk, T is not a Z-contraction. Indeed, for x = 0 and y = 1

ζ (d(T0, T1), d(0, 1)) = ζ (1, 1) = k − 1 < 0.

We adopt the method of Sanhan and Mongkolkeha [18] to prove the following lemma:

Lemma 2.4. Let A and B be non-empty subsets of a metric space (X, d) and T : A ∪ B → A ∪ B be a cyclic orbital simulative
contraction. Then for every x0 ∈ A satisfying (2.1), sequence {T nx0} in A ∪ B is bounded.

Proof. Suppose that x0 ∈ A satisfies (2.1), then from Lemma 2.3 there exists a sequence {T nx0} in A ∪ B such that
d(T 2nx0, T 2n+1x0) converges to dist(A, B). So, we prove that {T 2nx0} is bounded. On contrary, assume that {T 2nx0} is
not bounded then there exists p ∈ N satisfying M < d∗(T 2nx0, T 2(n+p)+1x0) and d∗(T 2nx0, T 2(n+p)−1x0) ≤ M where
M = 2pdist(A, B). Thus, we have

M < d∗(T 2nx0, T 2(n+p)+1x0)

= d(T 2nx0, T 2(n+p)+1x0) − dist(A, B)

≤ d(T 2nx0, T 2n+1x0) + d(T 2n+1x0, T 2n+2x0) + · · · + d(T 2(n+p)x0, T 2(n+p)+1x0)
− dist(A, B)

≤ d∗(T 2nx0, T 2n+1x0) + d∗(T 2n+1x0, T 2n+2x0) + · · · + d∗(T 2(n+p)x0, T 2(n+p)+1x0)
+ (2p − 1)dist(A, B).

(2.7)

Letting n → ∞ in (2.7) and using Lemma 2.3, we get

M < M − dist(A, B),

which leads to contradiction. Similarly, we can prove that {T 2n+1x0} is bounded and hence {T nx0} is bounded. □

Recall that a subset K of a metric space is boundedly compact if each bounded sequence in K has a subsequence
converging to a point in K [16]. So, from Theorem 2.1 and Lemma 2.4 we obtain

Theorem 2.2. Let A and B be non-empty subsets of a metric space (X, d) and T : A∪ B → A∪ B be a cyclic orbital simulative
contraction. If either A or B is boundedly compact, then there exists x ∈ A ∪ B such that d(x, Tx) = dist(A, B).

2.2. Fixed point results

In this section, we deduce some fixed point results from Section 2.1.

Theorem 2.3. Let A and B be non-empty subsets of a metric space (X, d) with dist(A, B) = 0 and T : A ∪ B → A ∪ B be a
mapping satisfying T (A) ⊆ B and T (B) ⊆ A. If for x0 ∈ A, there exists ζ ∈ Z such that

ζ (d(T 2nx0, Ty), d(T 2n−1x0, y)) ≥ 0, n ∈ N, y ∈ A. (2.8)

Then T has a unique fixed point in A ∩ B provided that {T 2nx0} and {T 2n+1x0} have convergent subsequences in A and B
respectively.

Proof. Since dist(A, B) = 0, (2.8) implies that T is a cyclic orbital simulative contraction. Hence from Theorem 2.1, we
have x ∈ A, y ∈ B with x = y such that d(x, Tx) = 0. Consequently, A∩B ̸= ∅ and T has fixed point in A∩B. For uniqueness,
suppose that u ∈ A ∪ B such that Tu = u with x ̸= u, then by (2.8) and Remark 2.1, we get

0 ≤ ζ (d(T 2nx, Tu), d(T 2n−1x, u)) = ζ (d(x, u), d(x, u)) < 0,

a contradiction. Thus, x = u. □
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Theorem 2.3 together with Lemma 2.4 gives

Theorem 2.4. Let A and B be non-empty subsets of a metric space (X, d) with dist(A, B) = 0 and T : A ∪ B → A ∪ B be a
mapping such that T (A) ⊆ B and T (B) ⊆ A and for x0 ∈ A satisfying (2.8). If A and B are boundedly compact, then T has a
unique fixed point in A ∩ B.

Remark 2.3. Recently, in [36] Radenović showed that some fixed point results for mappings satisfying cyclical contractive
conditions are equivalent to fixed point results for classical contractive mappings. It can be noted in the Proof of
Theorem 2.5 of [36] that to get cyclical-type theorems from classical results, completeness of metric space and closedness
of subsets Ai for all i are necessary otherwise

(
∩

m
i=1Ai, d

)
is not a complete metric space. Therefore, Theorem 2.4 cannot

be obtained by using the approach of Radenović.

Lemma 2.5. Let A and B be non-empty subsets of a metric space (X, d) such that dist(A, B) = 0. If T : A ∪ B → A ∪ B is a
mapping such that T (A) ⊆ B, T (B) ⊆ A and for x0 ∈ A satisfy (2.8), then there exists a Cauchy sequence {T 2nx0} in A.

Proof. Let x0 ∈ A satisfy (2.8). Without loss of generality, assume that for n ∈ N, T nx0 ̸= T n−1x0. Given that dist(A, B) = 0,
so for all n ∈ N, from Lemma 2.3 we get

lim
n→∞

d(T nx0, T n+1x0) = 0. (2.9)

We claim that for ϵ > 0 there exists N ∈ N such that

d(T 2nx0, T 2m+1x0) < ϵ,

n,m ≥ N . If not, then there exists two sequences {2nk}, {2mk + 1} ⊆ N such that

d(T 2nkx0, T 2mk+1x0) ≥ ϵ, (2.10)

for all k ∈ N. We assume that 2mk + 1 is a minimal index for which (2.10) holds. Then for all k ∈ N

d(T 2nkx0, T 2mk−1x0) < ϵ. (2.11)

From (2.10) and (2.11), we have

ϵ ≤ d(T 2nkx0, T 2mk+1x0)

≤ d(T 2nkx0, T 2mk−1x0) + d(T 2mk−1x0, T 2mkx0) + d(T 2mkx0, T 2mk+1x0)

< ϵ + d(T 2mk−1x0, T 2mkx0) + d(T 2mkx0, T 2mk+1x0).

