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a b s t r a c t

Linear undamped gyroscopic systems are defined by three real matrices, M > 0, K > 0,
and G (GT

= −G); the mass, stiffness, and gyroscopic matrices, respectively. In this
paper an inverse problem is considered: given complete information about eigenval-
ues and eigenvectors, Λ = diag{λ1, λ2, . . . , λ2n−1, λ2n} ∈ C2n×2n and X = [x1,
x2, . . . , x2n−1, x2n] ∈ Cn×2n, where the diagonal elements of Λ are all purely imaginary,
X is of full row rank n, and both Λ and X are closed under complex conjugation in the
sense that λ2j = λ̄2j−1 ∈ C, x2j = x̄2j−1 ∈ Cn for j = 1, . . . , n, find M, K and G such that
MXΛ2

+ GXΛ + KX = 0. The solvability condition for the inverse problem and a solution
to the problem are presented, and the results of the inverse problem are applied to develop
a method for model updating.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Free oscillations of multi dof conservative gyroscopic systems are governed by the set of second-order differential
equations

Mq̈(t) + Gq̇(t) + Kq(t) = 0, (1.1)

where the vector q(t) represents the generalized coordinates of the system, M, K and G are n × n real matrices. The mass
matrix, M , and stiffness matrix, K , are symmetric positive definite, and the gyroscopic matrix G is always skew-symmetric
(that is, GT

= −G).
It is well-known that all solutions of this differential equation can be obtained by solving the quadratic eigenvalue

problem (QEP)

(λ2M + λG + K)x = 0. (1.2)

Complex numbers λ and nonzero vectors x for which this relation holds are, respectively, the eigenvalues and eigenvectors
of the system. If λj, xj form an eigenvalue–eigenvector pair, then there is a natural association between the diagonal matrix
Λ of 2n eigenvalues and an n × 2n matrix X with corresponding eigenvectors as its columns. Then it is easy to see that the
2n columns of the matrix

MXΛ2
+ GXΛ + KX = 0 (1.3)
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summarize 2n separate eigenvalue–eigenvector relations of type (1.2). It will be convenient to define the ‘‘λ-matrix’’ or
‘‘matrix polynomial’’,

L(λ) = λ2M + λG + K . (1.4)

It is well-understood that the quadratic eigenvalue problem of Eq. (1.4) can be studied via the linearized 2n×2n eigenvalue
problem λA − Bwhere

A :=


K 0
0 M


, B :=


0 K

−K −G


. (1.5)

Thus, if σ denotes the set of all eigenvalues (the spectrum), then

σ(λ2M + λG + K) = σ


λ


K 0
0 M


−


0 K

−K −G


.

Also, (λ2M + λG + K)x = 0 is equivalent to
λ


K 0
0 M


−


0 K

−K −G

 
x
λx


= 0.

Rotating bodies, axially moving materials, and fluid-conveying pipes are examples of gyroscopic systems. The ‘‘forward’’
problem is, of course, to find the eigenvalues and eigenvectors when the coefficient matrices are given, and has been
studied by several authors [1–7]. Our main interest in this paper is the corresponding inverse problem: Given complete
information about eigenvalues and eigenvectors, re-construct the coefficient matrices. More precisely, we consider the
following problem.

Problem IP. Given a pair of matrices (Λ, X) in the form

Λ = diag{λ1, λ2, . . . , λ2n−1, λ2n} ∈ C2n×2n (1.6)

and

X = [x1, x2, . . . , x2n−1, x2n] ∈ Cn×2n, (1.7)

where the diagonal elements ofΛ are all purely imaginary, X is of full row rank n, and bothΛ and X are closed under complex
conjugation in the sense that λ2j = λ̄2j−1 ∈ C, x2j = x̄2j−1 ∈ Cn for j = 1, . . . , n, find M > 0, K > 0 and skew-symmetric
matrix G that satisfy the equation of (1.3). In other words, each pair (λt , xt), t = 1, . . . , 2n, is an eigenpair of the quadratic
pencil L(λ).

