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Abstract

In the present paper, we give some convergence results of the global minimal residual methods and the global orthogonal residual
methods for multiple linear systems. Using the Schur complement formulae and a new matrix product, we give expressions of the
approximate solutions and the corresponding residuals. We also derive some useful relations between the norm of the residuals.
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1. Introduction

Many applications require the solution of several sparse systems of linear equations with the same coefficient matrix
and different right-hand sides

AX = B, (1.1)

where A is an n × n real matrix, B and X are n × s rectangular matrices with s>n.
For nonsymmetric problems, some block Krylov subspace methods have been developed these last years; see

[8–11,15,18,20,23,24] and the references therein.
In [10], we introduced a global approach. It consists of projecting the initial residual onto a matrix Krylov subspace.

We derived the global full orthogonalization (Gl-FOM) method and the global generalized minimum residual (Gl-
GMRES) method.

In the present paper we give some new convergence results for two classes of global Krylov subspace methods.
These methods are classified in two categories: the global minimal residual (Gl-MR) methods containing all the Krylov
methods that are theoretically equivalent to Gl-GMRES and the global orthogonal residual (Gl-OR) methods including
the methods that are theoretically equivalent to Gl-FOM. We study the convergence behaviour of these methods without
referring to any algorithm. In this work, we do not consider the numerical aspect of these methods.
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The paper is organized as follows. In Section 2, we review some properties of the Schur complement and of the
Kronecker product. We also introduce a new matrix product and give some of its properties. In Section 3, we define
the global minimal residual methods and the global orthogonal methods. Using the Schur complement we give new
expressions of the approximations and the corresponding residuals. We also derive a relationship between the residual
norms. A convergence analysis is discussed in Section 4.

2. Definitions and properties

2.1. Some Schur complement identities

We first recall the definition of the Schur complement [22] and give some of their properties; for more properties see
[1,4–7,14,16].

Definition 1. Let M1 be a matrix partitioned into four blocks

M1 =
[

A B

C D

]
,

where the submatrix D is assumed to be square and nonsingular. The Schur complement of D in M1, denoted by
(M1/D), is defined by

(M1/D) = A − BD−1C.

If D is not a square matrix then a pseudo-Schur complement of D in M1 can still be defined [2,5]. Let us remark
that having the nonsingular submatrix D in the lower right-hand side corner of M1 is a matter of convention. We can
similarly define the following Schur complements:

(M1/A) = D − CA−1B,

(M1/B) = C − DB−1A,

(M1/C) = B − AC−1D.

Now we will give some properties of the Schur complements.

Proposition 1 (Messaoudi [13]). Let us assume that the submatrix D is nonsingular, then([
A B

C D

]/
D

)
=
([

D C

B A

]/
D

)
=
([

B A

D C

]/
D

)
=
([

C D

A B

]/
D

)
.

Proposition 2 (Messaoudi [13]). Assuming that the matrix D is nonsingular and E is a matrix such that the product
EA is well defined, then([

EA EB

C D

]/
D

)
= E

([
A B

C D

]/
D

)
.

We recall the first matrix Sylvester identity. Consider the matrices K and M3 partitioned as follows:

K =
[

A B E

C D F

G H L

]
, M1 =

[
A B

C D

]
,

M2 =
[

B E

D F

]
, M3 =

[
D F

H L

]
, M4 =

[
C D

G H

]
.



500 R. Bouyouli et al. / Journal of Computational and Applied Mathematics 196 (2006) 498 –511

Proposition 3 (The first matrix Sylvester identity (Messaoudi [13])). If the matrices D and M3 are square and non-
singular, then

(K/M3) = ((K/D)/(M3/D)) = (M1/D) − (M2/D)(M3/D)−1(M4/D).

