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a b s t r a c t

While the trapezoidal formula can attain exponential convergence when applied to
infinite integrals of bilateral rapidly decreasing functions, it is not capable of this in the
case of unilateral rapidly decreasing functions. To address this issue, Stenger proposed
the application of a conformal map to the integrand such that it transforms into bilateral
rapidly decreasing functions. Okayama and Hanada modified the conformal map and
provided a rigorous error bound for the modified formula. This paper proposes a further
improved conformal map, with two rigorous error bounds provided for the improved
formula. Numerical examples comparing the proposed and existing formulas are also
given.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction and summary

In this paper, we are concerned with the trapezoidal formula for the infinite integral, expressed as∫
∞

−∞

f (x)dx ≈ h
∞∑

k=−∞

f (kh),

here h is a mesh size. This approximation formula is fairly accurate if the integrand f (x) is analytic, which has been
nown since several decades ago [1,2]. For example, the approximation∫

∞

−∞

e−x2dx ≈ h
∞∑

k=−∞

e−(kh)2

ives the correct answer in double-precision with h = 1/2, and the approximation∫
∞

−∞

1
4 + x2

dx ≈ h
∞∑

k=−∞

1
4 + (kh)2
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gives the correct answer in double-precision with h = 1/3. In general, however, the infinite sum on the right-hand side
annot be calculated, and thus, the sum has to be truncated at some M and N as∫

∞

−∞

f (x)dx ≈ h
N∑

k=−M

f (kh).

n the case where f (x) = e−x2 , this approximation requires h = 1/2 and M = N = 12 to obtain the correct answer
n double-precision. On the other hand, in the case where f (x) = 1/(4 + x2), this approximation requires h = 1/3 and
M = N = 1016 to obtain the correct answer in double-precision. This is because f (x) = e−x2 is a rapidly decreasing
function, i.e., f decays exponentially as x → ±∞, whereas f (x) = 1/(4 + x2) is not.

In the case where the integrand f (x) is not a rapidly decreasing function, a useful solution is the application of
an appropriate conformal map before applying the (truncated) trapezoidal formula. When f (x) decays algebraically as
x → ±∞ like f (x) = 1/(4 + x2), by applying a conformal map x = sinh t , a new integral is obtained:∫

∞

−∞

f (x)dx =

∫
∞

−∞

f (sinh t) cosh t dt,

where the transformed integrand f (sinh t) cosh t decays exponentially as t → ±∞. Therefore, the (truncated) trapezoidal
formula should yield an accurate result when applied to the new integral. Appropriate conformal maps for certain typical
cases have been usefully summarized by Stenger [3,4].

One of the cases listed in the summary is rather convoluted: the integrand f (x) decays exponentially as x → ∞, but
decays algebraically as x → −∞, like f (x) = 1/{(4 + x2)(1 + ex)}. We refer to such a function as a unilateral rapidly
decreasing function. In such a case, Stenger [4] proposed the employment of a conformal map

x = ψ(t) = sinh(log(arcsinh(et ))),

and applied the trapezoidal formula as∫
∞

−∞

f (x)dx =

∫
∞

−∞

f (ψ(t))ψ ′(t)dt ≈ h
N∑

k=−M

f (ψ(kh))ψ ′(kh). (1)

Furthermore, by appropriately setting h, M , and N depending on a given positive integer n, he theoretically analyzed the
error as O(e−

√
2πdµ′n), where µ′ indicates the decay rate of the transformed integrand, and d indicates the width of the

omain in which the transformed integrand is analytic (described in detail further on). Okayama and Hanada [5] slightly
odified the conformal map as follows:

x = ψ̃(t) = 2 sinh(log(arcsinh(et ))),

nd derived a new approximation formula:∫
∞

−∞

f (x)dx =

∫
∞

−∞

f (ψ̃(t))ψ̃ ′(t)dt ≈ h
N∑

k=−M

f (ψ̃(kh))ψ̃ ′(kh). (2)

urthermore, they theoretically showed that the error of the modified formula, say En, is bounded by

|En| ≤ Ce−
√
2πdµn, (3)

where µ ≥ µ′, and C is explicitly given in a computable form. This inequality not only shows that the modified formula (2)
can attain faster convergence than (1), but it also indicates that the error can be rigorously estimated by the right-hand
side. This is useful for verified numerical integration.

The present work improves upon their results. Rather than the conformal map x = ψ(t) or x = ψ̃(t), we propose a
new conformal map

x = φ(t) = 2 sinh(log(log(1 + et ))).

The principle of this conformal map is derived from the fact that the convergence rate is improved by replacing arcsinh(et )
with log(1 + et ) in some fields [6–8]. Consequently, the following approximation formula is derived:∫

∞

−∞

f (x)dx =

∫
∞

−∞

f (φ(t))φ′(t)dt ≈ h
N∑

k=−M

f (φ(kh))φ′(kh). (4)

Furthermore, as the main contribution of this work, we provide two (general and special) theoretical error bounds in the
same form as (3), where µ does not change, but a larger d can be taken as compared to that in the previous studies. This
indicates that the improved formula (4) can attain faster convergence than (1) and (2).

The remainder of this paper is organized as follows. First, existing and new theorems are summarized in Section 2.
Then, numerical examples are provided in Section 3. Finally, proofs of the new theorems are given in Sections 4 and 5.
2
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2. Summary of existing and new results

Sections 2.1 and 2.2 describe the existing results, and Sections 2.3 and 2.4 describe the new results. First, the relevant
otations are introduced. Let Dd be a strip domain defined by Dd = {ζ ∈ C : |Im ζ | < d} for d > 0. Furthermore, let
−

d = {ζ ∈ Dd : Re ζ < 0} and D+

d = {ζ ∈ Dd : Re ζ ≥ 0}.

.1. Error analysis of Stenger’s formula

An error analysis for Stenger’s formula (1) can be expressed as the following theorem, which is a restatement of an
xisting theorem [4, Theorem 1.5.16].

heorem 2.1 (Okayama–Hanada [5, Theorem 2.1]). Assume that f is analytic in ψ(Dd) with 0 < d < π/2, and that there
exist positive constants K , α, and β such that

|f (z)| ≤ K |e−z
|
2β (5)

holds for all z ∈ ψ(D+

d ), and

|f (z)| ≤ K
1

|z|α+1 (6)

holds for all z ∈ ψ(D−

d ). Let µ = min{α, β}, let M and N be defined as{
M = n, N = ⌈αn/β⌉ (if µ = α),
N = n, M = ⌈βn/α⌉ (if µ = β),

(7)

and let h be defined as

h =

√
2πd
µn

. (8)

Then, there exists a constant C independent of n, such that⏐⏐⏐⏐⏐
∫

∞

−∞

f (x)dx − h
N∑

k=−M

f (ψ(kh))ψ ′(kh)

⏐⏐⏐⏐⏐ ≤ Ce−
√
2πdµn.

