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a b s t r a c t

In this paper, we consider the existence of countably many positive solutions for nth-order
m-point boundary value problems consisting of the equation

u(n)(t)+ a(t)f (u(t)) = 0, t ∈ (0, 1),

with one of the following boundary value conditions:

u(0) =
m−2∑
i=1

kiu(ξi), u′(0) = · · · = u(n−2)(0) = 0, u(1) = 0,

and

u(0) = 0, u′(0) = · · · = u(n−2)(0) = 0, u(1) =
m−2∑
i=1

kiu(ξi),

where n ≥ 2, ki > 0 (i = 1, 2, . . . ,m−2), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, a(t) ∈ Lp[0, 1]
for some p ≥ 1 and has countably many singularities in [0, 12 ). The associated Green’s
function for the nth orderm-point boundary value problem is first given, andwe show that
there exist countably many positive solutions using Holder’s inequality and Krasnoselskii’s
fixed point theorem for operators on a cone.

Crown Copyright© 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

The existence of positive solutions for nonlinear second order multi-point boundary value problems have been studied
by several authors. We refer the reader to [1–6] and references therein. Recently, the existence of positive solutions for high
ordermulti-point boundary value problems has been studied by some authors. For details, see, for example, [7–9]. However,
the high order multi-point boundary value problems treated in the above-mentioned references do not discuss problems
with singularities. For the singular case of high order multi-point boundary value problems, to the author’s knowledge,
no one has studied the existence of positive solutions in the case. Very recently, Kaufmann and Kosmatov [10] showed that
there exist countablymany positive solutions for the two-point boundary value problems, with infinitelymany singularities
of following form:{

−u′′(t) = a(t)f (u(t)), 0 < t < 1,
u(0) = 0, u(1) = 0,

where a(t) ∈ Lp[0, 1] for some p ≥ 1 and has countably many singularities in [0, 12 ).
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Motivated by the result of [10], in this paper we are interested in the existence of countably many positive solutions for
nth-orderm-point boundary value problems consisting of the equation

u(n)(t)+ a(t)f (u(t)) = 0, t ∈ (0, 1), (1.1)

with one of the following boundary value conditions:

u(0) =
m−2∑
i=1

kiu(ξi), u′(0) = · · · = u(n−2)(0) = 0, u(1) = 0, (1.2)

and

u(0) = 0, u′(0) = · · · = u(n−2)(0) = 0, u(1) =
m−2∑
i=1

kiu(ξi), (1.3)

where n ≥ 2, ki > 0 (i = 1, 2, . . . ,m − 2), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, f ∈ C([0,+∞), [0,+∞)), a(t) ∈ Lp[0, 1]
for some p ≥ 1 and has countably many singularities in [0, 12 ). We show that the boundary value problems (1.1), (1.2) and
(1.1), (1.3) have countably many solutions if a and f satisfy some suitable conditions. The key tool in our approach is the
Holder’s inequality and Krasnoselskii’s fixed point theorem for operators on a cone.
We will suppose the following conditions are satisfied:
(H1) there exists a sequence {tk}∞k=1 such that tk+1 < tk (k ∈ N), t1 <

1
2 , limk→∞ tk = t

∗
≥ 0 and limt→tk a(t) = +∞

for all k = 1, 2, . . .;
(H2) there exists H > 0 such that a(t) ≥ H for all t ∈ [t∗, 1− t∗];
(H3) there exists a p ≥ 1 such that a(t) ∈ Lp[0, 1];
(H4) f ∈ C([0,+∞), [0,+∞));
(H5) n ≥ 2, ki > 0 (i = 1, 2, . . . ,m− 2), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, 0 <

∑m−2
i=1 ki(1− ξ

n−1
i ) < 1;

(H
′

5) n ≥ 2, ki > 0 (i = 1, 2, . . . ,m− 2), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, 0 <
∑m−2
i=1 kiξ

n−1
i < 1.

We show that if a(t) satisfies conditions (H1)–(H3) and if f satisfies oscillatory-like growth about a wedge, then the
boundary value problem (1.1), (1.2) and (1.1), (1.3) have infinitely many solutions.
The paper is organized as follows. In Section 2, we provide some necessary background. In particular, we state a fixed

point theorem due to Krasnoselskii’s and Holder’s inequality. In Section 3, the associated Green’s function for the nth order
two point boundary value problem is given and we also look at some properties of the Green’s function associated with the
boundary value problem. In Section 4, the associated Green’s function for the nth order m-point boundary value problem
is first given and we also look at some properties of the Green’s function associated with the boundary value problem (1.1)
and (1.2). We present the boundary value problems (1.1) and (1.2) have countably many solutions if a and f satisfy some
suitable conditions. In Section 5, the associated Green’s function for the nth order m-point boundary value problem is first
given and we also look at some properties of the Green’s function associated with the boundary value problem (1.1) and
(1.3).We present the boundary value problems (1.1) and (1.3) have countablymany solutions if a and f satisfy some suitable
conditions. In Section 6, we present our main result as well as provide an example of a family of functions a(t) that satisfy
conditions (H1)–(H3) and two simple examples are presented to illustrate the applications of the obtained results.

2. Preliminary results

Definition 2.1. Let E be a Banach space over R. A nonempty convex closed set K ⊂ E is said to be a cone, provided that
(i) au ∈ K for all u ∈ K and all a ≥ 0;
(ii) u,−u ∈ K implies u = 0.

Theorem 2.1 (Krasnoselskii’s Fixed Point Theorem). Let E be a Banach space and let P ⊂ E be a cone. AssumeΩ1,Ω2 are bounded
open subsets of E such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Suppose that

T : P
⋂
(Ω2 \Ω1)→ P

is a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P
⋂
∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P

⋂
∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P
⋂
∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P

⋂
∂Ω2.