2.2. The Kronecker product and the � product

For two matricesY and Z in Rn×s , we define the inner product 〈Y, Z〉F = tr(Y TZ) where tr(Y TZ) denotes the trace of
the matrix Y TZ. The associated norm is the Frobenius norm denoted by ‖.‖F . A system of vectors (matrices) of Rn×s

is said to be F-orthonormal if it is orthonormal with respect to 〈., .〉F . For Y = [yi,j ] ∈ Rn×s , we denote by vec(Y ) the
vector of Rns defined by vec(Y ) = [y(., 1)T, y(., 2)T, . . . , y(., s)T]T where y(., j), j = 1, . . . , s, is the jth column of
Y. A ⊗ B = [ai,jB] denotes the Kronecker product of the matrices A and B. For this product, we have the following
properties [12]:

(1) (A ⊗ B)T = AT ⊗ BT.
(2) (A ⊗ B)(C ⊗ D) = (AC ⊗ BD).
(3) If A and B are nonsingular matrices of dimension n × n and p × p, respectively, then (A ⊗ B)−1 = A−1 ⊗ B−1.
(4) If A and B are n × n and p × p, matrices, then

det(A ⊗ B) = det(A)p det(B)n and tr(A ⊗ B) = tr(A) tr(B).
(5) vec(ABC) = (CT ⊗ A) vec(B).
(6) vec(A)T vec(B) = trace(ATB).

In the following we introduce a new product denoted by � and defined as follows:

Definition 2. Let A = [A1, A2, . . . , Ap] and B = [B1, B2, . . . , Bl] be matrices of dimension n × ps and n × ls,
respectively, where Ai and Bj (i = 1, . . . , p; j = 1, . . . , l) are n × s matrices. Then the p × l matrix AT � B is
defined by:

AT � B =

⎛
⎜⎜⎝

〈A1, B1〉F 〈A1, B2〉F . . . 〈A1, Bl〉F
〈A2, B1〉F 〈A2, B2〉F . . . 〈A2, Bl〉F

...
...

...
...

〈Ap, B1〉F 〈Ap, B2〉F . . . 〈Ap, Bl〉F

⎞
⎟⎟⎠ .

Remarks.

(1) If s = 1 then AT � B = ATB.
(2) If s = 1, p = 1 and l = 1, then setting A = u ∈ Rn and B = v ∈ Rn, we have AT � B = uTv ∈ R.
(3) The matrix A = [A1, A2, . . . , Ap] is F-orthonormal if and only AT � A = Ip.
(4) If X ∈ Rn×s , then XT � X = ‖X‖2

F .

It is not difficult to show the following properties satisfied by the product �.

Proposition 4. Let A, B, C ∈ Rn×ps , D ∈ Rn×n, L ∈ Rp×p and � ∈ R. Then we have

(1) (A + B)T � C = AT � C + BT � C.
(2) AT � (B + C) = AT � B + AT � C.
(3) (�A)T � C = �(AT � C).
(4) (AT � B)T = BT � A.
(5) (DA)T � B = AT � (DTB).
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(6) AT � (B(L ⊗ Is)) = (AT � B)L.
(7) ‖AT � B‖F �‖A‖F ‖B‖F .

Proposition 5. Let A ∈ Rn×ps , B ∈ Rn×ks , C ∈ Rk×p, D ∈ Rk×k and E ∈ Rn×s . If the matrix D is nonsingular then

ET �
([

A B

C ⊗ Is D ⊗ Is

]/
(D ⊗ Is)

)
=
([

ET � A ET � B

C D

]/
D

)
.

Proof. From the definition of the Schur complement and the relation (2) of Proposition 4, we obtain

ET �
([

A B

C ⊗ Is D ⊗ Is

]/
(D ⊗ Is)

)
= ET � A − ET � [B(D ⊗ Is)

−1(C ⊗ Is)]
= ET � A − ET � [B(D−1C ⊗ Is)].