.2. Error bound for the formula by Okayama and Hanada

Okayama and Hanada [5] proposed the replacement of ψ with ψ̃ in Stenger’s formula (1). They also provided the
ollowing theoretical error bound for the modified formula (2).

heorem 2.2 (Okayama–Hanada [5, Theorem 2.2]). Assume that f is analytic in ψ̃(Dd) with 0 < d < π/2, and that there
xist positive constants K , α, and β such that

|f (z)| ≤ K |e−z
|
β (9)

holds for all z ∈ ψ̃(D+

d ), and

|f (z)| ≤ K
1

|4 + z2|(α+1)/2 (10)

olds for all z ∈ ψ̃(D−

d ). Let µ = min{α, β}, let M and N be defined as (7), and let h be defined as (8). Then, it holds that⏐⏐⏐⏐⏐
∫

∞

−∞

f (x)dx − h
N∑

k=−M

f (ψ̃(kh))ψ̃ ′(kh)

⏐⏐⏐⏐⏐ ≤ K
(

2C1

1 − e−
√
2πdµ

+ C2

)
e−

√
2πdµn,

where C1 and C2 are constants defined as

C1 =
γd

α arctan(γd)

{
γd

2

(
1 +

1
sin2 1

)}α
+

(1 + σ 2)
√
γd

β

{ √
2eσ

cos(d/2)

}β
,

C2 =
1
α

{
1
2

(
1 +

1
sin2 1

)}α
+

1 + σ 2

β

(
eσ

2

)β
,

here γ = 1/cos(d) and σ = 1/arcsinh(1).
d
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In Theorem 2.2, the condition (5) is modified to (9), and the condition (6) is modified to (10). The former constitutes
he most significant difference, because β in Theorem 2.2 can be two times greater than that in Theorem 2.1, while α
remains unchanged. Owing to the difference, µ in Theorem 2.2 may be greater than that in Theorem 2.1, which affects
the convergence rate O(e−

√
2πdµn).

Another difference between Theorems 2.1 and 2.2 lies in the constants on the right-hand side of the inequalities. All
he constants in Theorem 2.2 are explicitly revealed, and the right-hand side can be computed to provide an error bound.
his paper provides two error bounds for the improved formula (4) in the same manner as Theorem 2.2.

.3. General error bound for the proposed formula

As a general case, we present the following error bound for the improved formula (4). The proof is given in Section 4.

heorem 2.3. Assume that f is analytic in φ(Dd) with 0 < d < π , and that there exist positive constants K , α, and β such
hat (9) holds for all z ∈ φ(D+

d ), and (6) holds for all z ∈ φ(D−

d ). Let µ = min{α, β}, let M and N be defined as (7), and let h
e defined as (8). Then, it holds that⏐⏐⏐⏐⏐

∫
∞

−∞

f (x)dx − h
N∑

k=−M

f (φ(kh))φ′(kh)

⏐⏐⏐⏐⏐ ≤ K
(

2C3

1 − e−
√
2πdµ

+ C4

)
e−

√
2πdµn,

where C3 and C4 are constants defined as

C3 =

(
1

α + 1
+

1
α

){
ecd

(1 − log 2)(e − 1)

}α+1 1 + {log(2 + cd)}2

{log(2 + cd)}2
(1 + cd)2 +

(1 + λ2)cd
β

(
eλcd

)β
, (11)

C4 =
e1/π

3

α(1 − log 2)α+1 +
1 + λ2

β

(
eλ
)β
, (12)

here cd = 1/cos(d/2) and λ = 1/log 2.

The crucial difference between Theorems 2.2 and 2.3 is the upper bound of d; d < π/2 in Theorem 2.2, whereas d < π
n Theorem 2.3. This implies that in the new approximation (4), d may be greater than d in the previous approximation (2).
n this case, the convergence rate O(e−

√
2πdµn) is improved (note that µ is not changed between the two theorems).

This difference in the range of d originates from the conformal maps ψ̃ and φ. By observing the derivatives of the
functions

ψ̃ ′(ζ ) =
1 + arcsinh2(eζ )

√
1 + e−2ζ arcsinh2(eζ )

, φ′(ζ ) =
1 + {log(1 + eζ )}2

(1 + e−ζ ){log(1 + eζ )}2
,

e see that ψ̃ ′(ζ ) is not analytic at ζ = ±i(π/2), and φ′(ζ ) is not analytic at ζ = ±iπ . Accordingly, f (ψ̃(ζ ))ψ̃ ′(ζ ) is
nalytic at most Dπ/2, and f (φ(ζ ))φ′(ζ ) is analytic at most Dπ . Therefore, the range of d is 0 < d < π/2 in Theorem 2.2
nd 0 < d < π in Theorem 2.3.

.4. Special error bound for the proposed formula

As a special case, restricting the range of d to 0 < d < (1 + π )/2, we present the following error bound for the
improved formula (4). The proof is given in Section 5.

Theorem 2.4. Assume that f is analytic in φ(Dd) with 0 < d < (1 + π )/2, and that there exist positive constants K , α, and
such that (9) holds for all z ∈ φ(D+

d ), and

|f (z)| ≤ K
1

|4 + z2|1/2|z|α
(13)

olds for all z ∈ φ(D−

d ). Let µ = min{α, β}, let M and N be defined as (7), and let h be defined as (8). Then, it holds that⏐⏐⏐⏐⏐
∫

∞

−∞

f (x)dx − h
N∑

k=−M

f (φ(kh))φ′(kh)

⏐⏐⏐⏐⏐ ≤ K
(

2C5

1 − e−
√
2πdµ

+ C6

)
e−

√
2πdµn,

where C5 and C6 are constants defined as

C5 =
1
α

{
ecd

(1 − log 2)(e − 1)

}α 1 + cd
log(2 + cd)

+
(1 + λ2)cd

β

(
eλcd

)β
, (14)

C6 =
1

α(1 − log 2)α
+

1 + λ2

β

(
eλ
)β
, (15)

here c = 1/cos(d/2) and λ = 1/log 2.
d

4
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Table 1
Parameters for the integral (16).

α β d K

Theorem 2.1 1 1/2 3/2
Theorem 2.2 1 1 3/2 1
Theorem 2.3 1 1 3 78
Theorem 2.4 1 1 2 6/5

Table 2
Parameters for the integral (17).

α β d K

Theorem 2.1 1 1/2 3/2
Theorem 2.2 1 1 3/2 16/9
Theorem 2.3 1 1 2 215
Theorem 2.4 1 1 2 39

Table 3
Parameters for the integral (18).

α β d K

Theorem 2.1 1 π/4 3/2
Theorem 2.2 1 π/2 3/2 12
Theorem 2.3 1 π/2 3/2 9
Theorem 2.4 1 π/2 3/2 9/2

In this theorem, the upper bound of d is (1+ π )/2, which is smaller than that in Theorem 2.3 (π ). This is because the
condition (6) is changed to (13), where 4 + {φ(ζ )}2 (put z = φ(ζ )) has zero points at ζ = log(2 sin(1/2)) ± i(1 + π )/2.
However, the constants C5 and C6 are considerably smaller than C3 and C4, respectively (comparing the first term).
herefore, Theorem 2.4 is useful for attaining a sharp error bound rather than a large upper bound of d. It must be noted
ere that (1 + π )/2 is still greater than π/2 in Theorems 2.1 and 2.2.