(2.12)

Letting k → ∞ in (2.12) and using (2.9), we get

lim
k→∞

d(T 2nkx0, T 2mk+1x0) = ϵ. (2.13)

Now by triangular inequality we have

d(T 2nkx0, T 2mk+1x0) ≤d(T 2nkx0, T 2nk−1x0) + d(T 2nk−1x0, T 2mkx0)

+ d(T 2mkx0, T 2mk+1x0)
(2.14)

and

d(T 2nk−1x0, T 2mkx0) ≤d(T 2nk−1x0, T 2nkx0) + d(T 2nkx0, T 2mk+1x0)

+ d(T 2mk+1x0, T 2mkx0).
(2.15)

Letting k → ∞ in (2.14) and (2.15) and using (2.9) and (2.13), we get

lim
k→∞

d(T 2nk−1x0, T 2mkx0) = ϵ. (2.16)

Since ζ ∈ Z, from Lemma 2.1, (2.13) and (2.16) give

0 ≤ lim
n→∞

ζ (d(T 2nkx0, T 2mk+1x0), d(T 2nk−1x0, T 2mkx0)) ≤ 0. (2.17)

(2.17) together with (ζ4) implies

lim
n→∞

d(T 2nkx0, T 2mk+1x0) < lim
n→∞

d(T 2nk−1x0, T 2mkx0),

which leads to the contradiction. Hence {T 2nx0} is a Cauchy sequence in A. □
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Theorem 2.5. Let A and B be non-empty closed subsets of a complete metric space (X, d) such that dist(A, B) = 0. If
T : A ∪ B → A ∪ B is a mapping such that T (A) ⊆ B, T (B) ⊆ A and for x0 ∈ A satisfy (2.8), then T has a unique fixed
point in A ∩ B.

Proof. Let x0 ∈ A satisfy (2.8), then from Lemma 2.5, there exist a Cauchy sequence {T 2nx0} in A and by completeness of
X and closeness of A, there exists x∗

∈ A such that T 2nx0 → x∗ as n → ∞. Now,

0 ≤ d(T 2n−1x0, x∗) ≤ d(T 2n−1x0, T 2nx0) + d(T 2nx0, x∗),

which implies

lim
n→∞

d(T 2n−1x0, x∗) = 0.

Since {T 2n−1x0} is a sequence in B, which converges to x∗ and B is closed. Hence {T 2nx0} and {T 2n+1x0} have convergent
subsequences in A and B respectively. From Theorem 2.4, T has a unique fixed point in A ∩ B. □

Take A = B = X in Theorem 2.5 to get

Corollary 2.1. Let (X, d) be a complete metric space and T : X → X. If there exists ζ ∈ Z such that T satisfies

ζ (d(Tx, Ty), d(x, y)) ≥ 0

for all x, y ∈ X. Then T has a unique fixed point in X.

2.3. Consequences

In this section, we deduce some new and existing best proximity points results and fixed point results in the literature
from Sections 2.1 and 2.2.

Corollary 2.2. Let A and B be non-empty closed subsets of a complete metric space (X, d) and T : A∪B → A∪B be a mapping
such that T (A) ⊆ B and T (B) ⊆ A. If for some x0 ∈ A there exists kx0 ∈ (0, 1) such that

d(T 2nx0, Ty) ≤ kx0d(T
2n−1x0, y) + (1 − kx0 )dist(A, B), n ∈ N, y ∈ A. (2.18)

Then there exists (x, y) ∈ A × B such that d(x, Tx) = dist(A, B) and d(y, Ty) = dist(A, B) with d(x, y) = dist(A, B).

Proof. Let x0 ∈ A satisfies (2.18). Then from Remark 2.2(2), there exists ζ ∈ Z such that T is cyclic orbital simulative
contraction. Since for any n ∈ N, either n or n + 1 is even, from (2.18) we have

d(T nx0, T n+1x0) ≤ knx0d(x0, Tx0) + (1 − knx0 )dist(A, B),

which implies
∞∑
n=1

d(T nx0, T n+1x0) ≤ d(x0, Tx0)
∞∑
n=1

kx0 + dist(A, B)
∞∑
n=1

(1 − kx0 ) < ∞.

Thus, T nx0 is a Cauchy sequence and converges to a point in A∪B. Consequently, T 2nx and T 2n−1x are convergent sequences
in A and B respectively. Hence, the result follows from Theorem 2.1. □

Remark 2.4. By considering dist(A, B) = 0 in Corollary 2.2, we obtain Theorem 2.2 of [34] and in the light of Remark 2.2(1),
Theorem 2.2 reduces to Theorem 3.4 of [16].

Corollary 2.3. Let A and B be non-empty subsets of a metric space (X, d) and T : A ∪ B → A ∪ B be a mapping such that
T (A) ⊆ B and T (B) ⊆ A. If for some x0 ∈ A there exists a strictly increasing function ϕ : [0,∞) → [0,∞) such that

d(T 2nx0, Ty) ≤ d(T 2n−1x0, y) − ϕ(d∗(T 2n−1x0, y)), n ∈ N, y ∈ A. (2.19)

Then there exists (x, y) ∈ A× B such that d(x, Tx) = dist(A, B) and d(y, Ty) = dist(A, B) with d(x, y) = dist(A, B) provided that
{T 2nx0} and {T 2n+1x0} have convergent subsequences in A and B respectively.

Proof. Define ζ : [0,∞) × [0,∞) → R by

ζ (t, s) =

{
s − ϕ(s) − t if t ≤ s,
2(s − t) if t > s,

then ζ ∈ Z. Let x0 ∈ A satisfies (2.19), then for all n ∈ N and y ∈ A we have

d(T 2nx0, Ty) ≤ d(T 2n−1x0, y).
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This implies

ζ (d∗(T 2nx0, Ty), d∗(T 2n−1x0, y)) = d∗(T 2n−1x0, y) − ϕ(d∗(T 2n−1x0, y)) − d∗(T 2nx0, Ty)

= d(T 2n−1x0, y) − ϕ(d∗(T 2n−1x0, y)) − d(T 2nx0, Ty)
≥ 0.

Hence T is cyclic orbital simulative contraction. Therefore, the result follows from Theorem 2.1. □

In next example we show that there exists some functions which satisfy (2.19) but not a cyclic ϕ-contraction [20]

Example 2.4. Let (X, d), A, B and T : A ∪ B → A ∪ B be same as given in Example 2.3. Define ϕ : [0,∞) → [0,∞) by
ϕ(t) =

t2
1+t , then ϕ is a strictly increasing function. Now for 0 ∈ A, {T 2n0} and {T 2n+10} have convergent subsequences in

A and B respectively. Also, for all n ∈ N

d(T 2n−10, 0) − ϕ(d∗(T 2n−10, 0)) = d(3, 0) − ϕ(d(3, 0) − 1)
= 1 − ϕ(0) = 1
= d(0, 3)

= d(T 2n0, T0)

and

d(T 2n−10, 1) − ϕ(d∗(T 2n−10, 1)) = d(3, 1) − ϕ(d(3, 1) − 1)
= 1 − ϕ(0) = 1
= d(0, 2)

= d(T 2n0, T1).