Therefore, using the relation (6) of Proposition 4, it follows that

ET � A − ET � [B(D−1C ⊗ Is)] = ET � A − (ET � B)D−1C =
([

ET � A ET � B

C D

]/
D

)
. �

2.3. The global QR factorization

Next, we present the global Gram–Schmidt process. Let Z = [Z1, Z2, . . . , Zk] be a matrix of k blocks with Zi ∈
Rn×s , i = 1, . . . , k. The global Gram–Schmidt algorithm allows us to generate a new F-orthonormal matrix Q =
[Q1, Q2, . . . , Qk] such that span{Q1, . . . , Qk} = span{Z1, . . . , Zk} with 〈Qi, Qi〉F = 1 and 〈Qi, Qj 〉F = 0 if i �= j .
The algorithm is described as follows:

Algorithm 1. (The modified global Gram–Schmidt algorithm)

(1) R = (ri,j ) = 0.
(2) r1,1 = ‖Z1‖F .
(3) Q1 = Z1/r1,1.
(4) For i = 2, . . . , k

Q = Zi ,
for j = 1, . . . , i − 1

rj,i = 〈Q, Zj 〉F ,
Q = Q − rj,iZj

end j

ri,i = ‖Q‖F and Qi = Q/ri,i .
End i.

Proposition 6. Let Z = [Z1, Z2, . . . , Zk] be an n × ks matrix with Zi ∈ Rn×s , for i = 1, . . . , k. Then applying
Algorithm 1, the matrix Z can be factored as

Z = Q(R ⊗ Is),

where Q=[Q1, . . . , Qk] is an n× ks F-orthonormal matrix satisfying QT �Q= Ik and R is an upper triangular k × k

matrix.
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Proof. If Zi is the ith column of the matrix Z, then from Algorithm 1, we have

Zi =
i∑

j=1

rj,iQj

=
i∑

j=1

Qj(rj,i ⊗ Is)

= [Q1, Q2, . . . , Qi]

⎡
⎢⎢⎣
⎛
⎜⎜⎝

r1,i

r2,i

...

ri,i

⎞
⎟⎟⎠⊗ Is

⎤
⎥⎥⎦ .

If Ri = [r1,i , . . . , ri,i , 0, . . . , 0]T is the ith column of the upper triangular matrix R = [R1, . . . , Rk], then

Zi = [Q1, . . . , Qk](Ri ⊗ Is), i = 1, . . . , k.

Therefore, Z can be factored as

Z = Q(R ⊗ Is) with QT � Q = Ik. �

Note that QT � Z = QT � (Q(R ⊗ Is)). Hence using Proposition 4, it follows that QT � Z = R.

3. Global OR-type and global MR-type methods

3.1. A global OR-type method

Let Kk(A, V ) = span{V, AV , . . . , Ak−1V } denotes the matrix Krylov subspace of Rn×s spanned by the matrices
V, AV , . . . , Ak−1V where V is an n × s matrix. Note that Z ∈ Kk(A, V ) means that

Z =
k∑

i=1

�iA
i−1V, �i ∈ R, i = 1, . . . , k.

Now consider the block linear system of equations (1.1) and let X0 be an initial n × s matrix with the corresponding
residual R0 = B − AX0. At step k, a global OR-type method generates approximation XOR

k such that

XOR
k − X0 = Zk ∈ Kk(A, R0) (3.1)

and the residual ROR
k satisfying the orthogonality relation

ROR
k = R0 − AZk⊥F Kk(A, R0), (3.2)

where the notation ⊥F means the orthogonality with respect to the matrix scalar product 〈., .〉F Note that ROR
k is

obtained by projecting R0 onto AKk(A, R0) along the F-orthogonal of the Krylov subspace Kk(A, R0). If POR
k

denotes the projector onto AKk(A, R0) along Kk(A, R0)
⊥, then from the Galerkin condition (3.2), we have

ROR
k = R0 − POR

k R0. (3.3)

The relation (3.1) implies

XOR
k = X0 + [R0, AR0, . . . , A

k−1R0](� ⊗ Is),

where � = [�1, . . . ,�k]T. Then the residual ROR
k is expressed as

ROR
k = R0 − [AR0, A

2R0, . . . , A
kR0](� ⊗ Is). (3.4)
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The parameters �i , i = 1, . . . , k are determined from the orthogonality condition (3.2) which is equivalent to

〈ROR
k , AiR0〉F = 0 for i = 0, . . . , k − 1. (3.5)

Let Kk = [R0, AR0, . . . , A
k−1R0] and Wk = AKk . Then from (3.4) and (3.5) we deduce that

(KT
k � Wk)� = KT

k � R0. (3.6)