. Numerical examples

This section presents the numerical results obtained in this study. All the programs were written in C language with
ouble-precision floating-point arithmetic. The following three integrals are considered:∫

∞

−∞

{
1√

1 + (x/2)2 + 1 − (x/2)

}2

exp

(
−

x
2

−

√
1 +

( x
2

)2)
dx = 3 − 4eE1(1), (16)

∫
∞

−∞

1
4 + x2

exp

(
−

x
2

−

√
1 +

( x
2

)2)
dx = Ci(1) sin 1 − si(1) cos 1, (17)∫

∞

−∞

1
2

(
1 +

x
√
4 + x2

)
1

1 + e(π/2)x
dx = 1.136877446810281077257 · · · , (18)

where E1(x) is the exponential integral defined by E1(x) =
∫

∞

1 (e−tx/t)dt , Ci(x) is the cosine integral defined by Ci(x) =

−
∫

∞

x (cos t/t)dt , and si(x) is the sine integral defined by si(x) = −
∫

∞

x (sin t/t)dt . The third integral (18) is taken from the
previous study [5].

The integrand in (16) satisfies the assumptions of Theorems 2.1, 2.2, 2.3, and 2.4 with the parameters shown in Table 1.
In Theorem 2.1, K is not investigated since K is not used for computation. In Theorems 2.1 and 2.2, d is taken as d = 3/2
since d < π/2. In Theorem 2.3, d is taken as d = 3 since d < π . In Theorem 2.4, d is taken as d = 2 since d < (1 + π )/2.
The results are shown in Fig. 1. As seen in the graph, the proposed formula with d = 3 shows the fastest convergence as
compared to the others. However, the corresponding error bound by Theorem 2.3 is relatively large, because the constant
C3 in (11) is large. In contrast, Theorem 2.4 produces a sharp error for the proposed formula with d = 2, although the
convergence rate is slightly worse than that from Theorem 2.3.

The integrand in (17) satisfies the assumptions of Theorems 2.1, 2.2, 2.3, and 2.4 with the parameters shown in Table 2.
In this case, d must satisfy d < (1+π )/2 in Theorem 2.3, due to the singular points of 1/(4+x2). The results are shown in
Fig. 2. As seen in the graph, the proposed formula with d = 2 shows the fastest convergence as compared to the others.
Note that in this example, Theorems 2.3 and 2.4 have the same d values, and thus, their approximation formulas are
exactly the same. As for the error bound, Theorem 2.4 produces a sharper error than Theorem 2.3 in this case as well.

The integrand in (18) satisfies the assumptions of Theorems 2.1, 2.2, 2.3, and 2.4 with the parameters shown in Table 3.
In this case, d must satisfy d < π/2 in both Theorems 2.3 and 2.4, due to the singular points of 1/(1+ e(π/2)x). The results
5
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Fig. 1. Numerical results for (16).

Fig. 2. Numerical results for (17).

Fig. 3. Numerical results for (18).

are shown in Fig. 3. As seen in the graph, all formulas show a similar convergence rate, mainly because all formulas use
the same value of d. Approximation formulas of Theorems 2.3 and 2.4 are exactly the same, but Theorem 2.4 produces a
sharper error than Theorem 2.3 in this case as well.
6
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4. Proofs for Theorem 2.3

This section presents the proof of Theorem 2.3. It is organized as follows. In Section 4.1, the task is decomposed into two
emmas: Lemmas 4.2 and 4.3. To prove these lemmas, useful inequalities are presented in Sections 4.2, 4.3, 4.4, and 4.5.
ollowing this, Lemma 4.2 is proved in Section 4.6, and Lemma 4.3 is proved in Section 4.7.

.1. Sketch of the proof

Let F (t) = f (φ(t))φ′(t). The main strategy in the proof of Theorem 2.3 is to split the error into two terms as follows:⏐⏐⏐⏐⏐
∫

∞

−∞

f (x)dx − h
N∑

k=−M

f (φ(kh))φ′(kh)

⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐
∫

∞

−∞

F (t)dt − h
N∑

k=−M

F (kh)

⏐⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐
∫

∞

−∞

F (t)dt − h
∞∑

k=−∞

F (kh)

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐h

−M−1∑
k=−∞

F (kh) + h
∞∑

k=N+1

F (kh)

⏐⏐⏐⏐⏐ . (19)

The first and second terms are called the discretization error and truncation error, respectively. The following function
space is important for bounding the discretization error.

Definition 4.1. Let Dd(ϵ) be a rectangular domain defined for 0 < ϵ < 1 by

Dd(ϵ) = {ζ ∈ C : |Re ζ | < 1/ϵ, |Im ζ | < d(1 − ϵ)}.

Then, H1(Dd) denotes the family of all functions F that are analytic in Dd such that the norm N1(F , d) is finite, where

N1(F , d) = lim
ϵ→0

∮
∂Dd(ϵ)

|F (ζ )||dζ |.

For functions belonging to this function space, the discretization error is estimated as follows.

Theorem 4.1 (Stenger [3, Theorem 3.2.1]). Let F ∈ H1(Dd). Then,⏐⏐⏐⏐⏐
∫

∞

−∞

F (x)dx − h
∞∑

k=−∞

F (kh)

⏐⏐⏐⏐⏐ ≤
N1(F , d)

1 − e−2πd/h e
−2πd/h.

In this paper, we show the following lemma, which completes estimation of the discretization error. The proof is given
n Section 4.6.

emma 4.2. Let the assumptions made in Theorem 2.3 be fulfilled. Then, the function F (ζ ) = f (φ(ζ ))φ′(ζ ) belongs to H1(Dd),
nd N1(F , d) is bounded as

N1(F , d) ≤ 2KC3,

here C3 is a constant defined as (11).

In addition, we bound the truncation error as follows. The proof is given in Section 4.7.

emma 4.3. Let the assumptions made in Theorem 2.3 be fulfilled. Then, setting F (ζ ) = f (φ(ζ ))φ′(ζ ), we have⏐⏐⏐⏐⏐h
−M−1∑
k=−∞

F (kh) + h
∞∑

k=N+1

F (kh)

⏐⏐⏐⏐⏐ ≤ KC4e−µnh,

here C4 is a constant defined as (12).

Setting h as (8), the above estimates (Theorem 4.1, Lemmas 4.2, and 4.3) yield the desired result as⏐⏐⏐⏐⏐
∫

∞

−∞

f (x)dx − h
N∑

k=−M

f (φ(kh))φ′(kh)

⏐⏐⏐⏐⏐ ≤
2KC3

1 − e−2πd/h e
−2πd/h

+ KC4e−µnh

= K
(

2C3

1 − e−
√
2πdµn

+ C4

)
e−

√
2πdµn

≤ K
(

2C3

1 − e−
√
2πdµ

+ C4

)
e−

√
2πdµn.

This completes the proof of Theorem 2.3.
7
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4.2. Useful inequalities on R

We prepare two lemmas here.

Lemma 4.4 (Okayama et al. [8, Lemma 4.7]). We have⏐⏐⏐⏐ log(1 + ex)
1 + log(1 + ex)

·
1 + ex

ex

⏐⏐⏐⏐ ≤ 1 (x ∈ R). (20)

emma 4.5. We have

arccos
(
t
2

)
≥

√
2 − t (0 ≤ t ≤ 2). (21)

roof. Integrating both sides of the obvious inequality

2 − 2 cosw ≥ 0 (w ≥ 0),

e have∫ v

0
2(1 − cosw)dw = 2v − 2 sin v ≥ 0 (v ≥ 0).

n the same manner, integrating both sides of the above inequality, we have∫ u

0
2(v − sin v)dv = u2

+ 2 cos u − 2 ≥ 0 (u ≥ 0).

ere, putting u = arccos(t/2), we rewrite the inequality as

arccos2
(
t
2

)
≥ 2 − t (0 ≤ t ≤ 2),

which is equivalent to the desired inequality (21).