This shows that for all y ∈ A, there exists 0 ∈ A which satisfy (2.19). All conditions of Corollary 2.3 hold true and T has a
best proximity point.

But for x = 0, y = 2, we have

d(Tx, Ty)
d(x, y) − ϕ(d(x, y)) + ϕ(dist(A, B))

= 1.

Thus, there exists no ϕ such that T is cyclic ϕ-contraction. Therefore Theorem 4 of [20] cannot be applied for this example.

A function φ : [0,∞) → [0, 1) is said to be MT -function if lim supa→b+ φ(a) < 1 for all b ∈ [0,∞) [37]. It is obvious
that if φ : [0,∞) → [0, 1) is a nondecreasing function or a nonincreasing function, then φ is an MT -function.

Corollary 2.4. Let A and B be non-empty subsets of a metric space (X, d) and T : A ∪ B → A ∪ B be a mapping such that
T (A) ⊆ B and T (B) ⊆ A. If for some x0 ∈ A there exists a MT-function φ : [0,∞) → [0, 1) such that

d(T 2nx0, Ty) ≤ d(T 2n−1x0, y)φ(d(T 2n−1x0, y))

+ (1 − φ(d(T 2n−1x0, y)))dist(A, B), n ∈ N, y ∈ A.
(2.20)

Then there exists (x, y) ∈ A × B such that d(x, Tx) = dist(A, B) and d(y, Ty) = dist(A, B) with d(x, y) = dist(A, B) provided
that {T 2nx0} and {T 2n+1x0} have convergent subsequences in A and B respectively.

Proof. Define ζ : [0,∞) × [0,∞) → R by

ζ (t, s) =

{
sφ(s + c) − t if t ≤ s
q(s − t) if t > s,

for any c ≥ 0, q > 1 and a MT -function φ, then ζ ∈ Z. Choose c = dist(A,B) and let x0 ∈ A satisfies (2.20), then for all
n ∈ N and y ∈ A we have

d(T 2nx0, Ty) ≤ d(T 2n−1x0, y).

This gives

ζ (d∗(T 2nx0, Ty), d∗(T 2n−1x0, y))

= d∗(T 2n−1x0, y)φ(d∗(T 2n−1x0, y) + dist(A, B)) − d∗(T 2nx0, Ty)

= d(T 2n−1x0, y)φ(d(T 2n−1x0, y)) + (1 − φ(d(T 2n−1x0, y)))dist(A, B) − d(T 2nx0, Ty)
≥ 0.

Hence T is cyclic orbital simulative contraction. Therefore, the result follows from Theorem 2.1. □
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Remark 2.5. Corollary 2.4 generalizes Theorem 2.4 of [21] because every MT -cyclic contraction satisfies (2.20), but
converse need not to be true in general, as shown in the example below.

Example 2.5. Let X = R with usual metric d, A = [−2,−1] and B = [2, 3], then (X, d) is metric space and dist(A, B) = 3.
Define T : A ∪ B → A ∪ B and φ : [0,∞) → [0, 1) by

Tx =

{2 if x ∈ [−2,−1]
−1 if x ∈ [2, 3)
−2 if x = 3

and

φ(a) =
2
3

for all a ∈ [0,∞).

So, φ is a MT -function and for n ∈ N, if x ∈ [−2,−1], then T 2nx = −1 and T 2n−1x = 2 and if x ∈ [2, 3], then T 2nx = 2 and
T 2n−1x = −1. Now for −2 ∈ A, {T 2n(−2)} and {T 2n+1(−2)} have convergent subsequences in A and B respectively. Also,
for all n ∈ N and y ∈ [−2,−1], we have

d(T 2n−1(−2), y)φ(d(T 2n−1(−2), y)) + (1 − φ(d(T 2n−1(−2), y)))dist(A, B)
= d(2, y)φ(d(2, y)) + 3(1 − φ(d(2, y)))

=
2
3
|y − 2| + 1

≥ 3 = d(−1, 2)

= d(T 2n(−2), Ty).

Hence T satisfies (2.20). Thus, all conditions of Corollary 2.4 are satisfied. Note that −1 ∈ A and 2 ∈ B such that

d(−1, T (−1)) = 3 = dist(A, B)
d(2, T (2)) = 3 = dist(A, B)

with

d(−1, 2) = 3 = dist(A, B).

On the other side, for x = −1 and y = 3, we get

d(x, y)φ(d(x, y)) + (1 − φ(d(x, y)))dist(A, B) = 4φ(d(x, y)) + 3 − 3φ(d(x, y))
= φ(d(x, y)) + 3
< 4 = d(Tx, Ty).

Thus, T is not MT -cyclic contraction and Theorem 2.4 of [21] cannot be applied.

Recall that a function ψ : [0,∞) → [0,∞) is said to be comparison function [38] if it satisfied the following:

(ψ1) ψ is monotone increasing;
(ψ2) {ψn(t)} converges to 0 as n → ∞ for all t ≥ 0.

Corollary 2.5. Let A and B be non-empty subsets of metric space (X, d) and T : A ∪ B → A ∪ B be a mapping such that
T (A) ⊆ B and T (B) ⊆ A. If for some x0 ∈ A there exists a comparison-function ψ : [0,∞) → [0,∞) such that

d(T 2nx0, Ty) ≤ ψ(d∗(T 2n−1x0, y)) − dist(A, B), n ∈ N, y ∈ A. (2.21)

Then there exists (x, y) ∈ A × B such that d(x, Tx) = dist(A, B) and d(y, Ty) = dist(A, B) with d(x, y) = dist(A, B) provided
that {T 2nx0} and {T 2n+1x0} have convergent subsequences in A and B respectively.

Proof. Define ζ : [0,∞) × [0,∞) → R by

ζ (t, s) =

{
ψ(s) − t if t ≤ s
q(s − t) if t > s,

where ψ is comparison function and q > 1. Then ζ ∈ Z. Let x0 ∈ A satisfies (2.21), then for all n ∈ N and y ∈ A we have

d(T 2nx0, Ty) ≤ ψ(d∗(T 2n−1x0, y)).

This implies

ζ (d∗(T 2nx0, Ty), d∗(T 2n−1x0, y)) = ψ(d∗(T 2n−1x0, y) − d∗(T 2nx0, Ty)) ≥ 0.