We have the following results:

Theorem 1. Assume that the matrix KT
k � Wk is nonsingular. Then the approximate solution XOR

k and the corre-
sponding residual ROR

k are expressed as the following Schur complements:

XOR
k =

([
X0 −Kk

(KT
k � R0) ⊗ Is (KT

k � Wk) ⊗ Is

]/
(KT

k � Wk) ⊗ Is

)
(3.7)

and

ROR
k =

([
R0 Wk

(KT
k � R0) ⊗ Is (KT

k � Wk) ⊗ Is

]/
(KT

k � Wk) ⊗ Is

)
. (3.8)

Proof. At step k, the iterate XOR
k is given by XOR

k =X0 +Kk(�⊗ Is) where � is determined from (3.6). As the k × k

matrix KT
k � Wk is nonsingular, then � = (KT

k � Wk)
−1(KT

k � R0). Therefore,

XOR
k = X0 + Kk[((KT

k � Wk)
−1(KT

k � R0)) ⊗ Is]
= X0 + Kk[((KT

k � Wk)
−1 ⊗ Is)(K

T
k � R0 ⊗ Is)]

= X0 + Kk[((KT
k � Wk) ⊗ Is)

−1(KT
k � R0 ⊗ Is)].

This shows that XOR
k can be expressed as the Schur complement given by (3.7). The proof of (3.8) can be done in a

similar way. �

Theorem 2. Assume that at step k, the matrix KT
k � Wk is nonsingular. Then the norm of the kth residual ROR

k is
given by

‖ROR
k ‖2

F = det(KT
k+1 � Kk+1) det(KT

k � Kk)

det(KT
k � Wk)

2 , (3.9)

where det(X) denotes the determinant of the square matrix X.

Proof. Note that since ROR
k is an n × s matrix, we have ‖ROR

k ‖2
F = (ROR

k )T � ROR
k . Using (3.4) and (3.5) we obtain

(ROR
k )T � ROR

k = (R0 − Wk(� ⊗ Is))
T � ROR

k . The orthogonality condition (3.5) implies

(ROR
k )T � ROR

k = −�k(A
kR0)

T � ROR
k . (3.10)

Let us first compute (AkR0)
T � ROR

k . Using (3.8) and Proposition 5, we obtain

(AkR0)
T � ROR

k =
([

(AkR0)
T � R0 (AkR0)

T � Wk

KT
k � R0 KT

k � Wk

]/
KT

k � Wk

)
.

Then, using Proposition 1, it follows that

(AkR0)
T � ROR

k =
([

KT
k � R0 KT

k � Wk

(AkR0)
T � R0 (AkR0)

T � Wk

]/
KT

k � Wk

)
. (3.11)

Now, as Kk+1 = [R0,Wk] and Kk+1 = [Kk, A
kR0], (3.11) can be expressed as

(AkR0)
T � ROR

k = (KT
k+1 � Kk+1/K

T
k � Wk).
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Therefore, as (AkR0)
T � ROR

k is a scalar, it follows that

(AkR0)
T � ROR

k = (−1)k
det(KT

k+1 � Kk+1)

det(KT
k � Wk)

. (3.12)

On the other hand, �k can be computed, from (3.6) by the Cramer rule, as

�k = (−1)k−1 det(KT
k � Kk)

det(KT
k � Wk)

. (3.13)

Therefore, using (3.12) and (3.13) in (3.10), the result follows. �

3.2. A global MR-type method

A global-MR type method constructs, at step k, the approximation XMR
k satisfying the following two relations:

XMR
k − X0 ∈ Kk(A, R0) and RMR

k ⊥F Kk(A, AR0).

From these two relations, we obtain

XMR
k = X0 + Kk(� ⊗ Is) (3.14)

and

RMR
k = R0 − Wk(� ⊗ Is), (3.15)

where � is such that

(WT
k � Wk)� = WT

k � R0. (3.16)

If PMR
k denotes the F-orthogonal projector onto the matrix Krylov subspace Kk(A, AR0), then the residual RMR

k

can be expressed as RMR
k = R0 − PMR

k R0. As we are dealing with an orthogonal projection method onto the Krylov
subspace Kk(A, AR0), we have the minimization property

‖RMR
k ‖F = min

Z∈Kk(A,R0)
‖R0 − AZ‖F .

