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Abstract 

The CBP algorithm in computerized tomography (CT) is a discrete realization of a well-known tool from 
approximation theory; namely, the approximation of a function f in [w” by its convolution with a (bandlimited) 
peaked kernel. The steps in a computer implementation (e.g., in medical CT scanners) of the algorithm evaluate an 
n-dimensional convolution by (a> interpolation of projection data (line integrals in a two-dimensional case), (b) a 
one-dimensional discrete convolution, and (c) interpolation of the convolved data, required in (d) a discrete 
backprojection (integration over a unit sphere). The total error in the algorithm is due to the discretization 
steps (a)-(d) and (e) the truncation error in the basic convolution approximation. In this work we augment the 
known error estimates for steps (b) and (d) with those for (a>, (c) and (e) to arrive at a total error profile of the 
algorithm, which may be summarized as follows. In a discrete b-bandlimited CBP reconstruction fi of f, under 
appropriate conditions i,n (a)-(e), the total error f - fi 
s~p~~~~-~~,~,>~I~l’-‘If((+e)Id~, b-+03. 

is essentially of the order of ~(f, b) = 
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Presently, the discrete convolution backprojection (CBP) algorithm is regarded as the most 
important, accurate, reliable and fast reconstruction method in computerized tomography (CT), 
especially in the medical field. Its utility ranges from electron microscopy, NMR, PET, X-ray 
CT, nondestructive testing, multiphase flow measurements, radar applications and so on up to 
the X-ray structure of supernova remnants. 

Many theoretical aspects of this algorithm are well understood. These include the physical 
and mathematical principles in its derivation, certain error bounds and the various interrela- 
tions in the parameters of discretization and the angular resolution achieved, etc. 

The present work achieves a total error analysis (hitherto lacking) for the discrete CBP 
algorithm by utilizing a mixed-norm set-up of practical interest. It, in particular, tries to resolve 
certain ambiguities in the interrelations between the orders of interpolation operations, the 
tie-up of the cut-off frequency with the sampling distance, the smoothness of the object of 
reconstruction, the role of the filter used and the accuracy desired in a reconstruction. 
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1. The discrete convolution backprojection algorithm 

For background material on CT, and various aspects of the CBP algorithm in particular, we 
refer to the comprehensive works [4,5,9] and the references therein. 

Recollecting from [9, pp. 102-1111, the CBP algorithm is a discrete implementation of the 
continuous convolution backprojection approximation 

w, * f=R#(w, * Rf), 

where W, approximates the Dirac 6 distribution in ll??“. Starting with a suitable radially 
symmetric function @, and taking k&t) = (2,rr>-“/2& 15 l/b), one has 

W,, = R#wb, $&-) = 3(27-41’2-n I (T ) n-lcc 

The function wb is known as the convolving function, & as the window function, W, as the 
kernel function and b as the cut-off frequency of the convolution backprojection algorithm. 

For an application of the convolution backprojection algorithm, the Radon transform g = Rf 

is required at <ej, sI), j = 1,. . . , p, 1 = -4,. . . , q, where dj E S”- ‘, the unit sphere in the 
n-dimensional Euclidean space Iw” and sI = hl, h = l/q. The convolution wb * g is replaced by 
the discrete convolution 

Wb *’ S(ej, ‘) =h t Wb(S -S,)g(ej, SI), 
I= -9 

and the continuous backprojection R# by a discrete backprojection 

Rp#u(x) = e a,jz@j, x * e,). 
j=l 

With g = Rf, for various values of 8, the discrete convolution 

wb * h g(e, S) = h i: ~~(3 - s,)g(e, ~~1 
I= -_4 

is evaluated for s = sj = hj, h = l/q, j = -4,. . . , q. Writing w(s) for wJs), we have w&s) = 
b”w(bs) and so with the tie-up bh = TYTT, 6 E (0, 11, say, and using the symmetry of w, we need 
just the values w( jSn), j = 0,. . . , q, in order to evaluate the discrete convolutions 

wb *hg(e, s,)=b”h 5 w(bh(k-l))g(e, sJ, k= -q,...,q. 
I= -4 

Using these, wb * h g(e, s> for a required s is obtained by a suitable local interpolation 
I,,(wb * h g)(e, ~1. 

In PET and also in CT scans using fan-beam type of geometries, the projection data g(8, s) 
is not equispaced in s. The simplest way to deal with such situations is to compute the parallel 
equispaced data for a standard application of the CBP algorithm by “rebinning” the data [5, 
pp. 172-1741 through a suitable interpolation J,g, 77 denoting the largest spacing between the 
sampled data points s. Choosing a convenient h of the order of 7, we substitute the 
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interpolated values J,g(e, sI) for g(B, sI) in the above. In our treatment in the sequel, 
interpolation in 8 is not considered. Thus, for the applicability of our results, in a divergent 
mode of data collection the detector spacings are assumed to be adjusted so that the rebinning 
does not require an interpolation in 13. 