Then T has a fixed point in P
⋂
(Ω2 \Ω1).

In order to establish some of the norm inequalities in Theorem 2.1 we will need Holder’s inequality. We use standard
notation of Lp[a, b] for the space of measurable functions such that∫ 1

0
|f (s)|p ds <∞,
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where the integral is understood in the Lebesgue sense. The norm on Lp[a, b], ‖ · ‖, is defined by

‖f ‖p =
(∫ 1

0
|f (s)|p ds

) 1
p

.

Theorem 2.2 (Holder’s Inequality). Let f ∈ Lp[a, b] and g ∈ Lq[a, b], where p > 1 and 1p +
1
q = 1. Then fg ∈ L

1
[a, b] and,

moreover∫ 1

0
|f (s)g(s)| ds ≤ ‖f ‖p‖g‖q.

Let f ∈ L1[a, b] and g ∈ L∞[a, b]. Then fg ∈ L1[a, b] and∫ 1

0
|f (s)g(s)| ds ≤ ‖f ‖1‖g‖∞.

3. Preliminary lemmas

We need the following lemmas. We also need some auxiliary results concerning the Green’s function g(t, s).

Lemma 3.1. For y(t) ∈ C[0, 1], the boundary value problem{
u(n)(t)+ y(t) = 0, t ∈ (0, 1),
u(0) = 0, u′(0) = · · · = u(n−2)(0) = 0, u(1) = 0

(3.1)

has a unique solution

u(t) = −
∫ t

0

(t − s)n−1

(n− 1)!
y(s) ds+ tn−1

∫ 1

0

(1− s)n−1

(n− 1)!
y(s) ds.

Proof. To this purpose, we let

u(t) = −
∫ t

0

(t − s)n−1

(n− 1)!
y(s) ds+ Atn−1 +

n−2∑
i=1

Ait i + B.

Since u(i)(0) = 0 for i = 0, 1, 2, . . . , n−2, we get B = 0 and Ai = 0 for i = 1, 2, . . . , n−2. Nowwe solve for A by u(1) = 0,
it follows that

−

∫ 1

0

(1− s)n−1

(n− 1)!
y(s) ds+ A = 0,

we get

A =
∫ 1

0

(1− s)n−1

(n− 1)!
y(s) ds.

Therefore, (3.1) has a unique solution

u(t) = −
∫ t

0

(t − s)n−1

(n− 1)!
y(s) ds+ tn−1

∫ 1

0

(1− s)n−1

(n− 1)!
y(s) ds.

The proof is complete. �

Lemma 3.2. The Green’s function for the boundary value problem{
−u(n)(t) = 0, t ∈ (0, 1),

u(0) = 0, u′(0) = · · · = u(n−2)(0) = 0, u(1) = 0
(3.2)

is given by

g(t, s) =
1

(n− 1)!

{
tn−1(1− s)n−1 − (t − s)n−1, 0 ≤ s ≤ t ≤ 1,

tn−1(1− s)n−1, 0 ≤ t ≤ s ≤ 1.
(3.3)
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Proof. The unique solution of (3.1) be expressed as

u(t) =
1

(n− 1)!

[∫ t

0
tn−1(1− s)n−1y(s) ds−

∫ t

0
(t − s)n−1y(s) ds+

∫ 1

t
tn−1(1− s)n−1y(s) ds

]
=

1
(n− 1)!

{∫ t

0
[tn−1(1− s)n−1 − (t − s)n−1]y(s) ds+

∫ 1

t
tn−1(1− s)n−1y(s) ds

}
.

The proof is complete. �

Lemma 3.3. The Green’s function g(t, s) defined by (3.3) satisfies:
(i) g(t, s) ≥ 0 is continuous on [0, 1] × [0, 1];
(ii) g(t, s) ≤ g(θ1(s), s) for all t, s ∈ [0, 1] and there exists a constant γ̃τ > 0 for any τ ∈ (0, 12 ) such that

min
t∈[τ ,1−τ ]

g(t, s) ≥ γ̃τ g(θ1(s), s) ≥ γ̃τ g(t ′, s), ∀t ′, s ∈ [0, 1], (3.4)

where

γ̃τ = min

{(
τ

θ1(s)

)n−1
,

τ

1− θ1(s)

}
,

θ1(s) =
s

1− (1− s)
n−1
n−2
, (s < θ1(s) < 1).

Proof. (i) It is obvious that g(t, s) is continuous on [0, 1] × [0, 1].
For 0 ≤ s ≤ t ≤ 1,

tn−1(1− s)n−1 − (t − s)n−1 = (t − ts)n−1 − (t − s)n−1 ≥ 0,

so, by (3.3), we have

g(t, s) ≥ 0, ∀t, s ∈ [0, 1].

(ii) For fixed 0 < s < 1, g(t, s) obtains its maximum at t = θ1(s) = s

1−(1−s)
n−1
n−2
, (s < θ1(s) < 1), that is

max
t∈[0,1]

g(t, s) = g(θ1(s), s), ∀s ∈ [0, 1].

Thus, we have

g(t, s) ≤ g(θ1(s), s), ∀t, s ∈ [0, 1].

Next, we prove that (3.4) holds.
Let s be fixed, recall the properties that g(t, s) ∈ C (n−2)([0, 1]× [0, 1]) and that ∂

n−1g(t,s)
∂tn−1

is continuous on triangles t < s
and s < t . Recalling also that, as a function of t , g(t, s) satisfies the boundary condition of (3.2), it follows by Rolle’s theorem

that there exist 0 < tn−2 < tn−3 < · · · < t2 < t1 < 1 such that
∂ jg(tj,s)
∂t j
= 0, where tj = θj(s) = s

1−(1−s)
n−1
n−1−j

, (s < θj(s) <

1), 1 ≤ j ≤ n− 2.
For s < t2 < t1,

∂2g(t,s)
∂t2

< 0 on [t1, 1].
Let

p(t) =


g(θ1(s), s)

tn−11

tn−1, 0 ≤ t ≤ t1,

g(θ1(s), s)
t1 − 1

(t − 1), t1 ≤ t ≤ 1.