Hence T is cyclic orbital simulative contraction. Therefore, the result follows from Theorem 2.1. □



12 I. Iqbal, N. Hussain and M.A. Kutbi / Journal of Computational and Applied Mathematics 375 (2020) 112804

Considering dist(A, B) = 0 in Corollary 2.5, we obtain the following:

Corollary 2.6. Let A and B be non-empty subsets of metric space (X, d) with dist(A, B) = 0 and T : A ∪ B → A ∪ B be a
mapping such that T (A) ⊆ B and T (B) ⊆ A. If for some x0 ∈ A there exists a comparison-function ψ : [0,∞) → [0,∞) such
that

d(T 2nx0, Ty) ≤ ψ(d(T 2n−1x0, y)), n ∈ N, y ∈ A. (2.22)

Then T has a unique fixed point in A ∩ B provided that {T 2nx0} and {T 2n+1x0} have convergent subsequences in A and B
respectively.

Further, From Corollary 2.6, we get following two results:

Corollary 2.7. Let A and B be non-empty subsets of metric space (X, d) with dist(A, B) = 0 and T : A ∪ B → A ∪ B be a
mapping such that T (A) ⊆ B, T (B) ⊆ A and for some x0 ∈ A satisfying (2.22). If A and B are boundedly compact, then T has a
unique fixed point in A ∩ B.

Corollary 2.8. Let A and B be non-empty closed subsets of a complete metric space (X, d). If T : A∪ B → A∪ B is a mapping
such that T (A) ⊆ B, T (B) ⊆ A and for some x0 ∈ A satisfying (2.22), then T has a unique fixed point in A ∩ B.

Remark 2.6. Corollary 2.8 generalizes Theorem 2.1 of [35] for m = 2. Indeed, let f be a cyclic ψ-contraction(Definition
1.3 of [35]), then f (A) ⊆ B, f (B) ⊆ A. From Lemma 2.2 of [38], every c-comparison function is a comparison function, so
there exists a comparison function ψ such that f satisfies (2.22) and hence the result. Also, from Theorem 2.5 of [36],
Theorem 1.8 of [36] is equivalent to Theorem 2.1 of [35]. Thus, Corollary 2.8 also generalizes Theorem 1.8 of [36].

Note that Corollary 2.8 is the proof of the open problem given in [36] for m = 2.

3. Best proximity point results for non-self mappings

In this section, we prove some best proximity results for non-self mappings with the help of Lemma 2.1 and show
that many existing results in the literature can be proved by taking ζ ∈ Z instead of ζ ∈ ∆(Z). Let (X, d) be a metric
space, A and B be nonempty subsets of X , T : A → B and g be a self mapping on A. We say that g ∈ GA if g is continuous
and d(x, y) ≤ d(gx, gy) for all x, y ∈ A and T ∈ Tg if d(Tx, Ty) ≤ d(Tgx, Tgy) for all x, y ∈ A. In the sequel, we will use the
following notations.

A0 = {x ∈ A : d(x, y) = dist(A, B), for some y ∈ B},
B0 = {y ∈ B : d(x, y) = dist(A, B), for some x ∈ A},

d(x,B) = inf{d(x, y) : y ∈ B}.

Lemma 3.1. Let A and B be nonempty subsets of a metric space (X, d) and T : A → B be a continuous mapping. Suppose that
A0 and B0 are nonempty with T (A0) ⊆ B0. If every sequence {xn} in A0 has a convergent subsequence in A0, then there exists a
unique element x ∈ A such that d(x, Tx) = dist(A, B).

Proof. Let x0 ∈ A0, then we can choose some x1 ∈ A0 such that d(x1, Tx0) = dist(A, B), because T (A0) ⊆ B0. Since Tx1 ∈ B0,
there exists some x2 ∈ A0 such that d(x2, Tx1) = dist(A, B). Continuing in this manner, we can obtain two sequences {xn}
in A0 and {Txn} in B0 such that d(xn, Txn−1) = dist(A, B) and d(xn+1, Txn) = dist(A, B) for all n ∈ N. By hypothesis there
exists a subsequence {xnk} of {xn} such that

lim
k→∞

xnk = x

for some x ∈ A0. Now

dist(A, B) ≤ d(x, Txnk )
≤ d(x, xnk+1) + d(xnk+1, Txnk )
= d(x, xnk+1) + dist(A, B).

(3.1)

Letting k → ∞ in (3.1), we get

lim
k→∞

d(x, Txnk ) = dist(A, B).

Continuity of T gives d(x, Tx) = dist(A, B). □

Lemma 3.2. Let A and B be nonempty subsets of a complete metric space (X, d) and T : A → B be a mapping. Suppose that
A0 and B0 are nonempty with T (A0) ⊆ B0 and there exists ζ ∈ Z such that for all u1, u2, x1, x2 ∈ A, T satisfy

d(u1, Tx1) = d(u2, Tx2) = dist(A, B) implies ζ (d(Tu1, Tu2), d(Tx1, Tx2)) ≥ 0. (3.2)
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If B0 is closed then every sequence {xn} in A0, we have

lim
n→∞

d(y, xn) = d(y, A)

for some y ∈ B0.

Proof. Let x0 ∈ A0, then by following the same as in the proof of Lemma 3.1, we obtain a sequence {xn} in A0 and {Txn}
in B0 satisfying for all n ∈ N

d(xn, Txn−1) = dist(A, B) and d(xn+1, Txn) = dist(A, B). (3.3)

Assume that Txn−1 ̸= Txn for all n ∈ N, then from (3.2), we get

0 ≤ ζ (d(Txn, Txn+1), d(Txn−1, Txn))
< d(Txn−1, Txn) − d(Txn, Txn+1)

and hence for all n ∈ N

d(Txn, Txn+1) < d(Txn−1, Txn). (3.4)

It follows from (3.4) that {d(Txn, Txn+1)} is a monotonically decreasing sequence of nonnegative real numbers and bounded
below. So, there exists r ≥ 0 such that d(Txn, Txn+1) → r as n → ∞. We claim that r = 0. Otherwise, we have

lim
n→∞

d(Txn, Txn+1) = lim
n→∞

d(Txn−1, Txn) = r > 0 (3.5)

and from (3.4) we have

0 < d(Txn, Txn+1) < d(Txn−1, Txn).

Therefor, by using Lemma 2.1 with (3.2), we obtain

0 ≤ lim
n→∞

ζ (d(Txn, Txn+1), d(Txn−1, Txn)) ≤ 0.

This implies

lim
n→∞

ζ (d(Txn, Txn+1), d(Txn−1, Txn)) = 0.