4.3. Useful inequalities on D+

d

We prepare three lemmas here. Note that D denotes the closure of D .

emma 4.6. It holds for all ζ ∈ D+
π that⏐⏐⏐⏐ 1

log(1 + eζ )

⏐⏐⏐⏐ ≤
1

log 2
. (22)

roof. Let ζ = x + iy where x and y are real numbers with x ≥ 0 and |y| ≤ π . By the definition of log z, it holds that⏐⏐⏐⏐ 1
log(1 + eζ )

⏐⏐⏐⏐2 =

⏐⏐⏐⏐ 1
log |1 + eζ | + i arg(1 + eζ )

⏐⏐⏐⏐2 =
1{

log |1 + ex+iy|
}2

+
{
arg(1 + ex+iy)

}2 .
ince |1 + ex+iy

| and |arg(1 + ex+iy)| monotonically increase with respect to x, we have

1{
log |1 + ex+iy|

}2
+
{
arg(1 + ex+iy)

}2 ≤
1{

log |1 + e0+iy|
}2

+
{
arg(1 + e0+iy)

}2 .
urthermore, using

log |1 + eiy| = log
√
(1 + cos y)2 + sin2 y = log

√
4 cos2

( y
2

)
= log

(
2 cos

y
2

)
,

arg(1 + eiy) = arctan
(

sin y
1 + cos y

)
= arctan

(
tan

y
2

)
=

y
2
,

and putting t = 2 cos(y/2), we have

1{
iy
}2 {

iy
}2 =

1
{log (2 cos(y/2))}2 + (y/2)2

=
1

(log t)2 + arccos2(t/2)
.

log |1 + e | + arg(1 + e )
8
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From 0 ≤ t ≤ 2 and (21), we have

1
(log t)2 + arccos2(t/2)

≤
1

(log t)2 + {
√
2 − t}2

= q(t),

here

q(t) =
1

(log t)2 + 2 − t
.

Since log t ≤ t − 1, it holds that

q′(t) =
t − 2 log t

t{(log t)2 + 2 − t}2
≥

t − 2(t − 1)
t{(log t)2 + 2 − t}2

=
2 − t

t{(log t)2 + 2 − t}2
≥ 0.

Therefore, q(t) monotonically increases, from which we have q(t) ≤ q(2) = 1/(log 2)2. This completes the proof.

Lemma 4.7. It holds for all ζ ∈ D+
π that⏐⏐⏐e1/log(1+eζ )

⏐⏐⏐ ≤ e1/log 2. (23)

roof. Using (22), we have⏐⏐⏐e1/log(1+eζ )
⏐⏐⏐ ≤ e|1/log(1+eζ )| ≤ e1/log 2.

his completes the proof.

emma 4.8. It holds for all ζ ∈ D+
π that⏐⏐⏐⏐1 + {log(1 + eζ )}2

{log(1 + eζ )}2

⏐⏐⏐⏐ ≤ 1 +
1

(log 2)2
. (24)

roof. Using (22), we have⏐⏐⏐⏐1 + {log(1 + eζ )}2

{log(1 + eζ )}2

⏐⏐⏐⏐ =

⏐⏐⏐⏐1 +
1

{log(1 + eζ )}2

⏐⏐⏐⏐ ≤ 1 +

⏐⏐⏐⏐ 1
{log(1 + eζ )}2

⏐⏐⏐⏐ ≤ 1 +
1

(log 2)2
.

This completes the proof.

4.4. Useful inequality on D−

d

We prepare the following lemma here.

Lemma 4.9. It holds for all ζ ∈ D−
π that

1
|−1 + log(1 + eζ )|

≤
1

1 − log 2
. (25)

roof. By the definition of log z, it holds that

1
|−1 + log(1 + eζ )|

=
1

|−1 + log|1 + eζ |+i arg(1 + eζ )|
≤

1
|−1 + log|1 + eζ |+0|

.

et ζ = x + iy where x and y are real numbers with x < 0 and |y| ≤ π . Then, we have⏐⏐1 + eζ
⏐⏐ ≤ 1 +

⏐⏐eζ ⏐⏐ = 1 +
⏐⏐ex+iy

⏐⏐ = 1 + ex < 1 + e0 < e,

from which we have log |1 + eζ | < 1. Therefore, it holds that

1
|−1 + log|1 + eζ ||

=
1

1 − log |1 + eζ |
,

which is further bounded as
1

1 − log |1 + eζ |
≤

1
1 − log(1 + |eζ |)

=
1

1 − log(1 + ex)
≤

1
1 − log(1 + e0)

=
1

1 − log 2
.

his completes the proof.
9
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4.5. Useful inequalities on Dd

We prepare four lemmas here.

Lemma 4.10 (Okayama et al. [8, Lemma 4.6]). It holds for all ζ ∈ Dπ that⏐⏐⏐⏐ log(1 + eζ )
1 + log(1 + eζ )

·
e−l

+ eζ

eζ

⏐⏐⏐⏐ ≤ 1, (26)

here l = log(e/(e − 1)).

emma 4.11 (Okayama et al. [9, Lemma 4.21]). For all x ∈ R and y ∈ (−π, π ), putting ζ = x + iy, we have
1

|1 + eζ |
≤

1
(1 + ex) cos(y/2)

, (27)

1
|1 + e−ζ |

≤
1

(1 + e−x) cos(y/2)
. (28)

emma 4.12 (Three lines lemma, cf. [10, p. 133]). Let g be analytic and bounded in Dd and continuous on Dd. Let Mg (y) =

upx∈R |g(x + iy)|. Then, we have

{Mg (y)}2d ≤ {Mg (−d)}d−y
{Mg (d)}y+d (−d ≤ y ≤ d).

emma 4.13. Let d be a constant satisfying 0 < d < π . For all ζ ∈ Dd and x ∈ R, we have⏐⏐⏐⏐ 1 + {log(1 + eζ )}2

(1 + e−ζ )2{log(1 + eζ )}2

⏐⏐⏐⏐ ≤
1 + {log(2 + cd)}2

{log(2 + cd)}2
(1 + cd)2, (29)

1 + {log(1 + ex)}2

(1 + e−x)2{log(1 + ex)}2
≤ e1/π

3
, (30)

here cd = 1/cos(d/2).

roof. First, consider (30), which is proved by showing

p(t) =
1 + t2

t2
(1 − e−t )2 ≤ e1/π

3

for all t > 0 (put t = log(1 + ex)). The derivative of p(t) is expressed as

p′(t) = −
2(et − 1)(et − t3 − t − 1)

t3e2t
.