The next results show that XMR
k and RMR

k could be expressed as Schur complements.

Theorem 3. Assume that det(WT
k � Wk) �= 0. Then the approximate solution XMR

k and the corresponding residual
RMR

k are expressed as the following Schur complements:

XMR
k =

([
X0 −Kk

(WT
k � R0) ⊗ Is (WT

k � Wk) ⊗ Is

]/
(WT

k � Wk) ⊗ Is

)
(3.17)

and

RMR
k =

([
R0 Wk

(WT
k � R0) ⊗ Is (WT

k � Wk) ⊗ Is

]/
(WT

k � Wk) ⊗ Is

)
. (3.18)

Proof. Using (3.14), (3.15) and (3.16) we get the results. �

In the following result, we give an expression of the residual norm of the MR method.

Theorem 4. If det(WT
k � Wk) �= 0, then we have

‖RMR
k ‖2

F = det(KT
k+1 � Kk+1)

det(WT
k � Wk)

. (3.19)
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Proof. We have

‖RMR
k ‖2

F = (RMR
k )T � RMR

k

= (RMR
k )T � (R0 − Wk(� ⊗ Is)

= (RMR
k )T � R0 − ((RMR

k )T � Wk)�

= (RMR
k )T � R0

= RT
0 � RMR

k

= RT
0 �

([
R0 Wk

(WT
k � R0) ⊗ Is (WT

k � Wk) ⊗ Is

]/
(WT

k � Wk) ⊗ Is

)
.

So, applying Proposition 5 we get

‖RMR
k ‖2

F =
([

RT
0 � R0 RT

0 � Wk

WT
k � R0 WT

k � Wk

]/
WT

k � Wk

)
= ((KT

k+1 � Kk+1)/W
T
k � Wk)

and as ‖RMR
k ‖F is a scalar then we get the result. �

3.3. Some relations between the residual norms

We give some relations between the residual norms for two successive iterates and also between the residual norms
for the global OR and the global MR methods.

Theorem 5. Let ROR
k and RMR

k be the residuals corresponding to the kth iterates produced by the global OR and the
global MR type methods, respectively. Then

(1)

‖RMR
k ‖F

‖RMR
k−1‖F

=
√

1 − c2
k ,

(2)

‖RMR
k ‖F = ck‖ROR

k ‖F and

(3)

‖ROR
k ‖F

‖ROR
k−1‖F

=
(

ck−1

ck

)√
1 − c2

k ,

where

c2
k = det(KT

k � Wk)
2

det(KT
k � Kk) det(WT

k � Wk)
.

Proof. From (3.19), we have (KT
k+1 � Kk+1/W

T
k � Wk). Using the fact that Wk = [Wk−1, A

kR0] and Kk+1 =
[R0,Wk−1, A

kR0], we obtain

KT
k+1 � Kk+1 =

⎡
⎣ RT

0 � R0 RT
0 � Wk−1 RT

0 � AkR0

WT
k−1 � R0 WT

k−1 � Wk−1 WT
k−1 � AkR0

(AkR0)
T � R0 (AkR0)

T � Wk−1 (AkR0)
T � AkR0

⎤
⎦ .
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Using Proposition 3, we get

‖RMR
k ‖2

F =
([

RT
0 � R0 RT

0 � Wk−1

WT
k−1 � R0 WT

k−1 � Wk−1

]/
WT

k−1 � Wk−1

)

−
([

RT
0 � Wk−1 RT

0 � AkR0

WT
k−1 � Wk−1 WT

k−1 � AkR0

]/
WT

k−1 � Wk−1

)
(WT

k � Wk/W
T
k−1 � Wk−1)

−1

×
([

WT
k−1 � R0 WT

k−1 � Wk−1

(AkR0)
T � R0 (AkR0)

T � Wk−1

]/
WT

k−1 � Wk−1

)
.

