
Journal of Computational and Applied Mathematics 247 (2013) 1–16

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

A fully discrete C0 interior penalty Galerkin approximation of
the extended Fisher–Kolmogorov equation
Thirupathi Gudi ∗, Hari Shanker Gupta
Department of Mathematics, Indian Institute of Science, Bangalore - 560012, India

a r t i c l e i n f o

Article history:
Received 11 August 2011
Received in revised form 1 October 2012

MSC:
65N30
65N15

Keywords:
Finite element
Discontinuous Galerkin
Error estimate
Regularity
Stability
EFK equation

a b s t r a c t

A fully discrete C0 interior penalty finite element method is proposed and analyzed for
the Extended Fisher–Kolmogorov (EFK) equation ut + γ∆2u − ∆u + u3

− u = 0 with
appropriate initial and boundary conditions, where γ is a positive constant. We derive
a regularity estimate for the solution u of the EFK equation that is explicit in γ and as a
consequence we derive a priori error estimates that are robust in γ .

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We study a fully discrete C0 interior penalty method for the fourth order parabolic Extended Fisher–Kolmogorov (EFK)
equation:

∂u
∂t

+ γ∆2u − 1u + φ(u) = 0 in Ω × (0, T ], (1.1)

∂u
∂n

= γ
∂1u
∂n

= 0 on ∂Ω × (0, T ], (1.2)

u(x, 0) = u0(x), x ∈ Ω (1.3)

where Ω ∈ Rd (d = 1, 2, 3) is a bounded domain with convex polyhedral boundary ∂Ω, T > 0, γ is a positive constant,
u0 is a given function of x ∈ Rd and φ(u) = u3

− u. The nonlinear function φ(u) = Ψ ′(u) for Ψ (u) =
1
4 (u

2
− 1)2. Specific

assumptions on the initial datau0 will be given later in the course of the paper. Here and throughout,∆denotes the Laplacian.
When γ = 0 in (1.1), we obtain the Fisher–Kolmogorov equation that occurs in the study of front propagation [1,2] into
unstable states. The model problem (1.1)–(1.3) is proposed in [3,4] as an extension of the Fisher–Kolmogorov equation for
the study of spatial patterns in bistable systems. When γ is small (γ ≤ 1/8), it is observed in [4,5] that the solutions of EFK
equations are similar to the FK equation but lead to smooth fronts. However when γ > 1/8, it is possible to distinguish the
solutions of these equations [5]. The study of the dynamics of the EFK equation can be found in [6,5,7].
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From the numerical point of view, a conforming finite element method has been proposed in [8] for the EFK equation
(1.1) and the error analysis has been discussed. In this article, we propose and study the C0 interior penalty method for
(1.1). In the past few years, C0 interior penalty methods [9,10] have became an attractive alternative for fourth order
problems since the design of quasi-optimal C0 interior penalty methods is straightforward [11,12]. During the past few
years, fully discontinuous Galerkin methods have also became attractive for fourth order problems [13–17] although they
involve a larger number of degrees of freedom than the C0 interior penaltymethod. C0 interior penaltymethods are designed
based on a standard Lagrange finite element space and a mesh dependent weak formulation involving jumps of the normal
derivative across the inter-element boundaries. Since the standard Lagrange finite element spaces are designed for second
order problems, they are naturally suitable for singularly perturbed fourth order problems. In [18], a C0 interior penalty
method is analyzed for a singularly perturbed fourth order elliptic problem and proved to be robustwith respect to the small
perturbation parameter. In this article, we extend the results in [18] to study a fully discrete C0 interior penalty method for
the EFK equation (1.1) involving a singularly perturbed fourth order term (when γ is small). We establish the stability of the
numerical solution and derive a priori error estimateswhich are robust in γ (depend on a lower order polynomial in γ −1). To
accomplish this, we establish a regularity estimate for the solution u of (1.1) that is explicit in γ and derive stability bounds
for an elliptic projection of u.