The problemof reconstruction of the physical properties from spectral data is classified as an inverse eigenvalue problem.
The inverse eigenvalue problem is a diverse area full of research interests and activities. Some general reviews and extensive
bibliographies can be found in [8–10]. The latest progress in solving the inverse eigenvalue problems has been detailed in the
recent book in [11]. Recently, the inverse quadratic eigenvalue problem (IQEP) has received much attention. For example,
based on the spectral theory of matrix polynomials, Lancaster et al. considered the IQEP of constructing real matricesM, C ,
and K [12,13], Hermitian matrices M, C , and K [14], and real symmetric positive definite or semidefinite matrices M, C ,
and K [13,15] so that the quadratic pencil Q (λ) = λ2M + λC + K has the complete information on eigenvalues and
eigenvectors. The inverse spectral problems of determining real symmetric matrices C and K so that the monic quadratic
pencil Q (λ) = λ2In + λC + K possesses the complete spectral information have been solved in [16–19]. Observe that in
a large or complicated structural system, it is often impossible to measure complete spectral information due to the finite
bandwidth of measuring devices. It might be more reasonable to consider an IQEP where only partial spectral information
is prescribed. Chu et al. [20] considered the problem of recovering a serially linked, damped mass-spring system from two
prescribed eigenpairs. Bai [21] considered the problem of determining real symmetric tridiagonal matrices C and K so that
the monic quadratic pencil Q (λ) = λ2In + λC + K possesses partially described eigenpairs. For the IQEP with k(k ≤ n)
prescribed eigenpairs, special symmetric solutions M, C , and K with M and K being symmetric positive definite, a general
solution and some particular solutions with additional eigeninformation have been derived in [22,23], respectively. For
the IQEP with k(n < k ≤ 2n) prescribed eigenpairs, the solvability theory of the problem and the general symmetric
solution have been given in [24]. We note that in several recent works for gyroscopic systems, including those in [25,26], as
well as Sarkissian [27], studies are undertaken toward a feedback design problem for a second-order control system. That
consideration eventually leads to either a full or a partial eigenstructure assignment problem for the QEP. The proportional
and derivative state feedback controller designated in these studies is capable of assigning specific eigenvalues. Nonetheless,
these results cannot meet the basic requirement that the updated matrices be symmetric or skew-symmetric. In contrast to
the development of IQEP for damping structural systems, however, to the best of our knowledge, few results can be found
in the literature to solve the Problem IP directly.
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The goal of this paper is to derive conditions on the spectral information under which the Problem IP is solvable, and
provide the representation of a solution to the problem. By applying the results of the inverse problem,we develop amethod
for model updating problem which has important implications in the modal testing and finite element industry.

In this paper we shall adopt the following notation. Cm×n,Rm×n denote the set of all m × n complex and real matrices,
respectively. Capital letters A, B, C, . . ., denote matrices, lower case letters denote column vectors, Greek letters denote
scalars, ᾱ denotes the conjugate of the complex number α. In denotes the n × n identity matrix. AT , A+, R(A) and N(A)
denote the transpose, the Moore–Penrose generalized inverse, the range space and the null space of A, respectively. PR(A)

denotes the orthogonal projector on R(A), and ∥ · ∥ stands for the matrix Frobenius norm. We write A > 0 if A is a real
symmetric positive definite matrix.

2. Solving Problem IP

Let

W2n = diag


1
√
2


1 −i
1 i


, . . . ,

1
√
2


1 −i
1 i


∈ C2n×2n (2.1)

with i =
√

−1. Then

Λ̃ = W̄ T
2nΛW2n = diag


0 β1

−β1 0


, . . . ,


0 β2n−1

−β2n−1 0


∈ R2n×2n (2.2)

and

X̃ = XW2n = [
√
2y1,

√
2z1, . . . ,

√
2y2n−1,

√
2z2n−1] ∈ Rn×2n, (2.3)

where βi = Im(λi) (the imaginary part of the complex number λi), yi = Re(xi) (the real part of the complex vector xi),
zi = Im(xi) for i = 1, 3, . . . , 2n − 1. Thus, the equation of (1.3) can be written equivalently as