The final discrete convolution backprojection algorithm thus becomes 

f-f;=Rp#Ihwb sh J,Rf. 

(see 
and 

Bounds for the discretization errors e, = R,#(w, * h g - wb * g> and e2 = (R,# - R#)(w,_* g> 
[6], [9, pp. 104-106]), which we make use of in later sections, are as follows. Let 0 ,< @ G 1 
&.<S> = 0 for I ,.$ I 2 1. If the backprojection quadrature satisfies 

where the apj’s are positive and where Hi,,, denotes the space of even spherical harmonics of 
degree 2m, and if 

b<i+m, b<z, 0<-9-<l, (2) 

then for f E C;(P), the space of infinitely differentiable functions with support in the unit ball 
R” of R”, 

I e, I < i(2T)-n’2Eg( f, b) (3) 

and 

I e2 I G II f II 1_=(~,77(fi, m>, (4) 
where 

E;(f, b)=IS”-‘1 sup B~s”~, Jn,>hl u 1 n-1 1 fG4 I do, 

and 77 admits an estimate of the form 

0 G ~(6, b) G c(6) eehc8jb, (5) 

for b > B(6), with A(6), c(6) and B(6) being certain positive constants. Using density 
arguments, it follows that, so long as they make sense, the bounds for e, and e2 remain valid 
for functions not necessarily in Cy(fln). Functions f for which &z< f, b) is sufficiently small are 
called essentially b-bandlimited functions. The quantity E( f, b) = .$< f, b)/ ) S”- ’ ) will play an 
important role in the sequel. 

The filtering effect of interpolation, independently of the other discretization errors, has also 
been studied. Thus, for the B-spline interpolation [9, pp. 60, 107, 1081 

‘hds) = &(sdBl,h(s - %>, 

of order k, if b < n/h, 

R#I,( wb * g) = Gh * w, * f-t e3, 
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where 

(sinc(~~151))k, lSk~/h, 

0, otherwise, 

2 k-l 

II e3 II L*(f2”) G ; ( I ha II f II Q(W), a G $(n - I>, 

where for functions f with supp(f) can, the Sobolev space H,“(fln) norm is given by 

II f II H;(W) = j-,(1 + It I 2)a I fit, I ’ dt. 

For n = 2, certain bounds on the inherent error f - I+‘, * f, using the radial averages 
f,(x) = (l/I S’ I>/slfCx + r-0) de of functions in R 2, have been given in [S]. (For a follow-up and 
details of this approach, see [7,12,13].) 

2. The Oh-oh-Lemma 

Let c be a positive number, K a nondecreasing positive function and 6 a positive function on 
(0, c]. Also, let 50 and 4 be positive functions on (0, cl, such that for all h E (0, 11, there hold 

cp(t> <w 
u(h) = sup - 

t=co, cl 44 ’ 
(7) 

w(h) = sup{+): t E [h, 11) < 00 (8) 

and 

limq(t) = 0. 
t-0 

(9) 

With 6, K, v, and 4 as above, in the following we prove a basic lemma of crucial interest in 
our subsequent error analysis of the discrete CBP algorithm. Envisaging its utility elsewhere in 
approximation theory and numerical analysis, it is stated in a little more generality than we 
actually require right now. Let H, denote the set of nonnegative integers. 

Oh-oh-Lemma. Let t, E (0, c I, n E Z +, be such that 
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where (Y and p are independent of n. If (6)-(9) hold and for some constant M, 

K(tj) GM s(tJ +K(tn)- 
i 

4Ctj) I Wn) ’ 
for all n E Z, and n <j E Z,, then, as t --P 0, 

K(t) = 
0bP(0>~ if 6(t) = O(cp(t)), 

o(cp(t)), if a(t) = o(cp(t)). 

Proof. Letting A = lim supr ~ 0 G(t)/cp(t), for both the cases 8(t) = O(cp(t)) and 6(t) = o(cp(t>), 
A < 03, Let B be any number such that A < B. Using lim, --) oq(t) = 0, we can find an a E (0, c] 
such that 

1 
q(+qjp tE(O,aI. 