From (ζ4), we get

lim
n→∞

d(Txn, Txn+1) < lim
n→∞

d(Txn−1, Txn),

which leads to the contradiction to (3.5). Hence

lim
n→∞

d(Txn, Txn+1) = 0. (3.6)

To prove {Txn} is a Cauchy sequence, it is enough to prove that {Tx2n} is a Cauchy sequence in X . Suppose on contrary,
then there exists ϵ > 0 and two subsequences {Tx2mk} and {Tx2nk} of {Tx2n} with nk > mk ≥ k such that

d(Tx2mk , Tx2nk ) ≥ ϵ. (3.7)

Without any loss of generality, we assume that for all k ∈ N, nk is the smallest positive integer greater than mk for which
(3.7) holds, then for all k ∈ N

d(Tx2mk , Tx2nk−2) < ϵ. (3.8)

From (3.7) and (3.8), we get

ϵ ≤ d(Tx2mk , Tx2nk )
≤ d(Tx2mk , Tx2nk−2) + d(Tx2nk−2, Tx2nk−1) + d(Tx2nk−1, Tx2nk )
< ϵ + d(Tx2nk−2, Tx2nk−1) + d(Tx2nk−1, Tx2nk ).

(3.9)

Letting k ∈ ∞ in (3.9) and using (3.6), we obtain

lim
k→∞

d(Tx2mk , Tx2nk ) = ϵ. (3.10)

Similarly,

ϵ ≤ d(Tx2mk , Tx2nk )
≤ d(Tx2mk , Tx2mk+1) + d(Tx2mk+1, Tx2nk+1) + d(Tx2nk+1, Tx2nk ),

(3.11)

and

d(Tx2mk+1, Tx2nk+1) ≤ d(Tx2mk+1, Tx2mk ) + d(Tx2mk , Tx2nk ) + d(Tx2nk , Tx2nk+1). (3.12)
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Letting k → ∞ in (3.11) and (3.12), using (3.6) and (3.10), we get

lim
k→∞

d(Tx2mk+1, Tx2nk+1) = ϵ. (3.13)

Also, from (3.6) we have

0 < d(Tx2mk+1, Tx2nk+1) < d(Tx2mk , Tx2nk ). (3.14)

By using Lemma 2.1, it follows from (3.3), (3.10), (3.13) and (3.14) that

0 ≤ lim
k→∞

ζ (d(Tx2mk+1, x2nk+1), d(Tx2mk , x2nk )) ≤ 0.

This implies

lim
k→∞

ζ (d(Tx2mk+1, x2nk+1), d(Tx2mk , x2nk )) = 0,

which further together with (ζ4) gives

lim
k→∞

d(Tx2mk+1, x2nk+1) < lim
k→∞

d(Tx2mk , x2nk ),

a contradiction. Thus, {Txn} is a Cauchy sequence in X . Since B0 is closed subset of a complete metric space X , there exists
y ∈ B0 such that

lim
n→∞

Txn = y. (3.15)

From (3.3), for all n ∈ N, we have

d(y, A) ≤ d(y, xn+1) ≤ d(y, Txn) + d(Txn, xn+1)
= d(y, Txn) + dist(A, B)
≤ d(y, Txn) + d(y, A).

(3.16)

Letting n → ∞ in (3.16) and using (3.15), we obtain

lim
n→∞

d(y, xn+1) = d(y, A). □

Recall that a set B is said to be approximatively compact with respect to A if every sequence {yn} in B, satisfying for
some x ∈ A, d(x, yn) → d(x, B) as n → ∞ has a convergent subsequence [14]. So, from Lemmas 3.1 and 3.2, we get the
following:

Theorem 3.1. Let A and B be nonempty subsets of a complete metric space (X, d) and T : A → B be a continuous mapping.
Suppose that A0 and B0 are nonempty with T (A0) ⊆ B0 and there exists ζ ∈ Z such that T satisfy (3.2). If A is approximatively
compact with respect to B and B0 is closed, then there exists x ∈ A such that d(x, Tx) = dist(A, B).

Theorem 3.2. Let A and B be nonempty closed subsets of a complete metric space (X, d) and T : A → B be a continuous
mapping. Suppose that A0 and B0 are nonempty with T (A0) ⊆ B0 and there exists ζ ∈ Z such that for all u1, u2, x1, x2 ∈ A, T
satisfy

d(u1, Tx1) = d(u2, Tx2) = dist(A, B) implies ζ (d(u1, u2), d(x1, x2)) ≥ 0. (3.17)

Then there exists a unique element x ∈ A such that d(x, Tx) = dist(A, B). Moreover, for any fixed element x0 ∈ A0, the sequence
{xn} satisfying d(xn, Txn) = dist(A, B) for all n ∈ N ∪ {0} converges to the best proximity point x of T .

Proof. Let x0 ∈ A0, then by following the same as in proof of Lemma 3.1, we obtain a sequence {xn} in A0 such that
d(xn, Txn−1) = dist(A, B) and d(xn+1, Txn) = dist(A, B) for all n ∈ N. Assume that d(xn−1, xn) > 0. In other case, xn is the
best proximity point of T . From (3.17), for ζ ∈ Z, we get

0 ≤ ζ (d(xn, xn+1), d(xn−1, xn)) < d(xn−1, xn) − d(xn, xn+1)

and hence for all n ∈ N

d(xn, xn+1) < d(xn−1, xn). (3.18)

It follows from (3.18) that {d(xn, xn+1)} is a monotonically decreasing sequence of nonnegative real numbers and bounded
below. So, there exists r ≥ 0 such that d(xn, xn+1) → r as n → ∞. By using the same arguments as in Lemma 3.2, we get
r = 0

lim
n→∞

d(xn, xn+1) = 0,

and {xn} is a Cauchy sequence. Rest of the proof follows from the proof of Theorem 1 of [22]. □
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Theorem 3.3. Let A and B be two nonempty subsets of a complete metric space (X, d), T : A → B and g ∈ GA. Suppose that
A0 and B0 are nonempty with T (A0) ⊆ B0, A0 ⊆ g(A0) and there exists ζ ∈ Z such that T satisfy (3.17). If A0 is closed, then
there exists a unique element x ∈ A such that d(gx, Tx) = dist(A, B). Moreover, for any fixed element x0 ∈ A0, the sequence
{xn} satisfying d(gxn, Txn) = dist(A, B) for all n ∈ N ∪ {0} converges to the best proximity point x of T .