Then

‖RMR
k ‖2

F = ‖RMR
k−1‖2 − (KT

k � Wk/W
T
k−1 � Wk−1)(W

T
kWk/W

T
k−1 � Wk−1)

−1(WT
k � Kk/W

T
k−1 � Wk−1).

Developing this expression, we obtain

‖RMR
k ‖2

F

‖RMR
k−1‖2

F

= 1 − c2
k ,

where

c2
k = det(KT

k � Wk)
2

det(KT
k � Kk) det(WT

k � Wk)

which shows the relation (1) of the theorem.
To show the relation (2), we use (3.9) and (3.19). The last expression of the theorem is obtained from (1)

and (2). �

If s =1, the results of Theorem 5 coincide with the results given in [21]. Using the GMRES and the FOM algorithms,
a similar theorem was also derived in [3] when s = 1.

4. Convergence analysis of the global OR and the global MR methods

In this section, we give some convergence results for the global OR and the global MR methods. Applying the global
QR factorization to Kk+1 and Kk , we get

Kk+1 = Qk+1(Rk+1 ⊗ Is) and Kk = Qk(Rk ⊗ Is), (4.1)

with Qk+1 ∈ Rn×(k+1)s , Rk+1 ∈ R(k+1)×(k+1), Qk ∈ Rn×ks and Rk ∈ Rk×k . Qk+1 and Qk are F-orthonormal (or-
thonormal with respect to the � product); Rk+1 and Rk are two upper triangular matrices. Note that

Kk+1

([
0s×ks

Iks

])
= AKk . (4.2)

Then using (4.1) and (4.2) we get

Qk+1(Rk+1 ⊗ Is)

[
0s×ks

Iks

]
= AQk(Rk ⊗ Is). (4.3)

Hence applying the � product (with QT
k+1) to (4.3) and using the assertion (6) of Proposition 4 it follows that

(QT
k+1 � AQk)Rk = Rk+1

[
01×k

Ik

]
. (4.4)

Multiplying both sides of (4.4) from the right by R−1
k it follows that

(QT
k+1 � AQk) = Rk+1

[
01×k

Ik

]
R−1

k . (4.5)
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Let H̄k be the (k + 1) × k matrix defined by H̄k =QT
k+1 � AQk . Then as Rk+1 and Rk are upper triangular matrices,

it follows that H̄k is an upper Hessenberg matrix. If Hk denotes the k × k matrix obtained from H̄k by deleting it’s last
row, Hk is also an upper Hessenberg matrix given by

Hk = QT
k � AQk . (4.6)

Using the fact that Qk+1 = [Qk, Qk+1] we obtain

H̄k =
[

Hk

QT
k+1 � AQk

]
. (4.7)

Therefore, from (4.3), (4.4) and (4.7) we deduce the following relation:

AQk = Qk(Hk ⊗ Is) + hk+1,kQk+1E
T
k , (4.8)

where ET
k = [0s , . . . , 0s , Is] and hk+1,k = Qk+1 � AQk = (rk+1,k+1)/(rk,k).

Theorem 6. At step k, let RMR
k and ROR

k be the residual produced by the global MR and the global OR methods,
respectively. Then we have

(1)

‖RMR
k ‖2

F

‖RMR
k−1‖2

F

= det(H̄T
k−1H̄k−1)

det(H̄T
k H̄k)

h2
k+1,k .

(2)

‖ROR
k ‖2

F

‖ROR
k−1‖2

F

= det(HT
k−1Hk−1)

det(HT
k Hk)

h2
k+1,k .