Since, 0 <p < 1, for some m E Z,, p”’ G a. Let us define h, = t, and h, = t,,, n E Z,. 
Then, writing e(t) = K(t)/cp(t), for n E Z,, 

NOW we can choose N large enough so that S(h,)/q(h,) <B, n > N. Then, putting 
C = MBw(cP), for n > N + 1, 

e(h,) < C + &(h,_,), 

so that for k + 1 E Z,, 

Let h E (0, hN] be arbitrary. We choose k such that k + 1 E Z, and hN+k+l <h < h,+k. 
Then, since K is nondecreasing, 

‘P(h) Ge(h,v+dw 

Hence, 

e(h) G W(am)e(hN+k 
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Since 

1 ln(kV+,/h) 
k>-- 

m ln(l/cu) ’ 

lim sup,,,e(h) < 2Cw(cP) = ~M(w(cu”))~B. 
As B is arbitrary such that B >A, it follows that 

0 G liy s;pe(h) 6 ~M(w(L~“))~A, 
--f 

from which, noting that A = 0 in the 8(t) = o(cp(t>) case, both the assertions follow, completing 
the proof. q 

The Oh-oh-Lemma extends an idea of [3] formalized in [2] (“Oh”-part with 6(t) = ta = 
q(t), q!dt> = tm, m > a > 0) and in [ll (4(t) = t”); (see also [ll, pp. 91, 921). The main point of 
the lemma is the ease with which one is able to get certain degree of approximation results of 
very general orders (4(t) = e-l/‘, t”’ log t, P/log t; q(t) = ta, ta log t, F/(log t13, m > a > 0, 
any k th order modulus of smoothness Ok(t), k < m, (for definition and many examples, see 
[14]) of any function in L,( - cc), cc)), 1 G 4 G w, being some examples of compatible pairs of 4 
and q,>. In the present context of computerized tomography, it allows 
functions much more general than those satisfying a regularity condition of 
A = ][I”, as t-+0. 

3. The tomographic spaces CT,,, CT,, CTv and CT: 

a study of wmdow 
the type 1 -Q(t) = 

Let CT,, = CT,(nn> denote the linear space of real-valued functions f~ C&KY> (f defined 
and continuous in R”, with support in KY> which are essentially bandlimited in the sense that 

e(f, b) = SUP HES~_I~~,,hl~lnll~(~~)ld~~O, as b+m. 
, 

With the norm 

II f II o = ,wpI _/-- (T I n-1 I f(d) I,dc, 

CT, is a complete space of which Cr((n”> is a dense subset. Since for f~ CT,, the function 

h(B)=llal”-‘Ifjae)Ido, @ES-~, 
n 

is continuous on S-l, the “sup” in the above is actually a “max”. 
A motivation for introducing the tomographic space CT, is the e,-error estimate for 

essentially bandlimited functions. We note that CT, is continuously imbedded in C,(KP) and_ 
that its norm comes quite close to the sup-norm; (for f radially symmetric and with f 
nonnegative, the two norms in fact differ only by a factor of (27r-“/2). 
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For a nonnegative measurable weight function w (2 1) on Rf= (0, a~), let the space CT, 
(c CT,) consist of functions f for which 

II f II w = s;p_, 1,‘~ I “-lw( I c I) I f(ae, I da < ~0. 

Assuming the order function 4 of the previous section to be defined on the whole of R+, for 
f~ CT, and t E R+, we define Peetre’s K-functional K,(t; f) with the function parameter 4 

by 

&(t; f) = ,nr {II f-g II0 + (b(t) II g II w}. 
w 

The w and 4 in the above are assumed to be tied by 

w(t)= c#l f 
[ i )I 

-1 

) t>o. (10) 

Functions f E CT, for which K,(t; f> = O(p(t 11, t - 0, constitute the intermediate space 
(CT,, CT,),, which for suitable 4 and cp will characterize functions which may be recon- 
structed to within 0(9(1/b)) by a discrete convolution backprojection algorithm with appropri- 
ate b-bandlimited filter functions. We also define (CT,, CT,): to be the space of functions f 
for which K,(t; f> = o(cp(t)), t + 0. The spaces CTp and CT: simply are abbreviations for the 
intermediate spaces (CT,,, CT,JV and (CT,, CT,):, respectively. 

4. The order functions and the filter 

Let, in addition, the order function 4 satisfy 

w4 
WI = ;;; (qt) 

- < 03, h E (0, 11, (11) 

J= sup u(h) < 03. 
hE(O, 11 

(12) 

The function 4 is also assumed to be related with the filter function @ by the requirement 
that for 5 E R”, 

l~-~(5)l~~ICI(l~I), l5kL (13) 
where for h E (0, 11, we define t,Nh) = inf, Q c4(t)/c$(t/h), and A is a constant. Moreover, for 
some constant B, @ is assumed to satisfy 

l&)ld, 045ld, (14) 
and 

l&)l=O, l5b 1. (15) 
The e, and e2 estimates (3), (4) remain valid (to within a multiplication by the constant B) for 
the G’s satisfying (141, (15). 
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While studying errors due to interpolation of projection and convolved data, respectively, we 
assume the following additional conditions on the function u associated with the order function 

40: 
limt’-n+lu(t) = 0, (16) 
t+0 

lim t%(t) = 0, (17) 
t+o 

where 1 is the order of interpolation for the nonequispaced projection data g(B, s>, m is the 
order of interpolation of the convolved data wb * h g and n is the dimension of the problem 
space R”. Note that for any minimal choice I = m + it - 1. Some practical examples of 1, m, cp, 
u, 6, U, $ and @ appear in Section 10. 