MX̃Λ̃2
+ GX̃Λ̃ + KX̃ = 0. (2.4)

Theorem 2.1. Let matrix pair (Λ, X) ∈ C2n×2n
×Cn×2n be given as in (1.6) and (1.7). By the unitary transformationW2n, (Λ, X)

is transformed into real matrix pair (Λ̃, X̃) ∈ R2n×2n
× Rn×2n expressed as in (2.2) and (2.3). If

X̃Λ̃X̃T
= 0, (2.5)

then Problem IP is solvable and a solution to Problem IP gives

M = (X̃Λ̃Λ̃T X̃T )−1
= −(X̃Λ̃2X̃T )−1, (2.6)

K = (X̃ X̃T )−1, (2.7)

G = MX̃Λ̃3X̃TM. (2.8)

Proof. From (2.6)–(2.8) we have

MX̃Λ̃2
+ GX̃Λ̃ + KX̃ = M(X̃Λ̃2

+ X̃Λ̃3X̃T (X̃Λ̃Λ̃T X̃T )−1X̃Λ̃ + X̃Λ̃Λ̃T X̃T (X̃ X̃T )−1X̃)

= MX̃Λ̃2(I2n − Λ̃T X̃T (X̃Λ̃Λ̃T X̃T )−1X̃Λ̃ − X̃T (X̃ X̃T )−1X̃)

= MX̃Λ̃2(I2n − (X̃Λ̃)+X̃Λ̃ − X̃+X̃)

= MX̃Λ̃2 
PN(X̃Λ̃) − PR(X̃T )


.

It follows from X̃Λ̃X̃T
= 0 and rank(X̃Λ̃) = rank(X̃T ) that R(X̃T ) = N(X̃Λ̃). Thus,MX̃Λ̃2

+GX̃Λ̃+KX̃ ≡ 0, as required. �

Next, we prove that for a given system there is an eigenmatrix pair such that the condition (2.5) holds. So, the hypotheses
of (2.5) is with reason.

Theorem 2.2. Let n × n real matrices M > 0, K > 0 and G(GT
= −G) be given and σ(L(λ)) = Λ = σ(λI2n − Λ̃), as above.

Then the eigenvectors of L(λ) can be normalized in such a way that (2.5) holds. Also, the known matrices M,G, K can be written
as in the form (2.6)–(2.8).

Proof. It follows from M > 0, K > 0 that A =


K 0
0 M


> 0. Therefore, there exists a nonsingular matrix P ∈ R2n×2n such

that PTAP = I2n. Notice that PTBP = PT


0 K
−K −G


P is still a skew-symmetric matrix. Then there is an orthogonal matrix

U ∈ R2n×2n such that

UT (PTBP)U = Λ̃.
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Write Q = PU . Then we have

Q TAQ = I2n, Q TBQ = Λ̃. (2.9)

Let Q =


X̃
Ỹ


, X̃ ∈ Rn×2n. It follows from AQ Λ̃ = BQ that Ỹ = X̃Λ̃ and the equation of (2.4) holds. Using the first equation

of (2.9), we get QQ T
= A−1 and hence

X̃
X̃Λ̃

 
X̃T Λ̃T X̃T


=


K−1 0
0 M−1


. (2.10)

By comparison matrix entries of Eq. (2.10), we obtain (2.5)–(2.7). Substituting (2.5)–(2.7) into (2.4) yields (2.8). �

3. An application to the model updating problem

Formulas (2.6)–(2.8) can now be further partitioned to solve the model correction problem. Consider repartitioning
X̃, Λ̃ as

X̃ =

X̃1 X̃2


, Λ̃ =


Λ̃1 0
0 Λ̃2


. (3.1)

Here, X̃1 ∈ Rn×m, Λ̃1 ∈ Rm×m and m is even. With these partitions, equations of (2.5)–(2.8) become

X̃1Λ̃1X̃T
1 + X̃2Λ̃2X̃T

2 = 0, (3.2)

M−1
= −X̃1Λ̃

2
1X̃

T
1 − X̃2Λ̃

2
2X̃

T
2 , (3.3)