Let κ be a value that satisfies p′(κ) = 0 and log(108) < κ < log(109), i.e., p(t) has its maximum at t = κ . Using
eκ = κ3

+ κ + 1, we have

p(κ) =
1 + κ2

κ2

(
(κ3

+ κ + 1) − 1
eκ

)2

=
(1 + κ2)3

e2κ
.

ince the function q(x) = (1 + x2)3/e2x monotonically decreases for x ≥ (3 +
√
5)/2, q(log(109)) < q(κ) < q(log(108))

olds (note that log(108) > (3 +
√
5)/2). Thus, it holds that

1 < q(log(109)) < p(κ) = q(κ) < q(log(108)) < e1/π
3
.

Next, we show (29). Let

g(ζ ) =
1 + {log(1 + eζ )}2

(1 + e−ζ )2{log(1 + eζ )}2
.

ince the function g(ζ ) is analytic and bounded in Dd and continuous on Dd, by Lemma 4.12, we obtain (29) if we show
he following two inequalities:

Mg (d) ≤
1 + {log(2 + cd)}2

{log(2 + cd)}2
(1 + cd)2, Mg (−d) ≤

1 + {log(2 + cd)}2

{log(2 + cd)}2
(1 + cd)2,

where Mg (y) = supx∈R |g(x + iy)|. We show only the first one, because the second one is also shown in the same way.
Putting ξ = log(1 + ex+id), g(x + id) = p(ξ ) holds, and thus, in what follows we prove

|p(ξ )| ≤
1 + {log(2 + cd)}2 (1 + cd)2. (31)
{log(2 + cd)}2

10
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We consider the following two cases: (a) |ξ | ≤ log(2 + cd) and (b) |ξ | > log(2 + cd). In case (a), we have

|p(ξ )| =

⏐⏐⏐⏐⏐⏐1 + ξ 2

ξ 2

(
−

∞∑
k=1

(−ξ )k

k!

)2
⏐⏐⏐⏐⏐⏐ ≤ (1 + |ξ |2)

(
∞∑
k=1

|ξ |k−1

k!

)2

=
1 + |ξ |2

|ξ |2

(
∞∑
n=1

|ξ |k

k!

)2

=
1 + |ξ |2

|ξ |2

(
e|ξ |

− 1
)2
.

Here, if we put q(x) = (1 + x2)(ex − 1)2/x2, then we have q′(x) = 2(ex − 1)r(x)/x3, where r(x) = 1 + ex(x3 + x − 1). Since
′(x) = xex{(x + 1)2 + x} ≥ 0 for x ≥ 0, r(x) monotonically increases for x ≥ 0. Therefore, r(x) ≥ r(0) = 0 holds, from
hich we have q′(x) ≥ 0 for x ≥ 0, i.e., q(x) monotonically increases for x ≥ 0. Thus, from |ξ | ≤ log(2+ cd), we have (31)
s

|p(ξ )| ≤ q(|ξ |) ≤
1 + {log(2 + cd)}2

{log(2 + cd)}2
(elog(2+cd) − 1)2 =

1 + {log(2 + cd)}2

{log(2 + cd)}2
(1 + cd)2.

In case (b), from (27), it holds that

Re(ξ ) = Re(log(1 + ex+id)) = log |1 + ex+id
| ≥ log[(1 + ex) cos(d/2)] ≥ log(cos(d/2)). (32)

sing this, we have

|p(ξ )| ≤
1 + |ξ |2

|ξ |2
(1 + |e−ξ

|)2 =
1 + |ξ |2

|ξ |2
(1 + e− Re(ξ ))2 ≤

1 + |ξ |2

|ξ |2
(1 + e− log(cos(d/2)))2 =

1 + |ξ |2

|ξ |2
(1 + cd)2.

urthermore, since (1 + x2)/x2 decreases monotonically for x > 0, we have (31). This completes the proof.

4.6. Estimation of the discretization error (proof of Lemma 4.2 )

Lemma 4.2 is shown as follows.

roof. Let F (ζ ) = f (φ(ζ ))φ′(ζ ). Since f is analytic in φ(Dd), f (φ(·)) is analytic in Dd. In addition, since φ′ is analytic in Dπ ,
is analytic in Dd (note that d < π ). Therefore, the remaining task is to show N1(F , d) ≤ 2KC3. From (9), by using (23)
nd (24), it holds for all ζ ∈ D+

d that

|F (ζ )| ≤ K |e−φ(ζ )
|
β
|φ′(ζ )|

= K
⏐⏐⏐e1/log(1+eζ )

⏐⏐⏐β ⏐⏐⏐⏐ 1
1 + eζ

⏐⏐⏐⏐β |1 + {log(1 + eζ )}2|

|1 + e−ζ ||log(1 + eζ )|2

≤ K
(
e1/log 2

)β 1

|1 + eζ |β
1

|1 + e−ζ |

{
1 +

1
(log 2)2

}
. (33)

urthermore, from (10), by using (25), (26), and (29), it holds for all ζ ∈ D−

d that

|F (ζ )| ≤ K
1

|φ(ζ )|α+1

⏐⏐φ′(ζ )
⏐⏐

= K
⏐⏐⏐⏐ log(1 + eζ )
1 + log(1 + eζ )

⏐⏐⏐⏐α+1
|1 + e−ζ

|

|−1 + log(1 + eζ )|α+1

|1 + {log(1 + eζ )}2|

|1 + e−ζ |
2
|log(1 + eζ )|2

≤ K
1

|1 + e−ζ−l|
α+1

1 + |e−ζ
|

(1 − log 2)α+1

1 + {log(2 + cd)}2

{log(2 + cd)}2
(1 + cd)2, (34)

here cd = 1/cos(d/2) and l = log(e/(e − 1)). By definition, N1(F , d) is expressed as

N1(F , d)

= lim
ϵ→0

{∫ 1/ϵ

−1/ϵ
|F (x − id)|dx +

∫ d(1−ϵ)

−d(1−ϵ)
|F (1/ϵ + iy)|dy +

∫ 1/ϵ

−1/ϵ
|F (x + id)|dx +

∫ d(1−ϵ)

−d(1−ϵ)
|F (−1/ϵ + iy)|dy

}
. (35)

sing (27), (28), and (33), we can bound the second term as∫ d(1−ϵ)

−d(1−ϵ)
|F (1/ϵ + iy)|dy ≤ K

(
e1/log 2

)β (
1 +

1
(log 2)2

)∫ d(1−ϵ)

−d(1−ϵ)

1

|1 + e1/ϵ+iy|
β
|1 + e−(1/ϵ+iy)|

dy

≤

K
(
e1/log 2

)β (1 +
1

(log 2)2

)
(1 + e1/ϵ)β (1 + e−1/ϵ)

∫ d(1−ϵ)

−d(1−ϵ)

1
cosβ (y/2) cos(y/2)

dy,

rom which we have

lim
∫ d(1−ϵ)

|F (1/ϵ + iy)|dy = 0.