We note here that lim, ~ 0 tmu(t) = 0, for instance, implies that (t/z)” G hmu(h)cp(th)/~o(t) = 
0(&h)), as h + 0, for any fixed t E (0, cl. It follows that ~(8, b) < c(6) e-A(9)b = 0(1/V) = 
o(q(l/b)), b -+ ~0, i.e., ~(8, b) approaches zero much faster as compared to cp(l/b). 

In this study the order of approximation under consideration is 9(1/b), as the bandwidth 
b + ~0. In the sequel the conditions on the funstions @, 4, cp etc., imposed till now, will be 
assumed to be satisfied. For a @ such that 1 - @(a) = O(a”), u -+ O+, the choice 4(t) = t”’ is 
appropriate for orders q(t) of approximation such as t”, t”log(log(l/t)), ta/log(l/t), (Y <m, 
any moduli of smoothness o,(t), k < m, etc. In practice the case m = 2 is quite common (see 
Section 10). 

5. The intrinsic error in CBP 

The intrinsic error f - IV, * f, arising due to the bandlimiting aspect of CBP, is independent 
of variations or refinements in the discretizations and sampling schemes. 

Writing fbc,= W, * f = R#(w, 
&6> = f(t>@((/b). Since 

* Rf ), for the continuous convolution backprojection, we have 

using &aO>=O, lal>l, and w(lol)<Jw(b), IaI<b, and l&[)l<B, 
f E CT, we have 

0 < I[ I G 1, for 

11 fb” II w < BJw(b) II f 110 < ~0, (IS) 
which, in particular, implies that fi E CT,,,. Similarly, for f E CT,,,, ft E CT, and 11 fi 11 w < 
B II f 1) ,,,. It is also clear that II fi II o G B II f II 0. Next, since, $I( I u I/b) < U/4(1/ l v I )M(l/b), 
10 l G b, and w( 1 CJ 1)/w(b) 2 l/J, if I CT 12 b, for all b sufficiently large, we have 

Ilf -fb” IIOG SUP Al I f^(ae) I da 
OES”_’ Iul<b 

+ (2+‘2/ ,~,>ldn-lIf^((Te)Idu 
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For any g E CT,,,, 

If-fb” llo<llf-gIlo+Ik-g,CIIo+Il(g-f)C,lIo 

Gmax{l+B, D} 

Taking the infimum over CT,,,, with E = max{l + B, 01, we get 

so that II f-f; II o = O(qo(l/b)), if f~ CT+,, and II f-f; II o = o(cp(l/b)), if f~ CT:. 
Conversely, if II f-f: II 0 = 0(6(1/b)), b + ~0, we have II f-f: II o <Aa(l/b), for 

and for all b sufficiently large (b > b,, say). Then, since ft E CT,, 

K,(t; f) = ,g {II f-g II 0 +4(t) II g II w} 

{mv(qIlf-dw+~lldlwj 
w 

W> 

W/b) 
, 

where M = max(A, B, BJ). Since this inequality is valid for all b sufficiently large and for all t, 

87 

(19) 

some A 

by the Oh-oh-Lemma we conclude that K+( t ; f > = O(cp( t>> or o(cp( t>), t + 0, according as 
80) = O(cp(t)) or o(cp(t)) as t + 0. Thus we have proved the following theorem. 

Theorem 1 (Intrinsic error). If @, cp and w satisfy the conditions (6)~(15), and f E CT,, then 

7 b-)OC), ifffECT;. (21) 

It may be noted that the Oh-oh-Lemma actually asserts that the O(cp(l/b)) (or, o(cp(l/b))) 
convergence even along a sequence (b,}, satisfying the sparsity condition 0 < cy G 6,/b, + 1 G p < 
1, implies that f E CT, (respectively, CT:). In particular, the “oh’‘-part implies that the order 
of error in the “Oh’‘-part cannot be improved for the class CT,, as a whole. 
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6. An application of the Ramachandran-Lakshminarayanan filter 

The ideal low-pass filter @ = Q0 given by 

@o(5) = 
i 

1, 15lG1, 
0, ItI> 1, 

corresponds to the Ramachandran-Lakshminarayanan filter in [w’. In [w” it corresponds to the 
kernel W, = IV: given by [9, pp. 102, 1101 

W,“(x) = (24 
-n/2 Jl,2(b 1 x I) 

b 
(b I x ly’* * 

In this case, the two inequalities 11 - &[> ItI>, ltl<l,and l&5>l~wNl~l~1, 
are valid with B = 1 and for any choice of $, whatsoever. Denoting the continuous reconstruc- 
tion by the Ramachandran-Lakshinarayanan filter by ff, since there holds 

IIf-f,” Ilo= w~,,>b I u I ‘-l I fid) I da = &(f, b), 

from the Intrinsic Error Theorem we immediately get the following theorem. 