K−1
= X̃1X̃T

1 + X̃2X̃T
2 , (3.4)

M−1GM−1
= X̃1Λ̃

3
1X̃

T
1 + X̃2Λ̃

3
2X̃

T
2 . (3.5)

Let the original (known) systemmatrices be denoted by Λ0, X0,M0, K0 and G0. Quantities of the new or updated system are
denoted by Λ, X,M, K and G. The corrections to the original system are denoted by 1Λ, 1X, 1M, 1K and 1G. Thus, the
spectral properties of the new system are

Λ = Λ0 + 1Λ, X = X0 + 1X . (3.6)

Let Λ̃ = W̄ T
2nΛW2n, X̃ = XW2n. If X̃Λ̃X̃T

= 0 and rank(X̃) = n, then the equation of (3.6) provides a solution to the model
correction problem when substituted into Eqs. (2.6)–(2.8). That is if Λ0, X0 are computed from known values of M0, K0 and
G0, say from a finite element model, then this model can be updated, by assigning values of 1Λ, 1X to yield a new, or
modified, set of coefficient matricesM, K and G.

The problem of more practical interest is to modify M, K and G by changing only part of the spectral data
(see [12,15]). In this case assume that the matrices of incomplete spectral information Λ10 ∈ Cm×m, X10 ∈ Cn×m are known
for the first m eigenvalues and associated eigenvectors of the original system. The remainder of the spectral properties
Λ20 ∈ C(2n−m)×(2n−m), X20 ∈ Cn×(2n−m) are not changed and are unknown. Let X̃10 = X10Wm, Λ̃10 = W̄ T

mΛ10Wm, X̃20 =

X20W2n−m, Λ̃20 = W̄ T
2n−mΛ20W2n−m. Then the original system, according to Theorem 2.2, can be written as

M−1
0 = −X̃10Λ̃

2
10X̃

T
10 − X̃20Λ̃

2
20X̃

T
20, (3.7)

K−1
0 = X̃10X̃T

10 + X̃20X̃T
20, (3.8)

M−1
0 G0M−1

0 = X̃10Λ̃
3
10X̃

T
10 + X̃20Λ̃

3
20X̃

T
20 (3.9)

with the condition that

X̃10Λ̃10X̃T
10 + X̃20Λ̃20X̃T

20 = 0. (3.10)

Following Eq. (3.6), the new spectral matrices become Λ̃1 = Λ̃10 + 1Λ̃1, X̃1 = X̃10 + 1X̃1, so that the system matrices
become

M−1
= −X̃1Λ̃

2
1X̃

T
1 − X̃20Λ̃

2
20X̃

T
20, (3.11)

K−1
= X̃1X̃T

1 + X̃20X̃T
20, (3.12)

M−1GM−1
= X̃1Λ̃

3
1X̃

T
1 + X̃20Λ̃

3
20X̃

T
20 (3.13)

with the condition that

X̃1Λ̃1X̃T
1 + X̃20Λ̃20X̃T

20 = 0. (3.14)

By subtracting Eqs. (3.7)–(3.9) from (3.11)–(3.13), we have
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Theorem 3.1. Let n × n real matrices M0 > 0, K0 > 0 and G0(GT
0 = −G0) be given and Λ10 ∈ Cm×m, X10 ∈ Cn×m be known

for the first m (m is even) eigenvalues and associated eigenvectors of the original system L0(λ) = λ2M0 + λG0 + K0. Assume that
the corrections to the original spectral data are 1Λ1, 1X1. Let X̃10 = X10Wm, Λ̃10 = W̄ T

mΛ10Wm, X̃1 = (X10 + 1X1)Wm, Λ̃1 =

W̄ T
m(Λ10 + 1Λ1)Wm. If

X̃1Λ̃1X̃T
1 = X̃10Λ̃10X̃T

10, (3.15)

then the updated system with the coefficient matrices

M = (M−1
0 + 1M)−1

= (In + M01M)−1M0, (3.16)

K = (K−1
0 + 1K)−1

= (In + K01K)−1K0, (3.17)

G = M(M−1
0 G0M−1

0 + 1G)M, (3.18)

where

1M = X̃10Λ̃
2
10X̃

T
10 − X̃1Λ̃

2
1X̃

T
1 , (3.19)

1K = X̃1X̃T
1 − X̃10X̃T

10, (3.20)

1G = X̃1Λ̃
3
1X̃

T
1 − X̃10Λ̃

3
10X̃

T
10, (3.21)

has the assigned partial spectral data Λ1, X̃1 and the remainder spectral data are the same as those of the original system.

