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and the liquid with one code. In this paper, a rising axisymmetric bubble is simulated with
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gas-liquid interface and to calculate the flow around the bubble. The grid converged results
correspond well with the experimental data.

The gas-liquid interface is conceived as a zero-mass, zero-thickness structure whose
position is determined by the liquid forces, a uniform gas pressure and surface tension.
Iterations between the two codes are necessary to obtain the coupled solution of both prob-
lems and these iterations are stabilized with a fluid-structure interaction (FSI) algorithm.
The flow around the bubble is calculated on a moving mesh in a reference frame that rises
at the same speed as the bubble. The flow solver first updates the mesh throughout the lig-
uid domain given a position of the gas-liquid interface and then calculates the flow around
the bubble. It is considered as a black box with the position of the gas-liquid interface as
input and the liquid forces on the interface as output. During the iterations, a reduced-
order model of the flow solver is generated from the inputs and outputs of the solver. The
solver that calculates the interface position uses this model to adapt the liquid forces on
the gas-liquid interface during the calculation of the interface position.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Bubbles have since long been of interest to both experimental and numerical researchers. Bubbly flow frequently occurs
in reactors where it improves the mixing and reaction of the constituents [1]. By contrast, cavitation erodes metal surfaces
due to the high pressure during bubble collapse [2]. An excellent overview of the various bubble shapes is provided by Clift,
Grace and Weber, who establish a relation between the bubble shape and the Reynolds and E6tvés number [3]. Consequently,
there is a lot of experimental data available to validate numerical techniques [3-5]. With the extended knowledge of bubble
behaviour, the benefits of bubbly flow can be further enhanced and damage encountered in cavitation problems can be
limited.

Numerical techniques frequently used for simulating a limited number of bubbles can be subdivided based on how they
treat the interface between the liquid and the gas. Interface tracking techniques position grid nodes on the interface and the
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grid is thus deformed by the bubble motion. Conversely, interface capturing techniques employ a static grid and therefore do
not place grid points on the interface, but they reconstruct the interface from a marker in the flow field. Although the former
techniques provide a sharper representation of the interface than the latter for the same grid spacing, the complexity of the
interface motion is more limited. Interface tracking has been developed in [6-8]. Examples of interface capturing techniques
are the Volume Of Fluid (VOF) and Level Set (LS) method, reviewed respectively in [9,10].

More recently, advances in computer power have enabled the numerical solution of fluid-structure interaction and
other coupled problems. Fluid-structure interaction is of paramount importance in aeroelastic analysis of wings [11] and
buildings [12], but also in biomedical applications [ 13-15]. Fluid-structure interaction simulations can be performed with a
single code for fluid and structure, the so-called monolithic approach, as opposed to the partitioned approach with separate
codes for fluid and structure. The latter approach enables the reuse of well-validated codes but requires coupling iterations
between the flow and the structure to satisfy the kinematic and dynamic conditions on the common boundary of the
fluid and the structure. A coupling algorithm is necessary to stabilize these iterations and the last decade has witnessed
a continuous progress in the development of these coupling algorithms [14,16-20].

Most of the above-mentioned bubble simulation techniques compute the gas, the liquid and the interface in between
with a single code. Conversely, the interface between the gas and the liquid can be conceived as a zero-thickness structure
whose position is determined by the equilibrium between fluid forces and surface tension. From this point of view, a bubble
consists of a structure with a fluid on either side. The bubble simulation is thus divided in a flow simulation and a structure
simulation.

The partitioned approach to bubble simulation has already been followed in [6], who calculated the steady shape of a
bubble, starting from a given initial position of the bubble, with the following iterative procedure. The Cartesian coordinates
(x, ) are first mapped to a coordinate system (&, ) where the & axis corresponds with the interface. The flow around the
bubble is subsequently calculated by performing a limited number of iterations with a Navier-Stokes solver. The surface
tension is then calculated from the curvature of the liquid-gas interface and compared with the liquid’s force. The difference
between these forces is considered as a normal force on the liquid-gas interface and is added to the mapping functions with
an underrelaxation factor which is determined by trial and error. Finally the new position of the interface is calculated
by applying these modified mapping functions. These steps are repeated until all equations and boundary conditions are
satisfied. It is important to mention that the new position of the interface is not determined directly from the force unbalance
but indirectly by modifying the coordinate transformation to avoid instability and that both the flow problem and the
structural problem are not solved completely because it is observed that this also leads to instability.