For t1 ≤ t ≤ 1, by the negative concavity of g(t, s) on [t1, 1], we have

g(t, s) ≥ p(t), t ∈ [t1, 1].

For 0 ≤ t ≤ t1, let r(t) = g(t, s)− p(t), we consider two cases:
Case 1. If 0 ≤ t ≤ s ≤ t1,

r(t) =
1

(n− 1)!

[
tn−1(1− s)n−1 −

tn−11 (1− s)n−1 − (t1 − s)n−1

tn−11

tn−1
]

≥
1

(n− 1)!
[tn−1(1− s)n−1 − tn−1(1− s)n−1] = 0.
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Case 2. If 0 ≤ s ≤ t ≤ t1,

r(t) =
1

(n− 1)!

[
tn−1(1− s)n−1 − (t − s)n−1 −

tn−11 (1− s)n−1 − (t1 − s)n−1

tn−11

tn−1
]

=
1

(n− 1)!

[
tn−1

tn−11

(t1 − s)n−1 − (t − s)n−1
]

=
1

(n− 1)!

[(
t −

t
t1
s
)n−1
− (t − s)n−1

]
≥ 0.

Thus, in all cases, we have

g(t, s) ≥ p(t), 0 ≤ t ≤ t1.

So, there exists a constant γ̃τ > 0 such that

g(t, s) ≥ p(t) ≥ γ̃τ g(θ1(s), s), t ∈ [τ , 1− τ ], s ∈ [0, 1].

Thus, the inequality (3.4) holds.
The proof is complete. �

4. Existence of positive solutions to (1.1) and (1.2)

In this section we present the boundary value problems (1.1) and (1.2) have countably many solutions if a and f satisfy
some suitable conditions.

Lemma 4.1. Suppose
∑m−2
i=1 ki(1− ξ

n−1
i ) 6= 1, then for y(t) ∈ C[0, 1], the boundary value problem

u(n)(t)+ y(t) = 0, t ∈ (0, 1),

u(0) =
m−2∑
i=1

kiu(ξi), u′(0) = · · · = u(n−2)(0) = 0, u(1) = 0
(4.1)

has a unique solution

u(t) = −
∫ t

0

(t − s)n−1

(n− 1)!
y(s) ds+

m−2∑
i=1
kitn−1

∫ ξi
0

(ξi−s)n−1

(n−1)! y(s) ds+
(
1−

m−2∑
i=1
ki

)
tn−1

∫ 1
0
(1−s)n−1

(n−1)! y(s) ds

1−
m−2∑
i=1
ki(1− ξ n−1i )

+

m−2∑
i=1
kiξ n−1i

∫ 1
0
(1−s)n−1

(n−1)! y(s) ds−
m−2∑
i=1
ki
∫ ξi
0

(ξi−s)n−1

(n−1)! y(s) ds

1−
m−2∑
i=1
ki(1− ξ n−1i )

.

Proof. To this purpose, we let

u(t) = −
∫ t

0

(t − s)n−1

(n− 1)!
y(s) ds+ Atn−1 +

n−2∑
i=1

Ait i + B.

Since u(i)(0) = 0 for i = 1, 2, . . . , n−2, we get Ai = 0 for i = 1, 2, . . . , n−2. Nowwe solve for A, B by u(0) =
∑m−2
i=1 kiu(ξi)

and u(1) = 0, it follows that
B =

m−2∑
i=1

ki

[
−

∫ ξi

0

(ξi − s)n−1

(n− 1)!
y(s) ds+ Aξ n−1i + B

]
,

−

∫ 1

0

(1− s)n−1

(n− 1)!
y(s) ds+ A+ B = 0,
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we get
A+ B =

∫ 1

0

(1− s)n−1

(n− 1)!
y(s) ds,

m−2∑
i=1

kiξ n−1i A+

(
m−2∑
i=1

ki − 1

)
B =

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)n−1

(n− 1)!
y(s) ds,

thus, we have

A =

m−2∑
i=1
ki
∫ ξi
0

(ξi−s)n−1

(n−1)! y(s) ds+
(
1−

m−2∑
i=1
ki

)∫ 1
0
(1−s)n−1

(n−1)! y(s) ds

1−
m−2∑
i=1
ki(1− ξ n−1i )

,

B =

m−2∑
i=1
kiξ n−1i

∫ 1
0
(1−s)n−1

(n−1)! y(s) ds−
m−2∑
i=1
ki
∫ ξi
0

(ξi−s)n−1

(n−1)! y(s) ds

1−
m−2∑
i=1
ki(1− ξ n−1i )

.

Therefore, (4.1) has a unique solution

u(t) = −
∫ t

0

(t − s)n−1

(n− 1)!
y(s) ds+

m−2∑
i=1
kitn−1

∫ ξi
0

(ξi−s)n−1

(n−1)! y(s) ds+
(
1−

m−2∑
i=1
ki

)
tn−1

∫ 1
0
(1−s)n−1

(n−1)! y(s) ds

1−
m−2∑
i=1
ki(1− ξ n−1i )

+

m−2∑
i=1
kiξ n−1i

∫ 1
0
(1−s)n−1

(n−1)! y(s) ds−
m−2∑
i=1
ki
∫ ξi
0

(ξi−s)n−1

(n−1)! y(s) ds

1−
m−2∑
i=1
ki(1− ξ n−1i )

.