Theorem 2 (Characterization of intermediate CT spaces). Let CD, cp and w satisfy (6)-(15) and 
Let f E CT,. Then, 

f E C’&, (22) 

(23) 

At this stage we also note that from (18) we have K,(t; f > < II f - fb II 0 + c#dtMb)J II f II 0. 
Let E > 0 be given. Since f E CT,, fixing b sufficiently large, the first term on the right can be 
made less than $F. Having done so, since +(t> + 0, t + 0, there exists a 6 > 0, such that the 
second term too is less than ie, for 0 < t < 6. Thus K,(t; f) + 0, as t -+ 0. Hence the Intrinsic 
Error Theorem, the characterization of the intermediate CT spaces and (19) together imply the 
following corollary. 

Corollary 3 (Intrinsic error). If @, p and w satisfy (614151, and f E CT,, then, as b + 03, 

II f -fi 1) o + 0. Moreover, 

Ilf-fb"Ilo=o cp ; 
i i ii 

, iff &(f,b)=O cp ; ) b+m, 
i i ii 

Ilf-f,” IIo=o cp ; 
i i 11 

, iff &(f, b)=o cp ; ) b-w. 
i i 1) 

(25) 
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In particular, the CT, norm being stronger than the sup-norm in R”, the convergence 
f;(x) +f(x>, for f E CT,, as well as the convergence rate f;(x) -f(x) = O(cp(l/b)l, for 
f E CTV, and f:(x) -f(x) = o(cp(l/b)), for f E CT:, remain valid uniformly in x E an (WI. 

7. Weighted Radon spaces Zw 

Motivated by the spaces CT, and CT,, consider functions g(0, s> defined on the unit 
cylinder 2 = S”- ’ X R, for which 

II g IIw = B~s”~, /--4 I u I) I i?(h a) I da < 03, SUP 

where w is a nonnegative weight function on Rf and g^(B, (T) denotes the one-dimensional 
Fourier transform of g(B, s), regarded as a function of s with 8 fixed. Such functions (with the 
usual identification of functions equal a.e.1 with norm II * (Iw constitute our weighted radon 
space gW. (It may be noted that the present analysis, without forging any new tool, extends to a 
more general situation of II g II w = sup,, snml II o( *)g^(B, .I II, where II - II is a monotone norm, 
i.e., satisfying II y II G II 2 II if I y(o) I < I da> I, u E R’.) 

If w0 and wi (2 w,) are two weight functions, for F ELA?~~, we define the Peetre’s K-func- 
tional by 

K,( t; F) = Jr& { II F - g II w,, + t II g II w,}. 

For b > 0, let Fh be defined through $‘<0, U) = @co, a>, if I (T I <b, and zero, otherwise. 
Then Fb ~9~ if F ~9~ and moreover, I( Fh II w G II F II @, F ~99~ for all w, whatsoever. Let for 
some constant J,, the quotient function 6 = wI/wO satisfy 

qld) 

w 
GJ,, IolGb. 

Then, 

II Fb II w, <J,W( b) II F II co{,. 

Further, if for some constant J,., 

G(b) 

qld) 
<Jr, lal>b, 

then 

= sup / 
o&y-’ lc I>b 

(o( I~l))-%i( ld)lz+, o)I da< &llNLo~. 
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Note that the J, and .I, inequalities hold for all b if 

3( th) 
J, = sup sup - < to, (26) 

hE(O, 11 t>o W) 

which we assume in the sequel. 
Let a nonnegative function v on (0, c] have the following properties analogous to those of cp 

defined earlier: 

VW 
G(h) = sup - 

fE(O, cl 4th) < co7 
(27) 

G(h) = sup ii(t) < ~0, 
r~[h, 11 

(28) 

G(h) = 
4WJ+) 

tSlfoyc1 w/w)b+h) < my 
(29) 

lim@(t) = 0. 
t-0 (30) 

Let 99” = (SW,, 99JV be the intermediate space of g ~9~~ for which K,(l/G(l/t); g) = 
O(v(t)), t + 0, and 9Z’z = (SW,, SW,): of those with K,(l/G(l/t); g) = o(C(t)), t + 0. Let 

e(g; 4 = ,s;:_, J->b~o’ 
Then, for g ~32’~,, 

e(F 

I d)E (0, a) I da. 