The rest of the article is organized as follows. In Section 2, we derive a priori bounds for the solution of the EFK equation.
Therein, we propose our numerical method and prove the existence and uniqueness of a discrete solution. Moreover, we
derive stability estimates for both the weak and the discrete solution. In Section 3, we derive some regularity of the weak
solution. In Section 4, a priori error estimates that are robust in γ are derived. Finally, we present conclusions in Section 5.

2. Existence and uniqueness results

In this section, we present a fully discrete C0 interior penalty method and show the existence and uniqueness of the
discrete solution. We derive some a priori bounds for the solution of the EFK equation and its discrete counterpart.

Let V = {v ∈ H2(Ω) : ∂v/∂n = 0 on ∂Ω}. Denote the L2(Ω) inner-product by (·, ·) and the norm by ∥ · ∥.
The weak form of (1.1)–(1.3) is to find u(·, t) ∈ V , t ∈ [0, T ] such that

(ut , v) + γ (1u, 1v) + (∇u, ∇v) + (φ(u), v) = 0, ∀v ∈ V , (2.1)
u = u0 at t = 0. (2.2)

The following lemma on the norm equivalence is useful in our analysis.

Lemma 2.1. There exist two positive constants C1 and C2 which may depend on Ω such that

C1∥v∥H2(Ω) ≤


∥1v∥

2
+ ∥v∥

2
H1(Ω)

1/2
≤ C2∥v∥H2(Ω), ∀v ∈ V . (2.3)

Proof. Let v ∈ V . Then it is obvious that

∥1v∥

2
+ ∥v∥

2
H1(Ω)

1/2
≤ C2∥v∥H2(Ω).

To prove the other way, note that v ∈ V satisfies the following elliptic problem:

−1v = −1v in Ω,

∂v

∂n
= 0 on ∂Ω.

Appealing to the elliptic regularity theory for the second order homogeneous Neumann problem on convex polyhedral
domains [19,20], there exists some positive constant C depending on Ω such that

∥v̇∥H2(Ω)/R ≤ C

∥1v∥ + ∥∂v/∂n∥H1/2(∂Ω)


= C∥1v∥, (2.4)

where v̇ denotes the equivalence class of v in the quotient space H2(Ω)/R equipped with the norm

∥v̇∥H2(Ω)/R = inf
c∈R

∥v + c∥H2(Ω) = inf
c∈R


∥v + c∥2

L2(Ω) + ∥∇v∥
2
L2(Ω) + |v|

2
H2(Ω)

1/2
. (2.5)

From (2.4) and (2.5), we find

|v|H2(Ω) ≤ C∥1v∥.

This completes the proof. �

We derive some a priori bounds for uwhich are explicit in terms of the parameter γ . Throughout the article, C and C(T )
denote generic positive constants which are independent of the constant γ .
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Theorem 2.2. Let u0 ∈ H2(Ω) be such that

γ ∥1u0∥
2
+ ∥u0∥

2
H1(Ω)

+ 2(Ψ (u0), 1) ≤ M1, (2.6)

for some M1 > 0. Then, the solution u of (2.1)–(2.2) satisfies

∥u∥2

L∞

0,T ;H1(Ω)

 ≤ C(T )M1, (2.7)

γ ∥u∥2

L∞

0,T ;H2(Ω)

 ≤ C(T )M1, (2.8)

∥u∥2

H1

0,T ;L2(Ω)

 ≤ M1/2. (2.9)

Proof. We set v = u in (2.1) and find

1
2

d
dt

∥u∥2
+ γ ∥1u∥2

+ ∥∇u∥2
+ (φ(u), u) = 0.

This implies

1
2

d
dt

∥u∥2
≤ ∥u∥2.

By integrating the above inequality from 0 to t for t ∈ (0, T ], we derive

∥u(t)∥2
≤ 2

 t

0
∥u(s)∥2ds + ∥u0∥

2
≤ 2

 T

0
∥u(s)∥2ds + ∥u0∥

2.