Proof. Let x0 ∈ A0. Since T (A0) ⊆ B0 and A0 ⊆ g(A0), there exists some x1 ∈ A0 such that d(gx1, Tx0) = dist(A, B) and
for x1 ∈ A0 there exists x2 ∈ A0 such that d(gx2, Tx1) = dist(A, B). Continuing in this manner, for xn ∈ A0, we obtain a
sequence {xn+1} in A0 such that d(gxn+1, Txn) = dist(A, B) for all n ∈ N. Assume that d(gxn+1, gxn) > 0, if d(gxn+1, gxn) = 0,
then d(gxm, Txm) = dist(A, B). Since g ∈ GA, so from (3.17), we have

0 ≤ ζ (d(gxn+1, gxn), d(xn, xn−1))
< d(xn, xn−1) − d(gxn+1, gxn)
≤ d(xn, xn−1) − d(xn+1, xn).

(3.19)

It follows from (3.19) that {d(xn, xn+1)} is a monotonically decreasing sequence of nonnegative real numbers and bounded
below. So, there exists r ≥ 0 such that d(xn, xn+1) → r as n → ∞. By using the same arguments as in Lemma 3.2, we get
r = 0 such that

lim
n→∞

d(xn, xn+1) = 0

and {xn} is a Cauchy sequence in X . Rest of the proof follows from the proof of Theorem 3.1 of [25]. □

Theorem 3.4. Let A and B be two nonempty subsets of a complete metric space (X, d), T ∈ Tg and g ∈ GA. Suppose that A0
and B0 are nonempty with T (A0) ⊆ B0, A0 ⊆ g(A0) and there exists ζ ∈ Z such that T satisfy (3.2). If T (A0) is closed and T
is injective on A, then there exists a unique element x ∈ A such that d(gx, Tx) = dist(A, B). Moreover, for any fixed element
x0 ∈ A0, the sequence {xn} satisfying d(gxn, Txn) = dist(A, B) for all n ∈ N ∪ {0} converges to the best proximity point x of T .

Proof. Let x0 ∈ A0. By following the similar reason as in the proof of Lemma 3.1, for xn ∈ A0, we obtain a sequence
{xn+1} in A0 such that d(gxn+1, Txn) = dist(A, B) for all n ∈ N. Assume that d(gxn+1, gxn) > 0, if d(gxn+1, gxn) = 0, then
d(gxm, Txm) = dist(A, B). Since g ∈ GA, T ∈ Tg and T is injective, so from (3.2), we have

0 ≤ ζ (d(Tgxn+1, Tgxn), d(Txn, Txn−1))
< d(Txn, Txn−1) − d(Tgxn+1, Tgxn)
≤ d(Txn, Txn−1) − d(Txn+1, Txn).

(3.20)

It follows from (3.20) that {d(Txn, Txn+1)} is a monotonically decreasing sequence of nonnegative real numbers and
bounded below. So, there exists r ≥ 0 such that d(xn, xn+1) → r as n → ∞. By using the same arguments as in Lemma 3.2,
we get r = 0 such that

lim
n→∞

d(Txn, Txn+1) = 0

and {xn} is a Cauchy sequence in X . Rest of the proof follows from the proof of Theorem 3.2 of [25]. □

Remark 3.1. Note that in Theorem 3.1 both A and B need not to be closed. Therefore, Theorems 3.1 and 3.2 are the
refinement of Theorem 2 and Theorem 1 of [22] respectively while Theorems 3.3 and 3.4 refine Theorems 3.1 and 3.2
of [25] respectively.

Now, we endow the set X with a partial order ⪯. For a given ζ ∈ Z, denote Tζ by the set of mappings T : A → B
satisfying the following conditions for every u1, u2, x1, x2 ∈ A:

(C1) x1 ⪯ x2, d(u1, Tx1) = d(u2, Tx2) = dist(A, B) implies u1 ⪯ u2;
(C2) x1 ⪯ x2, x1 ̸= x2, d(u1, Tx1) = d(u2, Tx2) = dist(A, B) implies ζ (d(u1, u2),M(x1, x2)) ≥ 0, where

M(x1, x2) = max
{
d(x1, u1)d(x2, u2)

d(x1, x2)
, d(x1, x2)

}
.

Theorem 3.5. Let A and B be two nonempty subsets of a complete partially ordered metric space (X, d,⪯) and T ∈ Tζ for
some ζ ∈ Z. Suppose that A0 and B0 are nonempty with T (A0) ⊆ B0, A0 ⊆ g(A0) and there exists x0, x1 ∈ A0 such that
d(x1, Tx0) = dist(A, B). If A0 is closed and T is continuous, then there exists some x ∈ A such that d(x, Tx) = dist(A, B). In
addition, if for every (x, y) ∈ A0 ×A0 there exists some w ∈ A0 such that x ⪯ w and y ⪯ w, then T has a unique best proximity
point.

Proof. From hypothesis, there exists x0, x1 ∈ A0 such that x0 ⪯ x1 with d(x1, Tx0) = dist(A, B), so, Tx1 ∈ B0, which yields
d(x2, Tx1) = dist(A, B) for some x2 ∈ A0. Since x0 ⪯ x1, condition (C1) gives that x1 ⪯ x2. Continuing is the same manner,
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we obtain a sequence {xn} in A0 such that

d(xn+1, Txn) = dist(A, B) (3.21)

with x0 ⪯ x1 ⪯ x2 ⪯ · · · ⪯ xn ⪯ xn+1 ⪯ · · ·. Assume that d(xn, xn+1) > 0, in other case, xn is a best proximity point of T .
Since xn ⪯ xn+1, from condition (C2) and (3.21), we get

0 ≤ ζ (d(xn, xn+1),M(xn−1, xn)), (3.22)

where

M(xn−1, xn) = max {d(xn, xn+1), d(xn−1, xn)} .

If max {d(xn, xn+1), d(xn−1, xn)} = d(xn, xn+1), then

0 ≤ ζ (d(xn, xn+1), d(xn, xn+1)) < 0,

a contradiction. Hence max {d(xn, xn+1), d(xn−1, xn)} = d(xn−1, xn), therefore, (3.22) implies

0 ≤ ζ (d(xn, xn+1), d(xn−1, xn)) < d(xn−1, xn) − d(xn, xn+1). (3.23)

It follows from (3.23) that {d(xn, xn+1)} is a monotonically decreasing sequence of nonnegative real numbers and bounded
below. So, there exists r ≥ 0 such that d(xn, xn+1) → r as n → ∞. By using the same arguments as in Lemma 3.2, we get
r = 0 and {xn} is a Cauchy sequence in X . Rest of the proof follows from the proof of Theorem 2.1 of [24] and uniqueness
follows from Theorem 2.4 of [24]. □

A set A is (d,⪯)-regular if {an} ⊂ A is non-decreasing w.r.t ⪯ and d(an, b) → 0 as n → ∞ implies b = sup{an} [24].