Proof. (1) Applying the global QR factorization to the matrix Kk , the product WT
k � Wk = (AKk)

T � (AKk) is
expressed as

WT
k � Wk = (AQk(Rk ⊗ Is))

T � (AQk(Rk ⊗ Is)). (4.9)

Then using Proposition 4 and the definition of H̄k , we obtain

WT
k � Wk = RT

k H̄T
k H̄kRk . (4.10)

Similarly, we also have

KT
k � Kk = RT

k Rk . (4.11)

From Theorem 2, the ratio of two successive global MR residual norms is given by

‖RMR
k ‖2

F

‖RMR
k−1‖2

F

= det(KT
k+1 � Kk+1) det(WT

k−1 � Wk−1)

det(WT
k � Wk) det(KT

k � Kk)
. (4.12)

Therefore, using (4.10) and (4.11) in (4.12), we obtain

‖RMR
k ‖2

F

‖RMR
k−1‖2

F

= det(H̄T
k−1H̄k−1)

det(H̄T
k H̄k)

det(Rk+1)
2 det(Rk−1)

2

det(Rk)
4 (4.13)

Now, as Rk+1 = ([ Rk

01×k
], rk+1), we get

‖RMR
k ‖2

F

‖RMR
k−1‖2

F

= det(H̄T
k−1H̄k−1)

det(H̄T
k H̄k)

r2
k+1,k+1

r2
k,k

.

Hence, using the fact that h2
k+1,k = (r2

k+1,k+1)/r2
k,k the result follows.
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The relation (2) can be proved in the same manner. �

We notice that Theorem 6 is a generalization of a result given in [21] for the case s = 1. Now we will give another
important result.

Theorem 7. At step k, let RMR
k and ROR

k be the residual produced by the global MR and the global OR methods,
respectively. Then we have

(1)

‖RMR
k ‖2

F = 1

eT
1 (KT

k+1 � Kk+1)
−1eT

1

.

(2)

‖ROR
k ‖2

F = eT
k+1(K

T
k+1 � Kk+1)

−1eT
k+1

(eT
1 (KT

k+1 � Kk+1)
−1eT

k+1)
2 .

Proof. For RMR
k we have

‖RMR
k ‖2

F = (KT
k+1 � Kk+1/W

T
k � Wk) = det(KT

k+1 � Kk+1)

det(WT
k � Wk)

,

we have also Kk+1 = [R0, AR0, . . . , A
kR0] = [R0,Wk], then

KT
k+1 � Kk+1 =

[
RT

0
WT

k

]
� [R0,Wk] =

[
RT

0 � R0 RT
0 � Wk

WT
k � R0 WT

k � Wk

]
,

so we get

eT
1 (KT

k+1 � Kk+1)
−1e1 = det(WT

k � Wk)

det(KT
k+1 � Kk+1)

= 1

‖RMR
k ‖2

F

.

For ROR
k we have

‖ROR
k ‖2

F = det(KT
k+1 � Kk+1) det(KT

k � Kk)

det(KT
k � Wk)

2 ,

as Kk+1 = [R0,Wk−1, A
kR0] then we get

Kk+1 � Kk+1 =
⎡
⎣ RT

0
WT

k−1
(AkR0)

T

⎤
⎦ � [R0,Wk−1, A

kR0]

=
⎡
⎣ RT

0 � R0 RT
0 � Wk−1 RT

0 � AkR0

WT
k−1 � R0 WT

k−1 � Wk−1 WT
k−1 � AkR0

(AkR0)
T � R0 (AkR0)

T � Wk−1 (AkR0)
T � AkR0

⎤
⎦ ,

so we have

eT
1 (KT

k+1 � Kk+1)
−1ek+1 = (−1)k

det(KT
k � Wk)

det(KT
k+1 � Kk+1)

and

eT
k+1(K

T
k+1 � Kk+1)

−1ek+1 = det(KT
k � Kk)

det(KT
k+1 � Kk+1)

.
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Then we get

eT
k+1(K

T
k+1 � Kk+1)

−1ek+1

(eT
1 (KT

k+1 � Kk+1)
−1ek+1)

2 = det(KT
k � Kk) det(KT

k+1 � Kk+1)

det(KT
k � Wk)

2 = ‖ROR
k ‖2

F . �

Note that since ‖RMR
0 ‖2

F = eT
1 (KT

k+1 �Kk+1)e1, then by using the Kantorovich inequality we obtain the following
result.

Theorem 8.

1�
‖RMR

k ‖F

‖RMR
0 ‖F

�2

√
�(KT

k+1 � Kk+1)

(1 + �(KT
k+1 � Kk+1))

,

where Kk+1 is the global Krylov matrix and �(Z) denotes the condition number of the matrix Z.