ϵ→0

−d(1−ϵ)

11
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In the same manner, with regard to the fourth term of (35), using (27), (28), and (34), we have

lim
ϵ→0

∫ d(1−ϵ)

−d(1−ϵ)
|F (−1/ϵ + iy)|dy = 0.

herefore, N1(F , d) is expressed as

N1(F , d) =

∫
∞

−∞

|F (x − id)|dx +

∫
∞

−∞

|F (x + id)|dx

=

∫ 0

−∞

|F (x − id)|dx +

∫
∞

0
|F (x − id)|dx +

∫ 0

−∞

|F (x + id)|dx +

∫
∞

0
|F (x + id)|dx.

ith regard to the first term, using (27), (28), and (34), we have∫ 0

−∞

|F (x − id)|dx ≤
K

(1 − log 2)α+1

1 + {log(2 + cd)}2

{log(2 + cd)}2
(1 + cd)2

∫ 0

−∞

1 + |e−x+id
|

|1 + e−x−l+id|
α+1 dx

≤
K

(1 − log 2)α+1

1 + {log(2 + cd)}2

{log(2 + cd)}2
(1 + cd)2

∫ 0

−∞

1 + |e−x+id
|

(1 + e−x−l)α+1 cosα+1(d/2)
dx

=
Kcα+1

d

(1 − log 2)α+1

1 + {log(2 + cd)}2

{log(2 + cd)}2
(1 + cd)2

∫ 0

−∞

1 + e−x

(1 + e−x−l)α+1 dx.

The integral is further bounded as∫ 0

−∞

1 + e−x

(1 + e−x−l)α+1 dx =

∫ 0

−∞

(
e(α+1)x

(ex + e−l)α+1 +
eαx

(ex + e−l)α+1

)
dx

≤

∫ 0

−∞

(
e(α+1)x

(0 + e−l)α+1 +
eαx

(0 + e−l)α+1

)
dx

=

(
e

e − 1

)α+1 ( 1
α + 1

+
1
α

)
.

n the same manner, the third term is bounded as∫ 0

−∞

|F (x + id)|dx ≤
Kcα+1

d

(1 − log 2)α+1

1 + {log(2 + cd)}2

{log(2 + cd)}2
(1 + cd)2

(
e

e − 1

)α+1 ( 1
α + 1

+
1
α

)
.

ith regard to the second term, using (27), (28), and (33), we have∫
∞

0
|F (x − id)|dx ≤ Keβ/log 2

{
1 +

1
(log 2)2

}∫
∞

0

1

|1 + ex−id|
β
|1 + e−x+id|

dx

≤ Keβ/log 2
{
1 +

1
(log 2)2

}∫
∞

0

1
(1 + ex)β (1 + e−x) cosβ+1(d/2)

dx

= Keβ/log 2
{
1 +

1
(log 2)2

}
cβ+1
d

∫
∞

0

e−βx

(1 + e−x)β+1 dx

≤ Keβ/log 2
{
1 +

1
(log 2)2

}
cβ+1
d

∫
∞

0

e−βx

(1 + 0)β+1 dx

= Keβ/log 2
{
1 +

1
(log 2)2

}
cβ+1
d

β
.

In the same manner, the fourth term is bounded as∫
∞

0
|F (x + id)|dx ≤ Keβ/log 2

{
1 +

1
(log 2)2

}
cβ+1
d

β
.

Thus, we have N1(F , d) ≤ 2KC3.

.7. Estimation of the truncation error (proof of Lemma 4.3 )

Lemma 4.3 is shown as follows.
12
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Proof. Let F (t) = f (φ(t))φ′(t). From (9), by using (23) and (24), it holds for all t ≥ 0 that

|F (t)| ≤ K
(
e−φ(t))β φ′(t)

= K
(
e1/log(1+et )

)β ( e−t

1 + e−t

)β 1 + {log(1 + et )}2

(1 + e−t ){log(1 + et )}2

≤ Keβ/log 2
e−βt

(1 + 0)β+1

{
1 +

1
(log 2)2

}
.

Using this estimate, we have⏐⏐⏐⏐⏐h
∞∑

k=N+1

F (kh)

⏐⏐⏐⏐⏐ ≤ h
∞∑

k=N+1

|F (kh)|

≤ Keβ/log 2
{
1 +

1
(log 2)2

}
h

∞∑
k=N+1

e−βkh

≤ Keβ/log 2
{
1 +

1
(log 2)2

}∫
∞

Nh
e−βxdx

= Keβ/log 2
{
1 +

1
(log 2)2

}
e−βNh

β
.

Next, from (6), using (20), (25), and (30), it holds for all t ≤ 0 that

|F (t)| ≤ K
1

|φ(t)|α+1 φ
′(t)

= K
⏐⏐⏐⏐ log(1 + et )
1 + log(1 + et )

⏐⏐⏐⏐α+1 1 + et

et |−1 + log(1 + et )|α+1

1 + {log(1 + et )}2

(1 + e−t )2{log(1 + et )}2

≤ K
(

et

1 + et

)α+1 1 + et

et (1 − log 2)α+1 e
1/π3

≤ K
eαt

(1 + 0)α
1

(1 − log 2)α+1 e
1/π3

.

Using this estimate, we have⏐⏐⏐⏐⏐h
−M−1∑
k=−∞

F (kh)

⏐⏐⏐⏐⏐ ≤ h
−M−1∑
k=−∞

|F (kh)|

≤ K
e1/π

3

(1 − log 2)α+1 h
−M−1∑
k=−∞

eαkh

≤ K
e1/π

3

(1 − log 2)α+1

∫
−Mh

−∞

eαxdx

= K
e1/π

3

(1 − log 2)α+1

e−αMh

α
.

Thus, using (7), we have⏐⏐⏐⏐⏐h
−M−1∑
k=−∞

F (kh) + h
∞∑

k=N+1

F (kh)

⏐⏐⏐⏐⏐ ≤
Ke1/π

3

α(1 − log 2)α+1 e
−αMh

+
Keβ/log 2

β

{
1 +

1
(log 2)2

}
e−βNh

≤
Ke1/π

3

α(1 − log 2)α+1 e
−µnh

+
Keβ/log 2

β

{
1 +

1
(log 2)2

}
e−µnh,

which is the desired estimate.

5. Proofs for Theorem 2.4

This section presents the proof of Theorem 2.4. It is organized as follows. In Section 5.1, the task is decomposed into
two lemmas: Lemmas 5.1 and 5.2. To prove these lemmas, a useful inequality is presented in Section 5.2. Then, Lemma 5.1
is proved in Section 5.3, and Lemma 5.2 is proved in Section 5.4.
13
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5.1. Sketch of the proof

The main strategy in the proof of Theorem 2.4 is identical to that of Theorem 2.3, that is, splitting the error into the
iscretization error and the truncation error as (19). For the discretization error, we show the following lemma. The proof
s given in Section 5.3.

emma 5.1. Let the assumptions made in Theorem 2.4 be fulfilled. Then, the function F (ζ ) = f (φ(ζ ))φ′(ζ ) belongs to H1(Dd),
nd N1(F , d) is bounded as

N1(F , d) ≤ 2KC5,

here C5 is a constant defined as (14).

In addition, we bound the truncation error as follows. The proof is given in Section 5.4.

emma 5.2. Let the assumptions made in Theorem 2.4 be fulfilled. Then, setting F (ζ ) = f (φ(ζ ))φ′(ζ ), we have⏐⏐⏐⏐⏐h
−M−1∑
k=−∞

F (kh) + h
∞∑

k=N+1

F (kh)

⏐⏐⏐⏐⏐ ≤ KC6e−µnh,

where C6 is a constant defined as (15).