We remark that if ∥M01M∥ ≪ 1, ∥K01K∥ ≪ 1, then we can avoid inverse calculations by the following admissible
approximating formulas:

M ≈ M0 − M01MM0,

K ≈ K0 − K01KK0,

G ≈ G0 + M01GM0 − M01MG0 − G01MM0.

4. Numerical examples

Based on Theorem 2.1 we can state the following algorithm.

Algorithm 4.1 (An Algorithm for Solving Problem IP).

(1) Input Λ, X;
(2) Compute the matrixW2n according to (2.1);
(3) Compute the matrices Λ̃, X̃ according to (2.2) and (2.3);
(4) If (2.5) holds, then continue, otherwise, go to (1);
(5) According to (2.6)–(2.8) calculateM, K and G.

Example 4.1 (Spatial Oscillations of a Particle [25]). Let a particle of massm be connected to a ring of radius α via two springs
of constant κ and free length β . Suppose that the ring is rotating with constant angular velocity ω = (ω1, ω2, ω3)

T . Then
for small oscillations about the equilibrium position, the equation of motion is

M0ü + G0u̇ + K0u = 0, (4.1)

where

M0 =

1 0 0
0 1 0
0 0 1


, G0 =

 0 −2ω3 2ω2
2ω3 0 −2ω1

−2ω2 2ω1 0


,

K0 =

2ω2
n − ω2

2 − ω2
3 ω1ω2 ω1ω3

ω1ω2 2ω2
nγ − ω2

1 − ω2
3 ω2ω3

ω1ω3 ω2ω3 2ω2
nγ − ω2

1 − ω2
2

 ,

γ = 1 − β/α, ω2
n = κ/m, and u1, u2, u3 are the displacements of the mass in the x-, y-, z-direction.
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Let

Λ = diag{6.0860i, −6.0860i, 3.1895i, −3.1895i, 0.8878i, −0.8878i},

X =


−0.0000 − 0.1079i 0.0438 + 0.0293i −0.0877 + 0.0147i
−0.0000 + 0.1079i 0.0438 − 0.0293i −0.0877 − 0.0147i
0.0078 − 0.0695i 0.0000 − 0.1880i 0.0518 − 0.0882i
0.0078 + 0.0695i 0.0000 + 0.1880i 0.0518 + 0.0882i

−0.0279 − 0.1519i −0.1497 + 0.1592i 0.3579
−0.0279 + 0.1519i −0.1497 − 0.1592i 0.3579


T

.

According to Algorithm 4.1, it is calculated that the condition (2.5) holds. Using the Software ‘‘MATLAB 6.5’’, we can get

M =

 1.0000 −0.0000 0.0000
−0.0000 1.0000 −0.0000
0.0000 −0.0000 1.0000


,

K =

13.0000 2.0000 1.0000
2.0000 7.0000 2.0000
1.0000 2.0000 4.0000


,

G =


−0.0000 −2.0000 4.0000
2.0000 0.0000 −2.0000

−4.0000 2.0000 0.0000


.

Also, we can figure out: ∥MXΛ2
+ GXΛ + KX∥ = 9.8156e−014. The resulting matrices are coincident with the results

in [25] by setting ω = [1, 2, 1]T , ωn = 3, γ = 1/2.

According to Theorem 3.1, we can state the following algorithm.