: -gb; b) +e((g - F)b 

1 1 

‘; b) <e(F-g; b) +e(J ; b)<2 IIF-gil,,+ --L &ll WI 

II F -g II oo + - G(b) II g lq 

so that 

e(F; b 

Also, since 

I 1 
KU ------;F 

W/t) 
II F - Fb II w. + &( ll(F-g)“ll.,+llgbllu,)) 

G gsf 
i 

e(F; b) + 
01 

&(J,~(b)llF-gIl~o+ lldl~I)] 

4b) 
e(R b) + m&, , 

applying the Oh-oh-Lemma to the function K,(l/G(l/t); F) and orders 6(1/t> and v(t), we 
get the following analogue of the characterization of the intermediate CT spaces. 
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Theorem 4 (Characterization of intermediate Radon spaces). If wO, w1 and v satisfy (26)-(30), 

~2’~ = F •92~~: 
i 

e(F; b) =O(v( f)), b-j, 
F EL%‘~~: e(F; b) = +( ;)), b-j. 

This characterization, for appropriate choices of o0 and or, will be used in the next two 
sections dealing with the discretization errors due to an interpolation of the projection and the 
convolved data. 

8. Error in the interpolation of convolved data 

Suppose Ih is any interpolation of order m, for the equispaced convolved data 
(w6 *’ gN8, s,), k = -q,. . . , q, satisfying 

II~hGIlc~Q,IIGllc, GEC[-L 11, (31) 
III,G-GII,~C,h”IIG’“~II., =Cm[-1, 11, (32) 

where ]I * II c denotes the sup-norm on the interval [ - 1, 11, Cm[ - 1, l] is the space of m-times 
continuously differentiable functions on [ - 1, 11 and where Q, and C, are independent of h. 
An appropriate example of such an I,, is the m-point central difference interpolation. For the 
standard two-point linear interpolation used in most CBP applications we have m = 2. 

Using [9, p.581 

wb * h g)” (8, a) = (h)1’2$,(fl) c g 
IEH 

and with D denoting the partial differentiation a/&, since I C&S> I <I?, 0 < I[ I < 1, and 
Gb(a) = 0 for I CT I > b, we have 

=G (24 ‘/“-“(f~)/” l~l~+~-l 
-b 

Putting 

( kWb * “g)ceT 
and, using b G v/h, 

11 E,w, * h g 11 = 

S) = (Ihwb * h g - wb * h’g)(e9 s), 

SUP iiEhwb *hg(e,‘)IIc- SUP cIhmIImVb *“g(ey->IIC 
tJES"-' BE&S-l 

(24 1’2-n(;~) sup C,hmLl u I m+n-l I S(e, a) I da. 
eEs”-’ 
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From this, with W,(G) = max{ 1 (T I “‘+“-l, 11, there follows 

II E,w, * h g II =G (2rr)“2-“(9qC,hm II g II 0,. 

With ~~(0) = max{ ( (T ( n-1, l}, G(a) = max{ ((T I m, l} and we have 

II E/p, * h g II G Q, II wb * h g II c < Q,(27~)~“-“($) II g II wg’ 

It follows that for a general g, 

11 &w, * h g II G oiinf_ { 11 &(w, * h (g - G)) II+ II &(w, * h G)ll} 
1 

G maxI&,, C&W 1’2-n($) inf {II g - G II o,, + h” II G II w,} 
G EL%?, 

Next, 

= max{Q,, C,}(2~)“2-“(~B)K,(hm; g). 

= (27r)(“-1)‘2 II f-J+ II o 

< $fr (2a)(“-1)‘2 
w 

lifFllo+J4( ;)ll%} 

< $i (24 
w 

(n-1)‘2J( Ilf-Fllo+~(~)IIFII,] 

< (2.rr)(n-1)‘2JKg 

Hence, if f E CTq, 

sup / 
o,(lo1)1~(8,a)lda=O 

eEs”-’ lal>b 

Using lim f ~ o t%(t) = 0, this and the theorem on the characterization of intermediate Radon 
spaces imply that K,(t”; g> = O(q~(t)), t * 0. Hence, from the Ku-estimate of Eh in the above, 
there follows (1 Ih(wh * gl - wb * g II = O(cp(h)), 

wb * h g) I = O(cp(l/b)), h 
so that finally we have e, = I R,#(Z,(w, * h g) - 

s owing that the net contribution of the error due to the interpolation 
of the convolved data is of the order of cp(l/b). 

Similarly, e, = o(cp(l/b)), for f~ CT:, and e, = o(l), for f~ CT, and m > 0 (for the details 
of the reasoning, see the next section), as b + co. Thus we have proved the following theorem. 
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Theorem 5 (Error in the interpolation of convolved data). If the assumptions (11, (21, (6)~(151, 
(17) and (311, (32) hold, 

0(4/W> 4f.f~ C’& 

((R,#(lh(Wb * h g) - wb * %))@)I = 

I 

o(vo(W)), iffy CT;> (33) 
4% KfE CT,, 

uniformly in x E W. 