Setting h as (8), the above estimates (Theorem 4.1, Lemmas 5.1, and 5.2) yield the desired result as⏐⏐⏐⏐⏐
∫

∞

−∞

f (x)dx − h
N∑

k=−M

f (φ(kh))φ′(kh)

⏐⏐⏐⏐⏐ ≤
2KC5

1 − e−2πd/h e
−2πd/h

+ KC6e−µnh

= K
(

2C5

1 − e−
√
2πdµn

+ C6

)
e−

√
2πdµn

≤ K
(

2C5

1 − e−
√
2πdµ

+ C6

)
e−

√
2πdµn.

This completes the proof of Theorem 2.4.

5.2. Useful inequality on Dd

We prepare the following lemma here.

Lemma 5.3. Let d be a constant satisfying 0 < d < π . For all ζ ∈ Dd and x ∈ R, we have⏐⏐⏐⏐ 1
(1 + e−ζ ) log(1 + eζ )

⏐⏐⏐⏐ ≤
1 + cd

log(2 + cd)
, (36)

1
(1 + e−x) log(1 + ex)

≤ 1, (37)

here cd = 1/cos(d/2).

roof. First, consider (37), which is proved by showing

p(t) =
1 − e−t

t
≤ 1

for all t > 0 (put t = log(1 + ex)). Differentiating p(x), we have

p′(t) = −
et − (1 + t)

et t2
≤ 0,

since et ≥ 1 + t holds. Therefore, p(t) decreases monotonically, and thus, it holds that p(t) ≤ limt→0 p(t) = 1.
Next, we show (36). Let g(ζ ) = 1/{(1 + e−ζ ) log(1 + eζ )}. Since the function g(ζ ) is analytic and bounded in Dd and

ontinuous on Dd, by Lemma 4.12, we obtain (36) if we show the following two inequalities:

Mg (d) ≤
1 + cd

log(2 + cd)
, Mg (−d) ≤

1 + cd
log(2 + cd)

,

where Mg (y) = supx∈R |g(x + iy)|. We show only the first one, because the second one is also shown in the same way.
utting ξ = log(1 + ex+id), g(x + id) = p(ξ ) holds, and thus, in what follows we prove

|p(ξ )| ≤
1 + cd

. (38)

log(2 + cd)

14
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We consider the following two cases: (a) |ξ | ≤ log(2 + cd) and (b) |ξ | > log(2 + cd). In case (a), we have

|p(ξ )| =

⏐⏐⏐⏐⏐
∞∑
k=1

(−ξ )k−1

k!

⏐⏐⏐⏐⏐ ≤

∞∑
k=1

|ξ |k−1

k!
=

e|ξ |
− 1

|ξ |
.

Here, if we put q(x) = (ex − 1)/x, then we have q′(x) = r(x)/x2, where r(x) = 1 + (x − 1)ex. Since r ′(x) = xex ≥ 0 for
≥ 0, r(x) monotonically increases for x ≥ 0. Therefore, r(x) ≥ r(0) = 0 holds, from which we have q′(x) ≥ 0 for x ≥ 0,

.e., q(x) monotonically increases for x ≥ 0. Thus, from |ξ | ≤ log(2 + cd), we have (38) as

|p(ξ )| ≤ q(|ξ |) ≤
elog(2+cd) − 1
log(2 + cd)

=
1 + cd

log(2 + cd)
.

n case (b), using (32), we have

|p(ξ )| ≤
1 + |e−ξ

|

|ξ |
=

1 + e− Re ξ

|ξ |
≤

1 + e− log(cos(d/2))

|ξ |
=

1 + cd
|ξ |

.

urthermore, since 1/x decreases monotonically for x > 0, we have (38). This completes the proof.

.3. Estimation of the discretization error (proof of Lemma 5.1 )

Lemma 5.1 is essentially shown by the following lemma, which holds for 0 < δ < π (not only 0 < d < (1 + π )/2).

emma 5.4. Assume that F is analytic in Dδ with 0 < δ < π , and that there exist positive constants K+, K−, α, and β such
hat

|F (ζ )| ≤ K+

⏐⏐⏐⏐⏐e1/log(1+eζ )

1 + eζ

⏐⏐⏐⏐⏐
β

(39)

olds for all ζ ∈ D+

δ , and

|F (ζ )| ≤ K−

⏐⏐⏐⏐ log(1 + eζ )
{1 + log(1 + eζ )}{−1 + log(1 + eζ )}

⏐⏐⏐⏐α (40)

olds for all ζ ∈ D−

δ . Then, F belongs to H1(Dδ), and N1(F , δ) is bounded as

N1(F , δ) ≤
2K−

α

{
ecδ

(1 − log 2)(e − 1)

}α
+

2K+

β

(
e1/log 2cδ

)β
, (41)

here cδ = 1/cos(δ/2).

roof. Since F is analytic on Dδ , the remaining task is to show (41). From (39), by using (23), it holds for all ζ ∈ D+

δ that

|F (ζ )| ≤ K+

⏐⏐⏐e1/log(1+eζ )
⏐⏐⏐β ⏐⏐⏐⏐ 1

1 + eζ

⏐⏐⏐⏐β
≤ K+

(
e1/log 2

)β 1

|1 + eζ |β
. (42)

urthermore, from (40), by using (25) and (26), it holds for all ζ ∈ D−

δ that

|F (ζ )| ≤ K−

⏐⏐⏐⏐ log(1 + eζ )
1 + log(1 + eζ )

⏐⏐⏐⏐α 1
|−1 + log(1 + eζ )|α

≤ K−

1
|1 + e−ζ−l|

α

1
(1 − log 2)α

, (43)

where l = log(e/(e − 1)). As described earlier, N1(F , d) is expressed as (35). Using (27) and (42), we have∫ δ(1−ϵ)

−δ(1−ϵ)
|F (1/ϵ + iy)|dy ≤ K+

(
e1/log 2

)β ∫ δ(1−ϵ)

−δ(1−ϵ)

1

|1 + e1/ϵ+iy|
β
dy

≤
K+

(
e1/log 2

)β
(1 + e1/ϵ)β

∫ δ(1−ϵ)

−δ(1−ϵ)

1
cosβ (y/2)

dy,

rom which we have

lim
∫ δ(1−ϵ)

|F (1/ϵ + iy)|dy = 0.

ϵ→0

−δ(1−ϵ)

15
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In the same manner, using (28) and (43), we have

lim
ϵ→0

∫ δ(1−ϵ)

−δ(1−ϵ)
|F (−1/ϵ + iy)|dy = 0.

herefore, N1(F , δ) is expressed as

N1(F , δ) =

∫
∞

−∞

|F (x − iδ)|dx +

∫
∞

−∞

|F (x + iδ)|dx

=

∫ 0

−∞

|F (x − iδ)|dx +

∫
∞

0
|F (x − iδ)|dx +

∫ 0

−∞

|F (x + iδ)|dx +

∫
∞

0
|F (x + iδ)|dx.

ith regard to the first term, using (28) and (43), we have∫ 0

−∞

|F (x − iδ)|dx ≤
K−

(1 − log 2)α

∫ 0

−∞

1
|1 + e−x−l+iδ|

α dx

≤
K−

(1 − log 2)α

∫ 0

−∞

1
(1 + e−x−l)α cosα(δ/2)

dx

=
K−cαδ

(1 − log 2)α

∫ 0

−∞

1
(1 + e−x−l)α

dx.