The proof is complete. �

Lemma 4.2. Suppose 0 <
∑m−2
i=1 ki(1− ξ

n−1
i ) < 1, the Green’s function for the boundary value problem

−u(n)(t) = 0, t ∈ (0, 1),

u(0) =
m−2∑
i=1

kiu(ξi), u′(0) = · · · = u(n−2)(0) = 0, u(1) = 0
(4.2)

is given by

G1(t, s) = g(t, s)+
1− tn−1

1−
m−2∑
i=1
ki(1− ξ n−1i )

m−2∑
i=1

kig(ξi, s), (4.3)

where g(t, s) is defined by (3.3).

Proof. The unique solution of (4.1) is expressed as

u(t) =
1

(n− 1)!

{∫ t

0
[tn−1(1− s)n−1 − (t − s)n−1]y(s) ds+

∫ 1

t
tn−1(1− s)n−1y(s) ds

−
tn−1

1−
m−2∑
i=1
ki(1− ξ n−1i )

m−2∑
i=1

ki

[∫ ξi

0
(ξ n−1i (1− s)n−1 − (ξi − s)n−1)y(s) ds+

∫ 1

ξi

ξ n−1i (1− s)n−1y(s) ds
]

+
1

1−
m−2∑
i=1
ki(1− ξ n−1i )

m−2∑
i=1

ki

[∫ ξi

0
(ξ n−1i (1− s)n−1 − (ξi − s)n−1)y(s) ds+

∫ 1

ξi

ξ n−1i (1− s)n−1y(s) ds

]}
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=
1

(n− 1)!

{∫ t

0
[tn−1(1− s)n−1 − (t − s)n−1]y(s) ds+

∫ 1

t
tn−1(1− s)n−1y(s) ds

+
1− tn−1

1−
m−2∑
i=1
ki(1− ξ n−1i )

m−2∑
i=1

ki

[∫ ξi

0
(ξ n−1i (1− s)n−1 − (ξi − s)n−1)y(s) ds+

∫ 1

ξi

ξ n−1i (1− s)n−1y(s) ds

]}

=

∫ 1

0
G1(t, s)y(s) ds.

The proof is complete. �

Lemma 4.3. Suppose 0 <
∑m−2
i=1 ki(1− ξ

n−1
i ) < 1, the Green’s function G1(t, s) defined by (4.3) satisfies:

(i) G1(t, s) ≥ 0 is continuous on [0, 1] × [0, 1];
(ii) G1(t, s) ≤ J1(s) for all t, s ∈ [0, 1] and there exists a constant γτ > 0 for any τ ∈ (0, 12 ) such that

min
t∈[τ ,1−τ ]

G1(t, s) ≥ γτ J1(s) ≥ γτG1(t ′, s), ∀t ′, s ∈ [0, 1], (4.4)

where

J1(s) = g(θ1(s), s)+
1

1−
m−2∑
i=1
ki(1− ξ n−1i )

m−2∑
i=1

kig(ξi, s),

γτ = min{τ n−1, 1− (1− τ)n−1}

≤ min

{(
τ

θ1(s)

)n−1
,

τ

1− θ1(s)
, 1− (1− τ)n−1

}
= min{γ̃τ , 1− (1− τ)n−1}.

Proof. (i) From the Lemma 3.3 and (4.3), we get G1(t, s) ≥ 0 is continuous on [0, 1] × [0, 1].
(ii) From the Lemma 3.3 and (4.3), we have

G1(t, s) = g(t, s)+
1− tn−1

1−
m−2∑
i=1
ki(1− ξ n−1i )

m−2∑
i=1

kig(ξi, s),

≤ g(θ1(s), s)+
1

1−
m−2∑
i=1
ki(1− ξ n−1i )

m−2∑
i=1

kig(ξi, s) = J1(s).

Next, we prove that (4.4) holds.
From the Lemma 3.3 and (4.3), for t ∈ [τ , 1− τ ], we have

G1(t, s) = g(t, s)+
1− tn−1

1−
m−2∑
i=1
ki(1− ξ n−1i )

m−2∑
i=1

kig(ξi, s),

≥ γ̃τ g(θ1(s), s)+
1− (1− τ)n−1

1−
m−2∑
i=1
ki(1− ξ n−1i )

m−2∑
i=1

kig(ξi, s)

≥ γτ

g(θ1(s), s)+ 1

1−
m−2∑
i=1
ki(1− ξ n−1i )

m−2∑
i=1

kig(ξi, s)


= γτ J1(s)
≥ γτG1(t ′, s),

for all t ′ ∈ [0, 1], where γτ = min{τ n−1, 1− (1− τ)n−1}, γ̃τ is defined by Lemma 3.3.
The proof is complete. �
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We use the inequality (4.4) to define our cones. Let E = C[0, 1], then E is a Banach space with the norm ‖u‖ =
maxt∈[0,1] |u(t)|. For a fixed τ ∈ (0. 12 ), define the cone Pτ ⊂ E by

Pτ = {u ∈ E | u(t) ≥ 0 on [0, 1], and min
t∈[τ ,1−τ ]

u(t) ≥ γτ‖u‖}.

Define the operator T1 by

T1u(t) =
∫ 1

0
G1(t, s)a(s)f (u(s)) ds, 0 ≤ t ≤ 1. (4.5)

Obviously, u(t) is a solution of (1.1) and (1.2) if and only if u(t) is a fixed point of operator T1.
Theorem2.1 requires that the operator T1 be completely continuous and cone preserving. If T1 is continuous and compact,

then it is completely continuous. The next lemma shows that T1 : Pτ → Pτ for τ ∈ (0. 12 ) and that T1 is continuous and
compact.

Lemma 4.4. The operator T1 is completely continuous and T1 : Pτ → Pτ for each τ ∈ (0. 12 ).