The instability of the interaction between the flow problem and the structural problem in a partitioned simulation of a
bubble that was observed by Ryskin et al. can be cured in a more robust way, that is without determining an underrelaxation
factor by trial and error, by using a fluid-structure interaction coupling algorithm. These coupling algorithms have been
developed to deal with the instability of the interaction between the flow and the structure in the partitioned approach
to fluid-structure interaction and can thus be applied to partitioned simulations of bubbles and other problems with an
interface as well.

This paper focuses on the application of the fluid-structure coupling algorithm first described in [20] to partitioned
bubble simulation. It is shown that one can obtain accurate, steady-state results of an axisymmetric bubble, rising in a
stagnant mineral oil due to buoyancy with this technique. The shape of the bubble is calculated by coupling a flow solver
for the fluid zone and a structure solver which calculates the interface position. The fluid-structure interaction coupling
algorithm from [20] for unsteady simulations is used in this paper to determine the interface position that balances the forces
on fluid and structure in a steady simulation. This coupling algorithm was developed for a black box flow solver and structure
solver but in this paper it is modified to take advantage of the accessibility of the structure solver. The numerical results are
thoroughly verified with the experimental data from [5] and can be used as a benchmark for other bubble simulation codes.

The remainder of this paper is organized as follows. The flow solver and structure solver are defined in Sections 2 and 3,
prior to an overview of the fluid-structure interaction coupling algorithm in Section 4. In Section 5, the results of the
simulations are presented and compared with experiments from the literature, followed by the conclusions in Section 6.

2. Flow solver

To fit in the fluid-structure interaction framework, the flow solver has to calculate the sum of the pressure and normal
viscous force - further called the fluid load - of the liquid on the interface for a given shape of the bubble. Therefore, it has
to calculate the pressure and velocity in the liquid domain around the bubble where pressure variation stems from gravity,
inertia and viscosity. As the density and viscosity of a gas are typically orders of magnitude lower than those of a liquid, the
pressure gradient inside the bubble is neglected with respect to the pressure variations on the liquid side of the interface.
The gas flow inside the bubble is not calculated in this paper, but for cases where this assumption is no longer valid, the flow
solver can easily calculate the gas flow as well.

The axisymmetric geometry of the mesh to calculate the flow in the liquid is similar to the experimental setup from [5].
It consists of a cylindrical tank of 1.0 m high with a radius of 0.75 m whose axis of symmetry is aligned with the gravitational
field. The bubble is positioned 0.5 m above the bottom of the reservoir.

The motion of a bubble that rises through a liquid is unsteady in reality as the bubble volume changes due to the
hydrostatic pressure gradient. However, in the cases studied in this paper the shape and rise velocity of the bubble do
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not change significantly after an initial settling time and, therefore, the bubble shape is calculated with a steady simulation
in a reference frame that moves at the same speed and in the same direction as the bubble. In this reference frame, the
interface is modelled as a static free-slip wall and the liquid surrounding the bubble is given a downward velocity equal to
the rise velocity of the bubble. In the absolute reference frame, the cylindrical wall of the tank is stationary and the top of
the reservoir is a velocity inlet with zero velocity. The pressure at the bottom of the reservoir is set to zero with a pressure
outlet. The correct absolute pressure level and the pressure due to gravity are subsequently added in the structure solver.

The finite volume flow solver (Fluent 6.3, Fluent Inc.) receives the position of the N nodes on the interface and
automatically updates the position of the other grid nodes in the liquid domain with a spring model. It then calculates
the pressure and velocity throughout the liquid domain, returning the fluid load in all the nodes of the interface. The action
of the flow solver can be summarized as

P=FX) (1)

with X an array containing the axial and radial coordinates of the interface nodes and P an array with the fluid load in those
nodes.

X=[x1 n x nn ... x rN]T (2)

P = [p1 D2 Ce pN]T . (3)

The pressure-based flow solver utilizes a coupled solution of the pressure and velocity field and a second-order upwind
scheme for the discretization of the momentum equation. The method presented here is independent of the flow solver and
any other solver should give similar results.