9. Error in the interpolation of projection data 

Let the minimum spacing h, and the maximum spacing h, between consecutive local 
interpolation data points satisfy p < h,/h,, where p is a certain constant. With the largest of 
the data spacings denoted by rl (assumed to be of the order of h, i.e., q/h G C for some 
constant C), let the projection data interpolation operator J, be of order 1: 

lIJ,gIIc~Qe,IIsIIc, g=[--1, 11, (34) 

IIJ,g-gIIc~C~rl’llg’llc, .cC’[--l, 11, (35) 

Q, and C, being certain constants independent of 7. Note, for example, that the Lagrange 
interpolation 

k=l 

based on appropriate local nodes z,, z2,. . . , zI, provides an Ith-order interpolation. 
We take g(O, S) as the projection data for f. Putting 

(E?g)(fJ, s) = (J1,g -g)(e, s) and II E,s II = SUP II qgp, *) II c, 
/3rsfl-’ 

we have 

I &4 a) I da, 

from which, if we take w,(a) = max{ I (T I ’ l}, there follows 

II E,g II =z (2-p2C5771 II g II w,. 

Also, with w,(a) = 1, for some constant 

II Jqg II G HIJ II g II W(]. 

H,, (depending on P>, 



94 R.K.S. Rathore/Joumal of Computational and Applied Mathematics 54 (1994) 79-97 

Then, G(a) = o,(a>/w,(a) = We = max( I u I ‘, l} and hence, for any g EL%‘~, 

II Ellg II G Gis { II E,(g - G) II + II E,,(G) II} 
I 

= max ( H,, (2~) -1’2C,)K,(4; 8). 

Since, i(O, a) = (23~) (n-1)/2 ((TO) by the projection theorem, for f~ CT,,, we have f^ , 

and, if f E CT,,,, 

Q-Q-“4 $ (2iT)(“-1)‘2 II f II w. 
i i 

It follows that for any f~ CT,,, 

+; b, = ,~~~_l J,,>, I i?(e, 0) I du = (~IT)(~-‘)‘~ II f-fb II wo, say, 

< (2T)(n-1)‘2 Fp& (ll(f-F) - (j.-F)bI/,,+lIF-Fbll~,) 
w 

With w(s) = wl(s), bh = 6n, 6 E (0, 11, and assuming that 6 is such that 

a,, = I w(O) I + 2 5 I w(_Xfn> I < w, 
j=l 

using (1) and the positivity of the (Y~/‘s, we have 

eJ=lR;(lh(wb *h( Jqg -g)))l G 5 “pjQ, II E,g Ilh 2 I Wb(‘h) I 
j=l 1=-q 

= I S”-’ I b”Q,ha,+, II E,g Il. 

(36) 
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At this point we may note that if N denotes the order of magnitude of an extraneous noise 
N(ej, s) in the projection data for a single projection view 8,, the worst-case reconstruction 
error at a point is of order aPjhb”aW,,N, where uW 4 = ) w(O) ( + 2Cq=, 1 w( j&rr> I. Thus a, 
provides a useful measure of a filter’s sensitivity to noise. Since, for the p and 4 in practice, 
approximately p = cqnP1, c = rTnP1 /(n - l)! [9, p.701, and the quadrature coefficients aPj are 
practically of the order l/p of magnitude, the noise propagation due to a single view is of order 
O( Na,,,). 

If f~ CTP, e(g; b) = O(b- (“-‘$(1/b)). Taking v(t) = t”-‘q(t), and using lim,,,t’-“+‘u(t) 
= 0, from the theorem on the characterization of intermediate Radon spaces, we have g •9~ 
and consequently, since 7 = O(h) = 0(1/b), e, = O(cp(l/b)). Similarly, f~ CT: implies that 
e, = o(q(l/b)). Moreover, if f~ CT,, e(g; b) = o(b- (n-1)) and then with 40 = 1, since for 
I > IZ - 1, lim,,,t’-“+’ = 0, we have e, = o(l), b -+ 03. Thus we have proved the following 
theorem. 

Theorem 6 (Error in the interpolation of projection data). Zf (11, (21, (6)-(161, (31), (32) and 
(34)-(36) hold and q = 0(1/b), then 

O(cpWb iffy CTp, 

pql,(w, *yJ7g-g)))(x)l = +P(l/b))~ iff~CT,OY 
4% iffy CT,, 

uniformly in x E P. 

(37) 

It may be noted that in the above analysis the finiteness of a,,, is quite important (in practical 
situations it is material when 4 is large, i.e., when the discretization is very fine). It comes as a 
pleasant surprise that the usual practice of choosing 6 = 1, that is, tying b to h by b = v/h, 
which simplifies the expressions for the convolving coefficients (for the Ramachandran- 
Lakshminarayanan and the Shepp-Logan filters, see [9, pp. 109-ill]), also achieves this crucial 
finiteness of a, (for these and the Hamming filter in Iw 2, d(l) # 0; for cosine filter d(l) = 0). 