Proof. Fix τ ∈ (0. 12 ). Since a(s)f (u(s)) ≥ 0 for all s ∈ [0, 1], u ∈ Pτ and since G1(t, s) ≥ 0 for all t, s ∈ [0, 1], then
T1u(t) ≥ 0 for all t ∈ [0, 1], u ∈ Pτ .
Let u ∈ Pτ , by (4.4) and (4.5) we have

min
t∈[τ ,1−τ ]

u(t) = min
t∈[τ ,1−τ ]

∫ 1

0
G1(t, s)a(s)f (u(s)) ds

≥

∫ 1

0
min

t∈[τ ,1−τ ]
G1(t, s)a(s)f (u(s)) ds

≥ γτ

∫ 1

0
G1(t ′, s)a(s)f (u(s)) ds

≥ γτ T1u(t ′)

for all t ′ ∈ [0, 1]. Thus

min
t∈[τ ,1−τ ]

u(t) ≥ γτ‖T1u‖.

Clearly the operator (4.5) is continuous. By the Arzela–Ascoli theorem T1 is compact. Hence, the operator T1 is completely
continuous and the proof is complete. �

For convenience, we denote

Λ1 =
1

max
t∈[τ1,1−τ1]

∫ 1−τ1
τ1

G1(t, s) ds · H
, Λ2 =

1
‖J1‖q · ‖a‖p

.

Theorem 4.1. Suppose condition (H1)–(H5) holds, let {τk}∞k=1 be such that tk+1 < τk < tk, k = 1, 2, . . .. Let {Rk}∞k=1 and {rk}
∞

k=1
be such that

Rk+1 < γτk rk < rk < Rk, Mrk < LRk, k = 1, 2, . . . ,

where M ∈ (Λ1,+∞), L ∈ (0,Λ2). Furthermore, for each natural number k, assume that f satisfies the following two growth
conditions:
(H6) f (u) ≤ LRk for all u ∈ [0, Rk],
(H7) f (u) ≥ Mrk for all u ∈ [γτk rk, rk].
Then the boundary value problem (1.1) and (1.2) has countably many positive solutions {uk}∞k=1 such that rk ≤ ‖uk‖ ≤ Rk for

each k = 1, 2, . . ..

Proof. Consider the sequences {Ω1,k}∞k=1 and {Ω2,k}
∞

k=1 of open subsets of E defined by

Ω1,k = {u ∈ E|‖u‖ < Rk},
Ω2,k = {u ∈ E|‖u‖ < rk}.

Let {τk}∞k=1 be as in the hypothesis and note that t
∗ < tk+1 < τk < tk < 1

2 , for all k ∈ N . For each k ∈ N , define the cone Pk
by

Pk = {u ∈ E | u(t) ≥ 0 on [0, 1], and min
t∈[τk,1−τk]

u(t) ≥ γτk‖u‖}.

Fix k and let u ∈ Pk
⋂
∂Ω2,k. For s ∈ [τk, 1− τk], we have

γτk rk = γτk‖u‖ ≤ min
s∈[τk,1−τk]

u(s) ≤ u(s) ≤ ‖u‖ = rk.
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By condition (H7), we get

‖Tu‖ = max
t∈[0,1]

∫ 1

0
G1(t, s)a(s)f (u(s)) ds

≥ max
t∈[0,1]

∫ 1−τk

τk

G1(t, s)a(s)f (u(s)) ds

≥ max
t∈[0,1]

∫ 1−τk

τk

G1(t, s)a(s) ds ·Mrk

≥ HMrk · max
t∈[τ1,1−τ1]

∫ 1−τ1

τ1

G1(t, s) ds

≥ rk = ‖u‖.

Now let u ∈ Pk
⋂
∂Ω1,k, then u(s) ≤ ‖u‖ = Rk for all s ∈ [0, 1]. By condition (H6), we get

‖Tu‖ = max
t∈[0,1]

∫ 1

0
G1(t, s)a(s)f (u(s)) ds

≤

∫ 1

0
J1(s)a(s) ds · LRk

≤ ‖J1‖q‖a‖p · LRk
≤ Rk = ‖u‖.

It is obvious that 0 ∈ Ω2,k ⊂ Ω2,k ⊂ Ω1,k. Therefore, by Theorem 2.1, the operator T has at least one fixed point
uk ∈ Pk

⋂
(Ω1,k \Ω2,k) such that rk ≤ ‖uk‖ ≤ Rk. Since k ∈ N was arbitrary, the proof is complete. �

5. Existence of positive solutions to (1.1) and (1.3)

In this section we deal with the boundary value problems (1.1) and (1.3). The method is just similar to what we have
done in Section 4, so we omit the proof of main result of this section.

Lemma 5.1 (Guo and Ji [9]). Suppose
∑m−2
i=1 kiξ

n−1
i 6= 1, then for y(t) ∈ C[0, 1], the boundary value problem

u(n)(t)+ y(t) = 0, t ∈ (0, 1),

u(0) = 0, u′(0) = · · · = u(n−2)(0) = 0, u(1) =
m−2∑
i=1

kiu(ξi)
(5.1)

has a unique solution

u(t) = −
∫ t

0

(t − s)n−1

(n− 1)!
y(s) ds+

tn−1

1−
m−2∑
i=1
kiξ n−1i

∫ 1

0

(1− s)n−1

(n− 1)!
y(s) ds

−
tn−1

1−
m−2∑
i=1
kiξ n−1i

m−2∑
i=1

ki

∫ ξi

0

(ξi − s)n−1

(n− 1)!
y(s) ds.

The proof is similar to that of Lemma 4.1 and thus is omitted.