Algorithm 4.2 (An Algorithm for Solving Model UpdatingProblem).
(1) InputM0, K0,G0, Λ10, X10, 1Λ1, 1X1;
(2) Compute the matrices X̃10 = X10Wm, Λ̃10 = W̄ T

mΛ10Wm, X̃1 = (X10 + 1X1)Wm, Λ̃1 = W̄ T
m(Λ10 + 1Λ1)Wm;

(3) If (3.15) holds, then continue, otherwise, go to (1);
(4) Calculate 1M, 1K and 1G by (3.19)–(3.21);
(5) According to (3.16)–(3.18) calculateM, K and G.

The following example comes from [28] with K0(2, 2) = 6, K0(3, 3) = 5.

Example 4.2. Let

M0 =

 8 −2 1 0
−2 10 4 4
1 4 10 −1.2
0 4 −1.2 8

 ,

K0 =

 4 −3 2 0
−3 6 1 −3
2 1 5 −2
0 −3 −2 4

 ,

G0 =

 0 −16 −8 −12
16 0 −40 −12
8 40 0 16

12 12 −16 0


and

Λ10 = diag{7.1836i, −7.1836i, 1.1572i, −1.1572i},

X10 =

 0.3476 + 0.0507i 0.3476 − 0.0507i 0.3897 + 0.3057i 0.3897 − 0.3057i
0.5514 + 0.2928i 0.5514 − 0.2928i −0.0934 − 0.3694i −0.0934 + 0.3694i

−0.5179 + 0.1645i −0.5179 − 0.1645i 0.1176 − 0.1233i 0.1176 + 0.1233i
−0.3845 + 0.2093i −0.3845 − 0.2093i −0.0990 + 0.7554i −0.0990 − 0.7554i

 ,

1Λ1 = diag{−0.7004i, 0.7004i, −0.11283i, 0.11283i},

1X1 =

 0.0183 + 0.0027i 0.0183 − 0.0027i 0.0205 + 0.0161i 0.0205 − 0.0161i
0.0290 + 0.0154i 0.0290 − 0.0154i −0.0049 − 0.0194i −0.0049 + 0.0194i

−0.0273 + 0.0087i −0.0273 − 0.0087i 0.0062 − 0.0065i 0.0062 + 0.0065i
−0.0202 + 0.0110i −0.0202 − 0.0110i −0.0052 + 0.0398i −0.0052 − 0.0398i

 .
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That is, the prescribed eigenvalues and eigenvectors are

Λ1 = Λ10 + 1Λ1 = diag{λ1, λ2, λ3, λ4}, X1 = X10 + 1X1 = [x1, x2, x3, x4].

According to Algorithm 4.2, it is calculated that the condition (3.15) holds. Using the Software ‘‘MATLAB’’, we can figure out

M =

 8.4053 −2.1196 0.7783 0.1537
−2.1196 11.0450 4.4719 4.4209
0.7783 4.4719 10.7468 −1.1332
0.1537 4.4209 −1.1332 8.7300

 ,

K =

 3.8953 −2.8299 2.0074 −0.0989
−2.8299 5.6163 0.9027 −2.7188
2.0074 0.9027 4.9302 −1.8975

−0.0989 −2.7188 −1.8975 3.7709

 ,

G =

 0.0000 −16.2285 −8.3068 −11.6295
16.2285 −0.0000 −39.6767 −12.1871
8.3068 39.6767 0.0000 16.1554
11.6295 12.1871 −16.1554 −0.0000

 .

We define the residual as

res(λi, xi) = ∥(λ2
i M + λiG + K)xi∥,

and the numerical results shown in the following table.

(λi, xi) (λ1, x1) (λ2, x2) (λ3, x3) (λ4, x4)
res(λi, xi) 1.4103e−012 1.4103e−012 9.6006e−014 9.6006e−014

Furthermore, we observe that the remainder spectral data of the updated system are just about those of the original system
with absolute error ∥MX20Λ

2
20 + GX20Λ20 + KX20∥ ≈ 4.8705e−014.

5. Concluding remarks

This paper has provided a solution to the inverse eigenvalue problem for undamped gyroscopic systems in 2n space to
include the determination of all three coefficient matricesM,G and K from given spectral and modal data and the results of
the inverse problem are applied to develop a method for model updating. The approach is demonstrated by two numerical
examples and reasonable results are produced.
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