The integral is further bounded as∫ 0

−∞

1
(1 + e−x−l)α

dx =

∫ 0

−∞

eαx

(ex + e−l)α
dx

≤

∫ 0

−∞

eαx

(0 + e−l)α
dx

=

(
e

e − 1

)α 1
α
.

In the same manner, the third term is bounded as∫ 0

−∞

|F (x + iδ)|dx ≤
K−cαδ

α(1 − log 2)α

(
e

e − 1

)α
.

ith regard to the second term, using (27) and (42), we have∫
∞

0
|F (x − iδ)|dx ≤ K+eβ/log 2

∫
∞

0

1

|1 + ex−iδ|
β
dx

≤ K+eβ/log 2
∫

∞

0

1
(1 + ex)β cosβ (δ/2)

dx

= K+eβ/log 2c
β

δ

∫
∞

0

e−βx

(1 + e−x)β
dx

≤ K+eβ/log 2c
β

δ

∫
∞

0

e−βx

(1 + 0)β
dx

= K+eβ/log 2
cβδ
β
.

In the same manner, the fourth term is bounded as∫
∞

0
|F (x + iδ)|dx ≤ K+eβ/log 2

cβδ
β
.

hus, we obtain (41).

Using this lemma, Lemma 5.1 is shown as follows.

roof. Let F (ζ ) = f (φ(ζ ))φ′(ζ ). Since f is analytic in φ(Dd), f (φ(·)) is analytic in Dd. In addition, since φ′ is analytic in Dπ ,
F is analytic in Dd (note that d < π ). Therefore, the remaining task is to show N1(F , d) ≤ 2KC5. Using (28), we have

1
≤

1
≤

1

|1 + e−ζ | (1 + e− Re ζ ) cos((Im ζ )/2) (1 + 0) cos(d/2)

16
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for all ζ ∈ Dd. Therefore, from (9), by using (24), it holds for all ζ ∈ D+

d that

|F (ζ )| ≤ K |e−φ(ζ )
|
β
|φ′(ζ )|

= K
⏐⏐⏐e1/log(1+eζ )

⏐⏐⏐β ⏐⏐⏐⏐ 1
1 + eζ

⏐⏐⏐⏐β |1 + {log(1 + eζ )}2|

|1 + e−ζ ||log(1 + eζ )|2

≤ K

⏐⏐⏐⏐⏐e1/log(1+eζ )

1 + eζ

⏐⏐⏐⏐⏐
β

cd

{
1 +

1
(log 2)2

}
,

here cd = 1/cos(d/2). Furthermore, from (13), by using (36), it holds for all ζ ∈ D−

d that

|F (ζ )| ≤ K
1

|4 + {φ(ζ )}2|1/2|φ(ζ )|α
⏐⏐φ′(ζ )

⏐⏐
= K

⏐⏐⏐⏐ log(1 + eζ )
1 + log(1 + eζ )

⏐⏐⏐⏐α 1
|−1 + log(1 + eζ )|α

1
|(1 + e−ζ ) log(1 + eζ )|

≤ K
⏐⏐⏐⏐ log(1 + eζ )
{1 + log(1 + eζ )}{−1 + log(1 + eζ )}

⏐⏐⏐⏐α 1 + cd
log(2 + cd)

.

hus, the assumptions of Lemma 5.4 are fulfilled with δ = d and

K+ = Kcd

{
1 +

1
(log 2)2

}
,

K− = K
1 + cd

log(2 + cd)
,

from which we have N1(F , d) ≤ 2KC5.

5.4. Estimation of the truncation error (proof of Lemma 5.2 )

Lemma 5.2 is essentially shown by the following lemma.

Lemma 5.5. Assume that there exist positive constants K+, K−, α, and β such that

|F (x)| ≤ K+

⏐⏐⏐⏐⏐e1/log(1+ex)

1 + ex

⏐⏐⏐⏐⏐
β

(44)

olds for all x ≥ 0, and

|F (x)| ≤ K−

⏐⏐⏐⏐ log(1 + ex)
{1 + log(1 + ex)}{−1 + log(1 + ex)}

⏐⏐⏐⏐α (45)

olds for all x < 0. Let µ = min{α, β}, and let M and N be defined as (7). Then, we have

h
−M−1∑
k=−∞

|F (kh)| + h
∞∑

k=N+1

|F (kh)| ≤

{
K−

α(1 − log 2)α
+

K+

β

(
e1/log 2

)β}
e−µnh. (46)

Proof. From (44), by using (23), it holds for all x ≥ 0 that

|F (x)| ≤ K+

(
e1/log(1+ex)

)β ( e−x

1 + e−x

)β
≤ K+eβ/log 2

e−βx

(1 + 0)β
.

Using this estimate, we have

h
∞∑

k=N+1

|F (kh)| ≤ K+eβ/log 2h
∞∑

k=N+1

e−βkh
≤ K+eβ/log 2

∫
∞

Nh
e−βxdx = K+eβ/log 2

e−βNh

β
.

ext, from (45), using (20) and (25), it holds for all x < 0 that

|F (x)| ≤ K−

⏐⏐⏐⏐ log(1 + ex)
1 + log(1 + ex)

⏐⏐⏐⏐α 1
|−1 + log(1 + ex)|α

≤ K−

(
ex

1 + ex

)α 1
(1 − log 2)α

≤ K−

eαx

(1 + 0)α
1

(1 − log 2)α
.

sing this estimate, we have

h
−M−1∑

|F (kh)| ≤
K−

(1 − log 2)α
h

−M−1∑
eαkh ≤

K−

(1 − log 2)α

∫
−Mh

eαxdx =
K−

(1 − log 2)α
e−αMh

α
.

k=−∞ k=−∞
−∞
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Thus, using (7), we have (46).

Using this lemma, Lemma 5.2 is shown as follows.

roof. Let F (x) = f (φ(x))φ′(x). From (9), by using (24), it holds for all x ≥ 0 that

|F (x)| ≤ K |e−φ(x)
|
β
|φ′(x)|

= K
⏐⏐⏐e1/log(1+ex)

⏐⏐⏐β ⏐⏐⏐⏐ 1
1 + ex

⏐⏐⏐⏐β 1
1 + e−x

1 + {log(1 + ex)}2

{log(1 + ex)}2

≤ K

⏐⏐⏐⏐⏐e1/log(1+ex)

1 + ex

⏐⏐⏐⏐⏐
β

1
1 + 0

{
1 +

1
(log 2)2

}
.

ext, from (13), using (37), it holds for all x < 0 that

|F (x)| ≤ K
1

|1 + {φ(x)}2|1/2|φ(x)|α
φ′(x)

= K
⏐⏐⏐⏐ log(1 + ex)
1 + log(1 + ex)

⏐⏐⏐⏐α 1
|−1 + log(1 + ex)|α

·
1

(1 + e−x) log(1 + ex)

≤ K
⏐⏐⏐⏐ log(1 + ex)
{1 + log(1 + ex)}{−1 + log(1 + ex)}

⏐⏐⏐⏐α · 1.

Thus, the assumptions of Lemma 5.5 are fulfilled with

K+ = K
(
1 +

1
(log 2)2

)
,

K− = K ,

hich completes the proof.
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