3. Structure solver

As mentioned above, the structure solver calculates the interface position for a given fluid load on the liquid side of the
interface. Each node on the interface has 2 degrees of freedom, namely its axial and radial coordinate, so 2N degrees of
freedom have to be determined.

In every interface nodei (i = 1...N), the difference between the fluid load p; and the gas pressure p¢ has to compensate
for the surface tension.

(Di +Pabs —PL-§ %) —pc+0o k=0 (4)
with pgps the absolute pressure level at the bottom of the tank, p; the fluid density, 4 the gravitational acceleration, x; the
height of node i above the bottom of the tank, o the surface tension coefficient and «; the local surface curvature. The gas
pressure inside the bubble p; is calculated with the ideal gas law from the mass of air and the temperature, both given
constants. In Eq. (4), the fluid load p; consists of the sum of the pressure and normal viscous force. The tangential forces
on the interface and the variation of the surface tension coefficient have been neglected. It will be shown in Section 5 that
simulations with these simplifications yield good results for the parameter values of interest in this paper. The left-hand
side of Eq. (4) is further called g;. The surface curvature «; in node i is calculated by constructing local 4th order polynomial
interpolants of the axial and radial coordinates from which the principal radii of curvature are calculated.

Tangential motion of the nodes along the interface has no effect on the bubble shape or on the flow field because the
interface is modelled as a free-slip wall. Equidistance of the nodes is imposed to establish their position along the interface.
This results in N — 2 equations

[ — xim)® + (1 — 1i20)?] = [ = xi00)* + (i = 1i41)°] = 0 (5)

forifrom 2 to N — 1. The left-hand side of Eq. (5) is further called h;. The radial degree of freedom of the nodes on the axis
of symmetry is constrained and thus h; and hy are set to zero.
The 2N residual components g; and h; are stored in an array G(X, P).

GX.P)=[g1 h & h ... g hN]T~ (6)

The residual further denotes the L1-norm of this array. The structure solver calculates the interface position X that results in
aresidual below the convergence criterion of the structure solver for a given fluid load P. Its action can thus be summarized
as

X =5S(P). (7)
The structure solver is an object oriented C++ code which has been developed by the authors. A modified version of the
structure solver has been used for the simulation of bubble growth and detachment [20].

4. Coupling algorithm

Now the coupling iterations between the flow solver F and the structure solver S to find the steady-state bubble shape
are analyzed. The flow solver is a black box code, which means that it cannot be modified and that the sensitivity of the
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output with respect to the input is unknown. Conversely, the structure solver is an accessible code, which is exploited by
the coupling algorithm.

The flow solver first calculates the fluid load for two different bubble shapes chosen by the user, which are rough esti-
mates of the final solution.

Py =F(Xy) (8)

Py = F(X). 9
These 2 inputs X1, X, and outputs Pq, P, of the flow solver are stored in a database which will contain all the inputs and the
corresponding outputs of the flow solver during the following coupling iterations.

After these initial calculations, every following coupling iteration (indicated with subscript k, k > 2) consists of the
following steps.

1. Areduced-order model of the flow solver is constructed based on the database of its inputs and outputs. At the beginning
of coupling iteration k, the database contains k — 1 inputs and the corresponding outputs of the flow solver.

X1 X2 ... Xeeq (10)
Py P, ... P (11)

This is a database of interface positions and the corresponding fluid loads on the interface. The state of the entire fluid
domain in every coupling iteration is thus not stored. Consequently, the size of this database is small compared to the
storage for the flow domain. The first k — 2 inputs and outputs are converted into differences relative to the last input
and output by subtracting X;_1, respectively Py_1.

AXy AXy ... AXes (12)

AP, AP, ... AP, (13)
with

AXi = Xij — Xk—1 (14)

AP = P — P,_1. (15)

This is only possible if there are at least 2 inputs and outputs in the database and thus the preceding calculations in
Egs. (8) and (9) are indispensable.

The reduced-order model has to approximate the fluid load P for an arbitrary position of the interface X. Therefore, X
is also converted into a difference AX relative to Xj_;.

AX =X — X4 (16)
AX is then decomposed as a linear combination of the known AX; with i ranging from 1 to k — 2.