This means that there is no convergence as long as the Krylov basis is well-conditioned.

Example. We consider the multiple linear system AnX = B, where

An =

⎛
⎜⎜⎜⎜⎜⎝

0 . . . . . . . . . 0 1

1
. . .

. . .
. . .

... 0

0
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0 0

0 . . . . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
1 0
0 1
... 0
...

...

0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For this example, �(An) = 1. Now, if x0 = 0 then for k = 1, . . . , n − 1, we have

(KT
k+1 � Kk+1) = 2Ik+1, �(KT

k+1 � Kk+1) = 1 and ‖RMR
k ‖2

F = 2.

Hence we obtain the solution at the nth iteration. If we apply the standard GMRES to each right-hand side linear
system, we will also obtain a stagnation until the last iteration.

If we change the right-hand side as

B =
(

0 1 0 0 . . . 0
1 1 1 1 . . . 1

)T

,

then for k�n − 1, we have

KT
k+1 � Kk+1 =

⎛
⎜⎜⎜⎜⎜⎝

n + 1 n . . . . . . n

n n + 1
. . . . . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . n + 1 n

n . . . . . . n n + 1

⎞
⎟⎟⎟⎟⎟⎠ ,

‖RMR
k ‖2

‖RMR
0 ‖2

= (k + 1)n + 1

(kn + 1)(n + 1)

and

‖ROR
k ‖2

‖ROR
0 ‖2

= ((k + 1)n + 1)(kn + 1)

n2(n + 1)
.
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If we apply the standard GMRES [19] to the linear systems Anx
(1)=b(1) and Anx

(2)=b(2), where b(i), i=1, 2, is the
ith column of the rectangular matrix B, then we have stagnation for the first linear system i.e.: ‖r(1)

k ‖2=1, k=1, . . . , n−1

and ‖r(1)
n ‖2 = 0. We have convergence at the first step for the second linear system.

We will give now some comparisons between the global GMRES for solving the multiple linear system (1.1) and
the standard GMRES applied to each single linear system Ax(i) = b(i).

Theorem 9. Let Ki,k, i = 1, . . . , s be the Krylov matrix defined by

Ki,k = [r(i)
0 , Ar

(i)
0 , . . . , Ak−1r

(i)
0 ] where r

(i)
0 = b(i) − Ax

(i)
0 .

Then

KT
k � Kk =

s∑
i=1

KT
i,kKi,k .

When applying the GMRES to the s right-hand side linear systems separately, it is well known [21] that ‖r(i)
k ‖2

2 =
1/(e1(K

T
i,k+1Ki,k+1)

−1e1). We have proved that when applying the global MR method to the multiple linear system

(1.1), we obtain ‖RMR
k ‖2

F = 1/(e1(K
T
k+1 � Kk+1)

−1e1).

Theorem 10. If ‖r(i)
k ‖2 �= 0, ∀i ∈ {1, . . . , s}, then

s min
1� i � s

‖r(i)
k ‖2

2 � s2∑s
i=1 (1/‖r(i)

k ‖2
2)

�‖RMR
k ‖2

F .

Proof. The first inequality is obvious.
Since each matrix KT

i,kKi,k is positive semidefinite, then using Theorems 9 and 6.2 of [17], we obtain

s∑
i=1

(KT
i,kKi,k)

−1 �s2

(
s∑

i=1

KT
i,kKi,k

)−1

= s2(KT
k � Kk)

−1,

where C�D, means that C and D are two symmetric matrices of the same size such that C −D is positive semidefinite.
Then we have

s∑
i=1

eT
1 (KT

i,kKi,k)
−1e1 �s2eT

1 (KT
k � Kk)

−1e1,

which implies

s∑
i=1

1

‖r(i)
k ‖2

2

� s2

‖RMR
k ‖2

F

. �

5. Conclusion

We presented in this paper some convergence results of two block Krylov subspace methods without referring to any
algorithm. We introduced a new matrix product and gave some of its properties. This new product helped us to derive
new expressions of the approximations and the corresponding residual norms. Some relations between residual norms
were also obtained.
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