Lemma 5.2. Suppose 0 <
∑m−2
i=1 kiξ

n−1
i < 1, the Green’s function for the boundary value problem

−u(n)(t) = 0, t ∈ (0, 1),

u(0) = 0, u′(0) = · · · = u(n−2)(0) = 0, u(1) =
m−2∑
i=1

kiu(ξi)
(5.2)

is given by

G2(t, s) = g(t, s)+
tn−1

1−
m−2∑
i=1
kiξ n−1i

m−2∑
i=1

kig(ξi, s), (5.3)

where g(t, s) is defined by (3.3).
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The proof is similar to that of Lemma 4.2 and thus is omitted.

Lemma 5.3. Suppose 0 <
∑m−2
i=1 kiξ

n−1
i < 1, the Green’s function G2(t, s) defined by (5.3) satisfies:

(i) G2(t, s) ≥ 0 is continuous on [0, 1] × [0, 1];
(ii) G2(t, s) ≤ J2(s) for all t, s ∈ [0, 1] and there exists a constant γ ′τ > 0 for any τ ∈ (0,

1
2 ) such that

min
t∈[τ ,1−τ ]

G2(t, s) ≥ γ ′τ J2(s) ≥ γ
′

τG2(t
′, s), ∀t ′, s ∈ [0, 1], (5.4)

where

J2(s) = g(θ1(s), s)+
1

1−
m−2∑
i=1
kiξ n−1i

m−2∑
i=1

kig(ξi, s),

γ ′τ = τ
n−1
≤ min

{(
τ

θ1(s)

)n−1
,

τ

1− θ1(s)
, τ n−1

}
= min{γ̃τ , τ n−1}.

The proof is similar to that of Lemma 4.3 and thus is omitted.
We use the inequality (5.4) to define our cones. Let E = C[0, 1], then E is a Banach space with the norm ‖u‖ =

maxt∈[0,1] |u(t)|. For a fixed τ ∈ (0. 12 ), define the cone Pτ ⊂ E by

Pτ = {u ∈ E | u(t) ≥ 0 on [0, 1], and min
t∈[τ ,1−τ ]

u(t) ≥ γ ′τ‖u‖}.

Define the operator T2 by

T2u(t) =
∫ 1

0
G2(t, s)a(s)f (u(s)) ds, 0 ≤ t ≤ 1. (5.5)

Obviously, u(t) is a solution of (1.1) and (1.3) if and only if u(t) is a fixed point of operator T2.
Theorem2.1 requires that the operator T2 be completely continuous and cone preserving. If T2 is continuous and compact,

then it is completely continuous. The next lemma shows that T2 : Pτ → Pτ for τ ∈ (0. 12 ) and that T2 is continuous and
compact.

Lemma 5.4. The operator T2 is completely continuous and T2 : Pτ → Pτ for each τ ∈ (0. 12 ).

The proof is similar to that of Lemma 4.4 and thus is omitted.
For convenience, we denote

Λ′1 =
1

max
t∈[τ1,1−τ1]

∫ 1−τ1
τ1

G2(t, s) ds · H
, Λ′2 =

1
‖J2‖q · ‖a‖p

.

Theorem 5.1. Suppose condition (H1)–(H4), (H
′

5) holds, let {τk}
∞

k=1 be such that tk+1 < τk < tk, k = 1, 2, . . .. Let {Rk}∞k=1 and
{rk}∞k=1 be such that

Rk+1 < γ ′τk rk < rk < Rk, Mrk < LRk, k = 1, 2, . . . ,

where M ∈ (Λ′1,+∞), L ∈ (0,Λ
′

2). Furthermore, for each natural number k, assume that f satisfies the following two growth
conditions:
(H
′

6) f (u) ≤ LRk for all u ∈ [0, Rk],
(H
′

7) f (u) ≥ Mrk for all u ∈ [γ
′
τk
rk, rk].

Then the boundary value problem (1.1) and (1.3) has countably many positive solutions {uk}∞k=1 such that rk ≤ ‖uk‖ ≤ Rk for
each k = 1, 2, . . ..

The proof is similar to that of Theorem 4.1 and thus is omitted.

6. Example

In this section, we present our main result as well as providing an example of a family of functions a(t) that satisfy
conditions (H1)–(H3), and two simple examples are presented to illustrate the applications of the obtained results.

Example 6.1. There existmany functions a(t) that satisfy condition (H1)–(H3). For example, we consider the one parameter
family of functions a(t; ε) : [0, 1] → (0,+∞] given by

a(t; ε) =
∞∑
k=1

χ [ωk, ωk−1]

|t − tk|ε
, (6.1)
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where

t0 =
5
16
, tk = t0 −

k−1∑
i=0

1
(i+ 2)4

, k = 1, 2, . . . ,

ω0 = 1, ωk =
1
2
(tk + tk+1), k = 1, 2, . . . .

At first, it is easily seen that a(t; ε) ≥ a(1; ε) = ( 43 )
ε, t1 = 1

4 <
1
2 , tk − tk+1 =

1
(k+2)4

, k = 1, 2, . . ., and (note that∑
∞

k=1
1
k4
=

π4

90 )

t∗ = lim
k→∞

tk =
5
16
−

∞∑
i=0

1
(i+ 2)4

=
5
16
−

(
π4

90
− 1

)
=
21
16
−
π4

90
>
1
5
.