AX~U-«a (17)
with

U=[4X; AXy ... AXis] (18)

a=[wr o ... ws]. (19)

This decomposition is approximate as the columns of U are only part of the basis for the space with all possible AX. The
coefficients « are calculated with the least squares approach to minimize the L2-norm of the error between AX and U - «x.

a=(U"-U)" U Ax. (20)

The matrix inversion in the previous equation is cheap as the dimension of the matrix is k — 2. The inversion fails if the
columns of U are linearly dependent.

The change in fluid load AP; that corresponds with every component AX; (i from 1to k — 2) in Eq. (17) is known. If
the response of the flow solver were linear, then the change in fluid load corresponding with U - & would be V - o, with

V=[AP, AP, ... AP,]. (21)

The reduced-order model approximates the change in fluid load AP that corresponds with AX by V - «. According to the
reduced-order model, the fluid load P corresponding with interface position X is

P=P 1+V a (22)
=Py +V-(UT-U) U AX (23)
=P +A (X —X1) (24)
= PX) (25)

with A the approximate Jacobian of the flow solver, which is built up with inputs and outputs from the database.
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Table 1

Parameters for the simulation of Bubble A in Table 1 from [5].
o 0.0322 N/m
" 0.118 Pas
oL 875.5 kg/m?
g 9.81 m/s?

2. The structure solver calculates the position of the interface with Newton-Raphson iterations, indicated with superscripts.
The reduced-order model of the flow solver updates the fluid load on the interface after every Newton-Raphson iteration.
It would be very time consuming to use the real flow solver for this purpose. Moreover, the Jacobian A of the reduced-
order model can be inserted into the Newton-Raphson iterations

S dG

dG n
dpP

X
P = P(XST) 27)

where ... |* signifies that the Jacobian is evaluated in X}, P;. The dimension of the matrix is 2N, which is small in
comparison with the number of cells in the liquid domain, and thus a direct solver is used. After every Newton-Raphson
iteration, the residual is calculated and compared with the convergence criterion. At convergence, the nonlinear
equations are satisfied (up to the convergence criterion), even though the reduced-order model is only linear. The
reduced-order model merely helps to obtain convergence of the coupled problem but it does not influence the final
results.

Analysis of the partitioned simulation of coupled problems has demonstrated that the displacement modes of the
interface with a low wave number are most unstable and once these displacement modes are treated implicitly, as is the
case when they are included in the approximate Jacobian, the coupling iterations will converge quickly [21].

3. Once the structure solver has converged, the flow solver calculates the real fluid load P.

P = F(X0)- (28)

. The new input X; and output Py of the flow solver are added to the database.
5. The fluid load from the flow solver is inserted into the structure solver and the residual is calculated. The calculation
finishes once the residual is below the convergence criterion.

s -1
Xt =x5 - [ -A:| -G(X, PY) (26)

NS

5. Results and discussion

The partitioned approach to the rising bubble simulation has been applied to Bubble A in Table 1 from [5]. This is a
spherical cap bubble without skirt, which means that the top of the bubble is spherical but that the bottom is nearly flat.
The surface tension is strong enough to prevent that a skirt — a trail of small bubbles behind the main bubble - develops. The
parameters for this simulation have been listed in Table 1 and they correspond with a Reynolds number of Re = 19, a Weber
number of We = 15 and an E6tvés number of Eo = 39 if the bubble diameter is used as reference length. The terminal rise
velocity of this bubble is 0.215 m/s.

Fig. 1 shows the bubble shape for 80, 120, 160 and 240 nodes on the interface. The origin of this figure is located at
0.5 m above the bottom of the tank. As the number of nodes on the interface increases, the difference between the results
decreases, indicating grid convergence of the calculations. This figure also depicts the initial bubble shape (X;), which is a
hand-made drawing of the bubble shape. The second imposed bubble shape (X;) is calculated from the first one as

i—1
fi=x-[146-si D — 29
Xi=x ( + sm(n N—])) (29)
/ , i1
ri=r-(1+46-sin n.iN—l (30)

for i from 1 to N. x;, r; are the coordinates in X; and X;, r’; those in X,. The perturbation size § has been chosen 0.001, but
8 = 0.01 or 0.0001 produces the same results for 120 nodes on the interface.