Theorem 3.6. Let A and B be two nonempty subsets of a complete partially ordered metric space (X, d,⪯) and T ∈ Tζ for
some ζ ∈ Z. Suppose that A0 and B0 are nonempty with T (A0) ⊆ B0, A0 ⊆ g(A0) and there exists x0, x1 ∈ A0 such that
d(x1, Tx0) = dist(A, B). If A0 is closed and A is (d,⪯)-regular, then there exists some x ∈ A such that d(x, Tx) = dist(A, B). In
addition, if for every (x, y) ∈ A0 ×A0 there exists some w ∈ A0 such that x ⪯ w and y ⪯ w, then T has a unique best proximity
point.

Proof. By following the same approach as in Theorem 3.5, we obtain a Cauchy sequence {xn} in X and remaining proof
follows from the proof of Theorem 2.2 of [24]. □

Remark 3.2. Since there exists functions ζ : [0,∞) × [0,∞) → R such that ζ ∈ Z but ζ /∈ ∆(Z) (see Example 2.1).
Therefore, Theorems 3.5 and 3.6 refine Theorems 2.1 and 2.2 of [24] respectively.

4. Solution to variational inequality problem, optimization problem and elliptic boundary value problem

Let H be a real Hilbert space with inner product ⟨., .⟩ and induced norm ∥.∥ and K be a non-empty subset of H . An
element y0 ∈ K is known as best approximation if ∥x − y0∥ = D(x, K ), where D(x, K ) = infy∈K ∥x − y∥ and the metric
projection is a mapping PK : H → K such that for all x ∈ H , PK (x) = {y ∈ K : ∥x−y∥ = D(x, K )} [39]. This metric projection
plays an important role for solving the variational inequality problem. A variational inequality problem VI(S, K ) can be
stated as follows:

Problem 4.1. Find u ∈ K such that ⟨Su, v−u⟩ ≥ 0 for all v ∈ K , where S : H → H is given operator and K is non-empty,
closed and convex subset of Hilbert space H .

It is known that, for each u ∈ H , there exists a unique nearest point PK (u) ∈ K such that ∥u− PK (u)∥ ≤ ∥u− v∥ for all
v ∈ K [39].

Lemma 4.1 ([39]). Let K be convex subset of Hilbert space H, z ∈ H and u ∈ K. Then u = PK (z) if and only if ⟨z−u, v−u⟩ ≤ 0
for all v ∈ K.

Lemma 4.2. Let K be convex subset of Hilbert space H and S : K → K . Then u ∈ K is a solution of ⟨Su, v − u⟩ ≥ 0 for all
v ∈ K if and only if u = PK (u − λSu), λ > 0.

Proof. Take z = u − λSu. Then by Lemma 4.1, we get

u = PK (z) = PK (u − λSu) ⇔ ⟨−λSu, v − u⟩ ≤ 0
⇔ −λ⟨Su, v − u⟩ ≤ 0
⇔ ⟨Su, v − u⟩ ≥ 0. □
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Now we give some results for the solution of Problem 4.1.

Theorem 4.1. Let K be a non-empty, closed and convex subset of a real Hilbert space. Assume that for x0 ∈ K there exists
ζ ∈ Z is such that for S : K → K, P∗

K = PK (IK − λS) : K → K satisfies

ζ (∥P∗

K
2nx0 − P∗

Ky∥, ∥P
∗

K
2n−1x0 − y∥) ≥ 0, n ∈ N, y ∈ K ,

where IK is the identity operator on K . Then there exists a unique element u ∈ K such that ⟨Su, v − u⟩ ≥ 0 for all v ∈ K .

Proof. Define T : K → K by Tx = PK (x − λSx) for all x ∈ K , then T satisfies all the hypothesis of Theorem 2.5 by setting
A = B = K and so T has a unique fixed point u. Hence by Lemma 4.2, u ∈ K is solution of ⟨Su, v − u⟩ ≥ 0 for all v ∈ K if
and only if u is a fixed point of T . This completes the proof. □

Corollary 4.1. Let K be a non-empty, closed and convex subset of a real Hilbert space. Assume that for x0 ∈ K there exists a
comparison function ψ : [0,∞) → [0,∞) is such that for S : K → K, P∗

K = PK (IK − λS) : K → K satisfies

∥P∗

K
2nx0 − P∗

Ky∥ ≤ ψ(∥P∗

K
2n−1x0 − y∥), n ∈ N, y ∈ K , (4.1)

where IK is the identity operator on K . Then there exists a unique element u ∈ K such that ⟨Su, v − u⟩ ≥ 0 for all v ∈ K.

Proof. Define ζ : [0,∞) × [0,∞) → R by

ζ (t, s) =

{
ψ(s) − t if t ≤ s
q(s − t) if t > s,

where ψ is comparison function and q > 1. Then ζ ∈ Z. Let x0 ∈ K satisfies (4.1), then for all n ∈ N and y ∈ K , we have

ζ (∥P∗

K
2nx0 − P∗

Ky∥, ∥P
∗

K
2n−1x0 − y∥) = ψ(∥P∗

K
2n−1x0 − y∥) − d∥P∗

K
2nx0 − P∗

Ky∥ ≥ 0.

Hence all conditions of Theorem 4.1 hold and we get the result. □

An optimization problem can be stated as:

Problem 4.2. To find u∗
∈ K that minimizes the function f (u) with subject to u ∈ K , where f : H → R is continuously

differentiable function and K is closed and convex subset of H .

The optimization problems can be formulated as variational inequality problems. The relationship between an
optimization problem and a variational inequality problem is given by the following Lemmas.

Lemma 4.3. Let u∗ be the solution of Problem 4.2. Then u∗ is the solution of variational inequality problem ⟨∇f (u∗), u−u∗
⟩ ≥ 0

for all u ∈ K , where ∇f denoting the gradient of f .

Lemma 4.4. If f is a convex function on K and u∗ is a solution of VI(∇f , K ). Then u∗ is the solution of Problem 4.2.

By using Theorem 4.1, we use another approach to get the solution of following optimization problem posed in [39]:

Problem 4.3. Consider the linear system of m equations in the n unknowns u1, u2, . . . , un

a11u1 + a12u2 + · · · +a1nun = b1
· · ·

am1u1 + am2u2 + · · · +amnun = bm,

or Au = b. Find a vector u∗
= (u1, u2, . . . , un) ∈ Rn that minimizes the expression

m∑
i=1

⎛⎝ n∑
j=1

aijuj − bi

⎞⎠2

.