We claim that if ε = 1
2 , then a(t; ε) ∈ L

1
[0, 1]. Note that

∑
∞

k=1
1
k2
=

π2

6 , we have∫ 1

0
a(t; ε) dt =

∫ 1

0

∞∑
k=1

χ [ωk, ωk−1]

|t − tk|ε
dt =

∞∑
k=1

∫ 1

0

χ [ωk, ωk−1]

|t − tk|ε
dt

=

∞∑
k=1

∫ ωk−1

ωk

1
|t − tk|ε

dt

=

∞∑
k=1

[∫ tk

ωk

1
(tk − t)ε

dt +
∫ ωk−1

tk

1
(t − tk)ε

dt
]

=

∞∑
k=1

[∫ tk

tk+tk+1
2

1
(tk − t)ε

dt +
∫ tk−1+tk

2

tk

1
(t − tk)ε

dt

]

=
1
1− ε

∞∑
k=1

[(
tk − tk+1
2

)1−ε
+

(
tk−1 − tk
2

)1−ε]

=
1

21−ε(1− ε)

∞∑
k=1

[
1

(k+ 2)4(1−ε)
+

1
(k+ 1)4(1−ε)

]
=
√
2
∞∑
k=1

[
1

(k+ 2)2
+

1
(k+ 1)2

]
=
√
2
(
π2

3
−
9
4

)
,

which implies a(t; ε) ∈ L1[0, 1].
Next, we claim that if ε = 1

4 , then a(t; ε) ∈ L
2
[0, 1]. The argument is similar to the one above. In this case, we need the

Cauchy product,

∞∑
k=1

ak ·
∞∑
k=1

bk =
∞∑
k=1

ck, (6.2)

where

ck =
k∑
n=1

anbk−n+1. (6.3)

Note that∫ 1

0
a2(t; ε) dt =

∫ 1

0

[
∞∑
k=1

χ [ωk, ωk−1]

|t − tk|ε

]2
dt, (6.4)

we use (6.2) and (6.3) and the fact that, if A
⋂
B = ∅, then χ [A] · χ [B] = 0 to simplify the integrand,[

∞∑
k=1

χ [ωk, ωk−1]

|t − tk|ε

]2
=

∞∑
k=1

k∑
n=1

χ [ωn, ωn−1]

|t − tn|ε
χ [ωk−n+1, ωk−n]

|t − tk−n+1|ε
=

∞∑
k=1

χ [ωk, ωk−1]

|t − tk|2ε
a.e.,
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and so (6.4) may be rewritten as∫ 1

0
a2(t; ε) dt =

∫ 1

0

∞∑
k=1

χ [ωk, ωk−1]

|t − tk|2ε
dt =

∞∑
k=1

∫ 1

0

χ [ωk, ωk−1]

|t − tk|2ε
dt

=

∞∑
k=1

∫ ωk−1

ωk

1
|t − tk|2ε

dt

=

∞∑
k=1

[∫ tk

ωk

1
(tk − t)2ε

dt +
∫ ωk−1

tk

1
(t − tk)2ε

dt
]

=

∞∑
k=1

[∫ tk

tk+tk+1
2

1
(tk − t)2ε

dt +
∫ tk−1+tk

2

tk

1
(t − tk)2ε

dt

]

=
1

1− 2ε

∞∑
k=1

[(
tk − tk+1
2

)1−2ε
+

(
tk−1 − tk
2

)1−2ε]

=
1

21−2ε(1− 2ε)

∞∑
k=1

[
1

(k+ 2)4(1−2ε)
+

1
(k+ 1)4(1−2ε)

]
=
√
2
∞∑
k=1

[
1

(k+ 2)2
+

1
(k+ 1)2

]
=
√
2
(
π2

3
−
9
4

)
,

which implies a(t; ε) ∈ L2[0, 1].

Example 6.2. As an example of the boundary value problems (1.1) and (1.2), we mention the boundary value problemu
(3)(t)+ a(t)f (u) = 0, t ∈ (0, 1),

u(0) = u
(
1
2

)
, u′(0) = 0, u(1) = 0,

(6.5)

where a(t) is defined by (6.1) and ε = 1
4 ,

f (u) =



24× 10−(4k+2) − 10−4(k+1)
1
25 × 10

−(4k+2) − 10−4(k+1)
(u− 10−4(k+1))+ 10−4(k+1), u ∈

[
10−4(k+1),

1
25
× 10−(4k+2)

]
,

24× 10−(4k+2), u ∈
[
1
25
× 10−(4k+2), 10−(4k+2)

]
,

24× 10−(4k+2) − 10−4k

10−(4k+2) − 10−4k
(u− 10−4k)+ 10−4k, u ∈ [10−(4k+2), 10−4k], (k = 1, 2, . . .),

10−4, u ∈ [10−4,+∞),

we notice that n = 3,m = 3, k1 = 1, ξ1 = 1
2 .

If we take t0 = 5
16 , tk = t0 −

∑k−1
i=0

1
(i+2)4

, τk =
1
2 (tk + tk+1), k = 1, 2, . . ., then τ1 = 1

4 −
1

2×34
< 1

4 and

tk+1 < τk < tk, τk > 1
5 , γτk = min{τ

2
k , 1− (1− τk)

2
} > 1

25 , k = 1, 2, . . ..
It follows from a direct calculation that∫ 1−τ1

τ1

G1(t, s) ds >
∫ 1− 14

1
4

G1(t, s) ds

=

∫ 3
4

1
4

g(t, s) ds+ 4(1− t2)
∫ 3

4

1
4

g
(
1
2
, s
)
ds

=
1
2

{∫ t

1
4

[t2(1− s)2 − (t − s)2] ds+
∫ 3

4

t
t2(1− s)2 ds

+ 4(1− t2)

[∫ 1
2

1
4

(
1
4
(1− s)2 −

(
1
2
− s
)2)

ds+
∫ 3

4

1
2

1
4
(1− s)2 ds

]}
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=
1
384

(−64t3 + 52t2 − 12t + 23),

so

max
t∈[τ1,1−τ1]

∫ 1−τ1

τ1

G1(t, s) ds ≥ max
t∈
[
1
4 ,1−

1
4

]
∫ 1− 14

1
4

G1(t, s) ds =
359

384× 16
>
1
24
,

and

‖J1‖2 =
(∫ 1

0
J21 (s) ds

) 1
2

≤

√
218
24

, ‖a‖2 =

√
√
2
(
π2

3
−
9
4

)
.