The convergence history of the coupling iterations is shown in Fig. 2 for N = 80, 160 and 240. The convergence history
for N = 120 is similar and has been omitted for clarity. The convergence criterion used is 0.1 Pa because at that point, the
maximal node displacement divided by the bubble radius decreases below 1 x 1073, The simulations with N = 80, 120, 160
and 240 required respectively 28, 23, 25 and 28 coupling iterations to reduce the residual below the convergence criterion.
The number of coupling iterations for N = 80 is a little higher due to the large displacement of the bubble in that simulation.

Table 2 summarizes the position of the bubble apex relative to the origin of Fig. 1 and the ratio B/A as a function of the
number of nodes on the interface, where B is the length measured from the bubble apex to the bottom of the wake and A
is the maximum girth dimension of the wake as indicated in Fig. 3. A Richardson extrapolation based on this data has been
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r[m] x10°

Fig. 1. Bubble shape for 80, 120, 160 and 240 nodes on the interface, together with the initial bubble shape (X;). The origin of this figure is located at 0.5 m
above the bottom of the tank.

logyg(normalised residual)

-6 T ; T T T )
0 5 10 15 20 25 30

Coupling iteration

Fig. 2. The convergence history of the normalized residual during the coupling iterations for 80, 160 and 240 nodes on the interface. The residual has been
normalized with its initial value.

Table 2

The position of the bubble apex relative to the origin of Fig. 1 and the ratio B/A, where A and B are indicated in Fig. 3, as a function of the number of nodes

on the interface. Based on these data, a Richardson extrapolation has been performed and the error, being the relative deviation from the extrapolation,
has been calculated.

N Position (1073 m) Error (%) B/A (-) Error (%)

80 5.320 87.52 1.29 15.18
120 2.843 0.21 1.23 9.82
160 2.839 0.07 1.16 3.57
240 2.837 0.00 1.13 0.89
Extrapolation 2.837 1.12

performed and the error, which is the relative deviation from the extrapolation, is also tabulated. The decreasing error for
increasing N proves the grid convergence of the results.

Finally, Fig. 3 compares the calculated bubble shape for N = 240 and the experimental bubble shape from Figure 1in[5].
The experimental part of this Figure is a shadowgraph that visualizes the bubble without skirt and the flow lines under the
bubble. The agreement of experiment and calculation is excellent with regard to both bubble and wake shape.

The simulations presented above indicate that the steady-state shape of an axisymmetric bubble can be calculated with
a partitioned fluid-structure interaction approach as long as the rise velocity and an approximation for the initial bubble
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Fig. 3. The bubble and wake shape from the simulation for N = 240 (left) and the experimental results (right) from Figure 1in [5]. The experimental part
of this figure is a shadowgraph and thus shows both the bubble without skirt and the flow lines underneath.

shape are known. The same accuracy should be obtained with the monolithic methods mentioned in Section 1 which means
that the results in this work, obtained by coupling well-validated codes, can be used as a benchmark for new monolithic
bubble simulation codes. It should be emphasized that no parameters have been tuned to obtain these results.

The coupling algorithm described in [20] has not been applied to steady-state calculations before. The inertia of the
incompressible fluid does not hinder the convergence of the coupling iterations here. Not surprisingly, the number of
coupling iterations is higher in these steady-state simulations as the displacement between the initial shape and the final
shape is much larger than the displacement in a time step. This method is therefore limited to situations where a reasonable
estimation of the bubble shape is known and where the interface is quite regular.

It has been demonstrated in [20] that the fluid-structure interaction coupling algorithm is capable of accelerating
unsteady simulations. Future work will be to extend this steady partitioned bubble simulation technique to unsteady three-
dimensional simulations and to ensure that it scales well such that more complex problems like mixing, reaction and
cavitation can be tackled.

6. Conclusions

A fluid-structure interaction method has been adopted to calculate the steady-state shape of an axisymmetric bubble.
This method successfully couples an existing and thoroughly validated black box flow solver with a newly developed,
accessible structure solver. The former calculates the flow around the bubble and the latter the position of the interface
which is conceived as a zero-thickness structure. Bubble A in Table 1 from [5] has been simulated and the grid converged
results presented in this paper bear strong resemblance to experiments.
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