Using Gronwall’s lemma, we find for t ∈ (0, T ] that

∥u(t)∥2
≤ C(T )∥u0∥

2
≤ C(T )M1. (2.10)

This establishes the L∞(0, T ; L2(Ω)) bound for u. Next, we set v = ut in (2.1) and find

∥ut∥
2
+

γ

2
d
dt

∥1u∥2
+

1
2

d
dt

∥∇u∥2
+

d
dt

(Ψ (u), 1) = 0.

By integrating from 0 to t for t ∈ (0, T ], we obtain t

0
2∥ut(s)∥2ds + γ ∥1u(t)∥2

+ ∥∇u(t)∥2
+ 2(Ψ (u(t)), 1) = γ ∥1u0∥

2
+ ∥∇u0∥

2
+ 2(Ψ (u0), 1).

Using (2.6), we deduce for t ∈ (0, T ] that

∥∇u(t)∥2
+ γ ∥1u(t)∥2

≤ M1,

and

∥u∥2

H1

0,T ;L2(Ω)

 ≤ M1/2,

which together with (2.10) and Lemma 2.1 completes the proof. �

In the following theorem, we discuss on the existence and uniqueness of a solution u for (2.1)–(2.2). The proof is based on
the Galerkin procedure, compactness arguments and a priori estimates in Theorem 2.2. In [8], existence and uniqueness of
a solution for the EFK equation with Dirichlet and Navier boundary conditions are discussed. Since the boundary conditions
in our case are different, in the proof we need the result in Lemma 2.1 to prove that the sequence of solutions in the Galerkin
procedure is bounded in the H2(Ω) norm. Nevertheless, the rest of the proof is similar to the ones in [8,21–23] and hence
we sketch the main steps of it.

Theorem 2.3. Let u0 ∈ V . Then, there exists a unique solution u(·, t) ∈ V to (2.1)–(2.2).

Proof (Uniqueness:). Let u andw defined onΩ ×[0, T ] be two solutions of (2.1)–(2.2) and denote z = u−w. Then z satisfies

(zt , v) + γ (1z, 1v) + (∇z, ∇v) + (φ(u) − φ(w), v) = 0, ∀v ∈ V ,

z = 0 at t = 0.

Setting v = z in the above, we obtain

1
2

d
dt

∥z∥2
+ γ ∥1z∥2

+ ∥∇z∥2
= (φ(w) − φ(u), u − w).
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Using the definition of φ, we derive

(φ(w) − φ(u), u − w) = ∥u − w∥
2
− ((w2

+ uw + u2), (u − w)2) ≤ ∥u − w∥
2,

where we have used the fact that (w2
+ uw + u2, (u − w)2) ≥

1
2 (u

2
+ w2, (u − w)2) ≥ 0. Therefore

1
2

d
dt

∥z∥2
+ γ ∥1z∥2

+ ∥∇z∥2
≤ ∥z∥2.

By integrating from 0 to t for t ∈ (0, T ], we find

1
2
∥z(t)∥2

+

 t

0
(γ ∥1z∥2

+ ∥∇z∥2)ds ≤

 t

0
∥z∥2ds.

An appeal to Gronwall’s lemma completes the proof of uniqueness. To prove the existence, let {wj}
∞

j=1 be an orthogonal basis
of V and set Vm = span{wj}

m
j=1. Define a finite dimensional problem of finding um(·, t) ∈ Vm such that

um(·, t) =

m
j=1

cj(t)wj

(umt , v) + γ (1um, 1v) + (∇um, ∇v) + (φ(um), v) = 0 ∀v ∈ Vm, (2.11)

um(·, 0) = Πmu0(·), (2.12)

where Πm : V → Vm is a projection such that ∥Πmv − v∥H2(Ω) → 0 as m → 0. By Picard’s theorem, there exists a unique
solution um for eachm. As in Theorem 2.2, we find by setting v = um and v = umt in (2.11) that

∥um∥
L∞

0,T ;L2(Ω)