Solution. Let H = L2(m), where L2(m) is the space of functions u : {1, 2, . . . ,m} → R with an inner product ⟨u, v⟩ =∑n
i=1 u(i)v(i) and ℓ2-norm ∥u∥ =

[∑n
i=1 |u(i)|2

] 1
2 , K = {v ∈ H : v = Au, u ∈ Rn

} and f (u) =
∑m

i=1

(∑n
j=1 aijuj − bi

)2,
where u = (u1, u2, . . . , un). Then K is convex subset of H , f : H → R is continuously differentiable and also ∇

2f (u) ≥ 0
for all u ∈ K , therefore f is convex on K . Hence from Lemma 4.4, Problem 4.3 may be restated as follows: ‘‘Find u∗

∈ K that
satisfies ⟨∇f (u∗), v− u∗

⟩ ≥ 0 for all v ∈ K ’’. So by setting S = ∇f in Theorem 4.1, we get the solution of Problem 4.3. □
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Recall that an operator T : H → H is called a potential operator (or gradient operator) on H [40], if there exists a
Gâteaux differentiable functional φ : H → R such that Gradφ(x) = Tx, for all x ∈ H , that is for all x, h ∈ H

lim
t→0

φ(x + th) − φ(x)
t

= ⟨Tx, h⟩.

Consider the functional,

φ(x) =
1
2
∥x∥2

−

∫ 1

0
T (sx, x)ds

for all x ∈ H .

Proposition 4.1 ([41]). The fixed points of T agree with the global minima of the functional φ.

Theorem 4.2. Let H be a real Hilbert space with ⟨.⟩ the scaler product, C be a non-empty, convex, closed and bounded subset
of H and φ : H → R be a twice Gâteaux differentiable on H. If ∥(I ′ −φ′′)(u)∥ ≤ k, where k ∈ (0, 1) and (I −φ′)(C) ⊂ C. Then,
φ has a global minimum on H. Indeed there exists a u∗

∈ C such that

φ(u∗) = inf
H
φ.

In particular, φ′(u∗) = 0.

Proof. Define T : H → H by T = I −φ′, then T is potential operator. Also, from mean value theorem [42], for all u, v ∈ H
there exists τ ∈ [0, 1] such that

∥Tu − Tv∥ ≤ ∥DT (τu + (1 − τ )v)(u − v)∥
≤ ∥DT (τu + (1 − τ )v)∥∥(u − v)∥
= ∥(I ′ − φ′′)(τu + (1 − τ )v)∥∥(u − v)∥
≤ k∥(u − v)∥.

Hence there exists ζ ∈ Z defined as ζ (t, s) = s − rt , r > 1 such that T satisfies ζ (∥Tu − Tv∥, ∥u − v∥) ≥ 0. Therefore, for
u0 ∈ H , we get ζ (∥T 2nu0 −Tv∥, ∥T 2n−1u0 −v∥) ≥ 0. So, T satisfies all the hypothesis of Theorem 2.5 by setting A = B = K ,
T has a unique fixed point u∗. By Proposition 4.1, fixed point u∗ is a global minimizer of φ on H . □

Now by using Theorem 4.2, we find a weak solution of the following elliptic boundary value problem given in [40]:{
−∆u = f (x, u), x ∈ Ω

u(x) = 0, x ∈ ∂Ω,
(4.2)

where Ω ∈ Rn is a bounded domain in a n-dimensional real space, f , f ′
: Ω × R → R are Carathéodory functions, here

f ′ is the derivative of f with respect to its second variable.
Note that a weak solution of (4.2) is a solution of following variational problem:{∫

Ω
∇u · ∇vdx −

∫
Ω
f (x, u) · vdx, for all v ∈ H1

0 (Ω),
u(x) ∈ H1

0 (Ω). (4.3)

Theorem 4.3. Let Rn be an n-dimensional real space and Ω ⊂ Rn be a nonempty bounded domain. Assume that following
assertions hold:

(1) for each fixed x ∈ Ω , f (x, y) is a nondecreasing function of y for w(x) ≤ y ≤ W (x);
(2) for all x ∈ Ω , s ∈ R, ∥f (x, s)∥ ≤ k2 where k ∈ (0, 1);
(3) |f (x, s)| ≤ c1|s|σ1 + d1, and |f ′(x, s)| ≤ c2|s|σ2 + d2 for some positive constants c1, c2, d1, d2 and 0 ≤ σ1, σ2 <

N+2
N−2 if

N ≥ 3(0 ≤ σ1, σ2 < ∞ if N = 1, 2).

Then there exists u0 ∈ H1
0 (Ω) which is a weak solution of problem (4.2) and u0 ∈ [w,W ].

Proof. Consider the problem (4.3) and define φ : H1
0 → R by

φ(u) =
1
2
∥u∥2

−

∫
Ω

F (x, u)dx with F (x, u) =

∫ u

0
f (x, ξ )dξ .

Then by assumption (3), φ is twice differentiable [40,43,44]. Let C = [v,w] = {u ∈ H1
0 (Ω) : v(x) ≤ u(x) ≤ w(x),∀ x ∈ Ω},

here v,w ∈ H1
0 (Ω) are subsolution and a supersolution of problem (4.3) respectively. Then from the proof of Theorem

6 in [40], C ⊂ H1
0 (Ω) is a closed, convex and bounded, also (I − φ′)(C) ⊂ C . From Cauchy–Schwarz and the Poincaré

inequalities and the assumption (2), by following the same steps as in the proof of Theorem 6 in [40], we obtain

∥(I ′ − φ′′)(u)∥ ≤ k, u ∈ H1
0 (Ω),
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where k ∈ (0, 1). Hence all the assertions of Theorem 4.2 hold and there exists u0 ∈ H1
0 (Ω), which is solution of problem

(4.3) and consequently, weak solution of problem (4.2). □

5. Conclusion

The motivation of the presented work is to get a new approach to the existence of the solution to variational inequality
problem, optimization problem and elliptic boundary value problem via best proximity point results for newly introduced
mappings, cyclic orbital simulative contractions. It is also proved that our obtained results generalize and extend many
existing results in the literature and nontrivial examples are provided to verify it. In addition, we also improve some
proved best proximity results for non-self mappings in the literature with the help of enriched class of simulation
functions. In future, this approach may be used to find solution of best proximity problems by weakening the conditions
in cyclic orbital simulative contractions. These results may be extended to multivalued functions too.
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