In addition, if we take rk = 10−(4k+2), Rk = 10−4k,M = 24, L = 1,H = ( 43 )
1
4 , then

a(t) ≥
(
4
3

) 1
4

= H, t ∈ [t∗, 1− t∗],

Rk+1 = 10−4(k+1) <
1
25
× 10−(4k+2) < γτk rk < rk = 10

−(4k+2) < Rk = 10−4k,

Mrk = 24× 10−(4k+2) < LRk = 1× 10−4k, k = 1, 2, . . . ,

Λ1 =
1

max
t∈[τ1,1−τ1]

∫ 1−τ1
τ1

G1(t, s) ds · H
≤

1
359

384×16 ×
( 4
3

) 1
4
< 24 = M,

Λ2 =
1

‖J1‖2 · ‖a‖2
≥

1
√
218
24 ×

√
√
2
(
π2

3 −
9
4

) > L = 1,
and f (u) satisfies the following growth conditions:

f (u) ≤ LRk = 1× 10−4k, u ∈ [0, 10−4k],

f (u) ≥ Mrk = 24× 10−(4k+2), u ∈
[
1
25
× 10−(4k+2), 10−(4k+2)

]
.

Then all the conditions of Theorem 4.1 are satisfied. Therefore, by Theorem 4.1 we know that boundary value problem
(6.5) has countably many positive solutions {uk}∞k=1 such that 10

−(4k+2)
≤ ‖uk‖ ≤ 10−4k for each k = 1, 2, . . ..

Example 6.3. As an example of the boundary value problems (1.1) and (1.3), we mention the boundary value problemu
(3)(t)+ a(t)f (u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u′(0) = · · · = u(n−2)(0) = 0, u(1) = u
(
1
2

)
(6.6)

where a(t) is defined by (6.1) and ε = 1
4 ,

f (u) =



24× 10−(4k+2) − 10−4(k+1)
1
25 × 10

−(4k+2) − 10−4(k+1)
(u− 10−4(k+1))+ 10−4(k+1), u ∈

[
10−4(k+1),

1
25
× 10−(4k+2)

]
,

24× 10−(4k+2), u ∈
[
1
25
× 10−(4k+2), 10−(4k+2)

]
,

24× 10−(4k+2) − 10−4k

10−(4k+2) − 10−4k
(u− 10−4k)+ 10−4k, u ∈ [10−(4k+2), 10−4k], (k = 1, 2, . . .),

10−4, u ∈ [10−4,+∞),

we notice that n = 3,m = 3, k1 = 1, ξ1 = 1
2 .

If we take t0 = 5
16 , tk = t0 −

∑k−1
i=0

1
(i+2)4

, τk =
1
2 (tk + tk+1), k = 1, 2, . . ., then τ1 = 1

4 −
1

2×34
< 1

4 and

tk+1 < τk < tk, τk > 1
5 , γ

′
τk
= τ 2k >

1
25 , k = 1, 2, . . ..

It follows from a direct calculation that∫ 1−τ1

τ1

G2(t, s) ds >
∫ 1− 14

1
4

G2(t, s) ds
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=

∫ 3
4

1
4

g(t, s) ds+
4
3
t2
∫ 3

4

1
4

g
(
1
2
, s
)
ds

=
1
2

{∫ t

1
4

[t2(1− s)2 − (t − s)2] ds+
∫ 3

4

t
t2(1− s)2 ds

+
4
3
t2
[∫ 1

2

1
4

(
1
4
(1− s)2 −

(
1
2
− s
)2)

ds+
∫ 3

4

1
2

1
4
(1− s)2 ds

]}

=
1
576

(−192t3 + 244t2 − 36t + 3),

so

max
t∈[τ1,1−τ1]

∫ 1−τ1

τ1

G2(t, s) ds ≥ max
t∈
[
1
4 ,1−

1
4

]
∫ 1− 14

1
4

G2(t, s) ds =
43

64× 12
>
1
24
,

and

‖J2‖2 =
(∫ 1

0
J22 (s) ds

) 1
2

≤

√
29
18

, ‖a‖2 =

√
√
2
(
π2

3
−
9
4

)
.

In addition, if we take rk = 10−(4k+2), Rk = 10−4k,M = 24, L = 1,H = ( 43 )
1
4 , then

a(t) ≥
(
4
3

) 1
4

= H, t ∈ [t∗, 1− t∗],

Rk+1 = 10−4(k+1) <
1
25
× 10−(4k+2) < γ ′τk rk < rk = 10

−(4k+2) < Rk = 10−4k,

Mrk = 24× 10−(4k+2) < LRk = 1× 10−4k, k = 1, 2, . . . ,

Λ′1 =
1

max
t∈[τ1,1−τ1]

∫ 1−τ1
τ1

G2(t, s) ds · H
≤

1
43

64×12 ×
( 4
3

) 1
4
< 24 = M,

Λ′2 =
1

‖J2‖2 · ‖a‖2
≥

1
√
29
18 ×

√
√
2
(
π2

3 −
9
4

) > L = 1,
and f (u) satisfies the following growth conditions:

f (u) ≤ LRk = 1× 10−4k, u ∈ [0, 10−4k],

f (u) ≥ Mrk = 24× 10−(4k+2), u ∈
[
1
25
× 10−(4k+2), 10−(4k+2)

]
.

Then all the conditions of Theorem 5.1 are satisfied. Therefore, by Theorem 5.1 we know that boundary value problem
(6.6) has countably many positive solutions {uk}∞k=1 such that 10

−(4k+2)
≤ ‖uk‖ ≤ 10−4k for each k = 1, 2, . . ..

Remark. In the above twoexamples, it is clear that the results [7–10] donot apply to the twoexamples. Hence,we generalize
high order multi-point boundary value problems.
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