 ≤ C (2.13)

γ ∥um∥
L∞

0,T ;H2(Ω)

 ≤ C (2.14)

and

∥um∥
H1

0,T ;L2(Ω)

 ≤ C . (2.15)

Using a Sobolev embedding theorem [19] and (2.14), we find that

γ ∥um∥
L∞

0,T ;L∞(Ω)

 ≤ C(T )M1. (2.16)

By compactness [23,22], there exists u ∈ L∞


0, T ;H2(Ω)


∩ H1


0, T ; L2(Ω)


such that

um(·, t) → u(·, t) strongly in H1(Ω)

um(·, t) → u(·, t) weakly in H2(Ω)

umt → ut weakly in L2

0, T ; L2(Ω)


.

Since

∥φ(um) − φ(u)∥ = ∥(u3
m − u3) − (um − u)∥ ≤ ∥u3

m − u3
∥ + ∥um − u∥

≤ ∥(u2
+ uum + u2

m)(u − um)∥ + ∥um − u∥

≤ C

∥u∥2

L∞(Ω) + ∥um∥
2
L∞(Ω) + 1


∥u − um∥ → 0,

the rest of the proof follows. �

Next in order to present the numerical method, to establish the existence and uniqueness of the discrete solution and its
stability bounds, we introduce some notations and preliminary results.

2.1. Notations

Let Th be a regular simplicial subdivision ofΩ .We denote the set of all interior edges/faces of Th by E i
h, the set of boundary

edges/faces by Eb
h , and define Eh = E i

h∪Eb
h . Let hτ = diamτ and h = max{hτ : τ ∈ Th}. The diameter of any edge/face e ∈ Eh

will be denoted by he. We define the Sobolev space Hs(Ω, Th) (for s ≥ 0) associated with the subdivision Th as follows:

Hs(Ω, Th) = {v ∈ L2(Ω) : v|τ ∈ Hs(τ ), ∀ τ ∈ Th}.

The finite element space we use in the article is defined by

Vh = {v ∈ C0(Ω) : v|τ ∈ P2(τ ), ∀ τ ∈ Th},
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where P2(D) is the space of polynomials of degree less than or equal to 2 restricted to the set D. It is clear that Vh ⊂

H1(Ω) ∩ Hs(Ω, Th) for any positive integer s.
For any e ∈ E i

h, there are two elements τ+ and τ− such that e = ∂τ+ ∩ ∂τ−. Let n− be the unit normal of e pointing from
τ− to τ+. For any v ∈ H2(Ω, Th), we define the jump of the normal derivative of v on e by

[[∇v]] = ∇v+|e · n+ + ∇v−|e · n−

where v± = v|τ± . For any v ∈ Hs(Ω, Th) (s > 5/2), we define the mean of the Laplacian of v across e by

{{1v}} =
1
2


1v+|e + 1v−|e


.

For notational convenience, we also define jump and average on the boundary edges. For any e ∈ Eb
h , there is a element

τ ∈ Th such that e = ∂τ ∩ ∂Ω . Let ne be the unit normal of e that points outside τ . For any v ∈ H2(τ ), we set on e

[[∇v]] = ∇v · ne,

and for any v ∈ Hs(Ω, Th) (s > 5/2), we set

{{1v}} = 1v.

Define

Ah(w, v) =


τ∈Th


τ

1w1v dx −


e∈Eh


e
{{1w}}[[∇v]] ds

−


e∈Eh


e
{{1v}}[[∇w]] ds +


e∈Eh


e

η

he
[[∇w]][[∇v]] ds, (2.17)

where η > 0 is a real number. Let N be some positive integer, k = T/N and tn = kn for 0 ≤ n ≤ N . Define for any set of
functions {wi}i≥0,

∂wn =
wn − wn−1

k
for n ≥ 1.