Theorem 7 (Finiteness of a,,,). Zf &[> is radially symmetric and &a) is twice continuously 
differentiable in [0, 11, then a, is finite iff^<l - 6)@(l) = 0 (i.e., a, is finite for all 6 E (0, 11, if 
Q(l) = 0, and is finite only for 6 = 1, if Q(l) Z 0). 

Proof. For s > 0 and n > 2, 

(2~)“w(s) = ;/,I (T ] rr-1& ((T 1) eisa da= /l,n-l&(~) COS(SCT) da 
0 

1 
+6’(l)? - ,~‘(,‘-l~(~))%os(s,, da, 

0 

from which the result follows, since for j E Z, and 6 E (0, 11, max{ I sin( jSr) I, I sin(( j + 
1)&r)] 2 I sin(+ min{6, 1 - 61) I. 0 
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It may also be appropriate to remark here that divergent ray geometries in which rebinning 
does require an interpolation in the B-argument, treating the corresponding interpolation error 
as the noise N<ej, s> in the above, for an overall error bound of order 9(1/b) we need an 
accuracy of order b - (“-‘$(1/b) in the &interpolation. 

The result on the finiteness of a, has an important implication: the choice h = 6~/b, in a 
b-bandlimited approximation with 0 < 6 < 1, corresponds to an oversampling. Since for popular 
windows (e.g., Shepp-Logan, Ramachandran-Lakshminarayanan and Hamming) the condi- 
tions of the theorem are satisfied with &l> # 0, an oversampling corresponds to a, = ~0, which 
for very large 4 would manifest in a large noise propagating factor (Y,,~. 

10. Total error in the discrete convolution backprojection 

A break-up of the total error in the discrete convolution backprojection algorithm is given by 

f-f,“=f-W, * f-(RF-R#)(w, * g)-R,#(l,(w, *hg)-Wb *hg) 

-Rp”( Wb * h g - Wb * S) -R;l,(w, *h (JVg -g)). 

Recollecting the threads from the previous sections, under the hypotheses (l), (21, (6)-(171, 
(311, (32) and (34)-(36) (note the use of the sampling condition bh = TT for a satisfaction of (36) 
for the commonly used windows) and with 7 = 0(1/b): (a) the order of approximation 
f- W, * f is dealt with in the intrinsic error corollary; (b) the backprojection quadrature error 
(R,# - R?w, * g>, according to (4), (51, decays exponentially; (c) the contribution 
R,#(Ih(wb * h g) - wb * h g) to the error due to the interpolation of the convolutions is esti- 
mated in (33); (d) the convolution discretization error R,#(w, * h g - wb * g) is given by (3); 
and finally, (e) an estimate of the order of error in the interpolation of the projection data 
Rs(Z,(w, * h (J,g -g))) is given in (37). Combining these, from the characterization of the 
intermediate Radon spaces, we finally arrive at the following theorem. 

Theorem 8 (Total error in the discrete CBP algorithm). If (I), (21, (6)-(17), (311, (32) and 
(34)-(36) hold and rj = 0(1/b), then, as b + 03, 

f(x) -f;(x) = 

I 

0(4/b)), iffy CTq, i.e., 4.L b) = O(@/b)), 

+(1/b)), iffy CT:, i.e., ~(f, b) =+(1/b)), 

O(l)) iffy CT,,, i.e., ~(f, b) = o(l), 

uniformly in x E W. 

Thus, loosely speaking, in a discrete b-bandlimited CBP reconstruction, the total error is of 
the order of ~(f, b). 

For the .Shepp-Logan, Hamming and cosine filters in the planar tomography 12 = 2, the 
window functions for I 6 I< 1 equal sinc($r I[ I), a + (1 - ,>cos<& Is I>, 0 < a < 1, and 
cos<$r I 5 I), respectively. In these cases $(h) = h2, so that qb(t> = t 2 is appropriate (usable also 
for the Ramachandran-Lakshminarayanan window). Then v(h) = h2 and if, as an example, we 
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take q(t) = ta, 0 < (Y < 2, then u(h) = tpa and the interpolation orders m and 1 have to satisfy 
m > (Y and I> 1 + cr. For 0 < (Y < 1, we thus get the smallest values m = 1 and I= 2, while for 
1 G (Y < 2, we require m = 2 and I= 3. In many experiments with the above filters (see, e.g., 
[7,12]; also cf. [5, pp. 67-711) the order of error for the cross sections under consideration is 
found to be 0(1/b), which corresponds to (Y = 1. This is in agreement with the findings in [lo] 
(cf. [5, pp. 140-1441, [9, p.1081) that in practical tests the broken-line interpolation (m = 2) is 
satisfactory, while the nearest-neighbour interpolation (m = 1) is not. 
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