Define the following semi-norm for v ∈ Hs(Ω, Th) for s > 5/2:

∥v∥
2
h =


τ∈Th

∥1v∥
2
L2(τ ) +


e∈Eh


e

he

η
{{1v}}

2 ds +


e∈Eh


e

η

he
[[∇v ]]

2 ds



Remark 2.4. Note that the above semi-norm is well defined only for v ∈ Hs(Ω, Th) for s > 5/2 [9,24].

We refer to [9] for a proof of the following lemma.

Lemma 2.5. It holds that

Ah(w, v) ≤ C∥w∥h∥v∥h, ∀w, v ∈ H3(Ω, Th).

For sufficiently large η, it holds that

C∥v∥
2
h ≤ Ah(v, v), ∀v ∈ Vh.

2.2. C0 interior penalty method

The fully discrete C0 interior penalty method is to find Un ∈ Vh(n ≥ 1) such that

(∂Un, v) + γAh(Un, v) + (∇Un, ∇v) + (φ(Un), v) = 0, ∀v ∈ Vh, (2.18)
U0 = Πhu0, (2.19)

where Πh : V → Vh is a projection which can be either a nodal interpolation or an elliptic projection.
Below, we establish the existence and uniqueness of the fully discrete solution.

Theorem 2.6. Let k < 1/2. Then for 1 ≤ n ≤ N, there exists a unique solution Un ∈ Vh to (2.18)–(2.19).
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Proof. To prove this by recursion, we suppose that there exists a unique solution Un−1 (since for n = 1, we know U0 from
the initial condition) and prove the existence of a unique Un using the Brouwer fixed point theorem. For this, we define a
map Sh : Vh → Vh i.e., p = Sh(q) ∈ Vh for q ∈ Vh, by

(p, v) + kγAh(p, v) + k(∇p, ∇v) = k((1 − q2)p, v) + (Un−1, v), ∀v ∈ Vh. (2.20)

We will show that the map Sh is well-defined. Set v = p in (2.20) and find

∥p∥2
+ kγAh(p, p) + k∥∇p∥2

≤ k∥p∥2
+ ∥Un−1∥ ∥p∥,

where we have used the fact that −(q2p, p) ≤ 0. This implies
1
2

− k


∥p∥2
+ kγAh(p, p) + k∥∇p∥2

≤
1
2
∥Un−1∥

2.

It is obvious that for k < 1/2, the map Sh is well defined and

∥p∥ ≤
1

√
1 − 2k

∥Un−1∥. (2.21)

Let r =
1

√
1−2k

∥Un−1∥ and define Br = {vh ∈ Vh : ∥vh∥ ≤ r}. Then from (2.21), it is clear that Sh maps Br into itself. In order
to prove that Sh is continuous, we let p0 = Sh(q0) and p = Sh(q) for q0, q ∈ Br . From the definition (2.20) of Sh, we note

(p − p0, v) + kγAh(p − p0, v) + k(∇(p − p0), ∇v) = k((1 − q2)(p − p0), v) + k((q20 − q2)p0, v) ∀v ∈ Vh,

and set v = p − p0 to obtain

∥p − p0∥2
+ kγAh(p − p0, p − p0) + k∥∇(p − p0)∥ ≤ k


(1 − q2)(p − p0), (p − p0)


+ k((q20 − q2)p0, p − p0).

On noting that −

q2(p − p0), (p − p0)


≤ 0 and using Holder’s inequality, we find that

1
2

− k


∥p − p0∥2
≤

k2

2
∥q + q0∥2

L∞(Ω)∥p0∥
2
L∞(Ω)∥q − q0∥2.

This implies

∥p − p0∥2
≤


k2

1 − 2k


∥q + q0∥2

L∞(Ω)∥p0∥
2
L∞(Ω)∥q − q0∥2.

Since q, q0 and p0 ∈ Br , the use of the inverse inequality implies

∥q + q0∥2
L∞(Ω)∥p0∥

2
L∞(Ω) ≤ Ch−2d

min ∥Un−1∥
4 (2.22)

and hence

∥p − p0∥2
≤ C


k2h−2d

min

1 − 2k


∥Un−1∥

4
∥q − q0∥2,

where hmin = min{hτ : τ ∈ Th}. Therefore for given k and hmin, the map Sh is continuous in the ball Br . Now the Brouwer
fixed point theorem completes the proof of existence.

To prove uniqueness, suppose there exist two solutions U and W at t = tn. Then U and W satisfy

(U − W , v) + kγAh(U − W , v) + k(∇(U − W ), ∇v) = k(U − U3
− W + W 3, v), ∀v ∈ Vh.

Set v = U − W in the above to arrive at

∥U − W∥
2
+ kγAh(U − W ,U − W ) + k∥∇(U − W )∥2

= k∥U − W∥
2
− k(U3

− W 3,U − W )

≤ k∥U − W∥
2
− k((U2

+ UW + W 2), (U − W )2)

≤ k∥U − W∥
2,

where we have used the fact that (a2 + ab + b2) ≥
1
2 (a

2
+ b2) ≥ 0. Now uniqueness follows since k < 1/2. This completes

the proof. �

In the following, we derive stability bounds for the fully discrete solution.

Lemma 2.7. Let k < 1/2. Then, there is a constant C independent of h, k and γ such that

γ ∥Un∥
2
h + ∥∇Un∥

2
≤ C


γ ∥U0∥

2
h + ∥∇U0∥

2
+ (Ψ (U0), 1)


,
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and

∥Un∥
2

≤ C(T )∥U0∥
2,

for all 1 ≤ n ≤ N.

Proof. Let 1 ≤ i ≤ n ≤ N and set v = Ui − Ui−1 in (2.18) with n = i. Then

1
k
∥Ui − Ui−1∥

2
+

γ

2
[Ah(Ui,Ui) − Ah(Ui−1,Ui−1) + Ah(Ui − Ui−1,Ui − Ui−1)]

+
1
2
[(∇Ui, ∇Ui) − (∇Ui−1, ∇Ui−1) + (∇(Ui − Ui−1), ∇(Ui − Ui−1))] + (φ(Ui),Ui − Ui−1) = 0. (2.23)

Using Taylor’s theorem and the fact that Ψ ′′
≥ −1, we note that

(φ(Ui),Ui − Ui−1) = (Ψ ′(Ui),Ui − Ui−1)

≥ (Ψ (Ui) − Ψ (Ui−1), 1) −
1
2
∥Ui − Ui−1∥

2.

Using this in (2.23),

1
k
∥Ui − Ui−1∥

2
+

γ

2
[Ah(Ui,Ui) − Ah(Ui−1,Ui−1) + Ah(Ui − Ui−1,Ui − Ui−1)]

+
1
2
[(∇Ui, ∇Ui) − (∇Ui−1, ∇Ui−1) + (∇(Ui − Ui−1), ∇(Ui − Ui−1))]

+ (Ψ (Ui) − Ψ (Ui−1), 1) ≤
1
2
∥Ui − Ui−1∥

2.

We sum over i = 1 to n and find
1
k

−
1
2

 n
i=1

∥Ui − Ui−1∥
2
+

γ

2
Ah(Un,Un) +

1
2
(∇Un, ∇Un) + (Ψ (Un), 1)

≤
γ

2
Ah(U0,U0) +

1
2
(∇U0, ∇U0) + (Ψ (U0), 1).

Now using Lemma 2.5 and the assumption that k < 1/2, we deduce the first inequality. To prove the second inequality, let
v = Ui in (2.18) with n = i and arrive at

(Ui − Ui−1,Ui) + γ kAh(Ui,Ui) + k∥∇Ui∥
2
+ k(φ(Ui),Ui) = 0.

Since

(Ui − Ui−1,Ui) ≥
1
2


∥Ui∥

2
− ∥Ui−1∥

2 ,
and

−(φ(Ui),Ui) ≤ ∥Ui∥
2,

we find
1
2


∥Ui∥

2
− ∥Ui−1∥

2
≤ k∥Ui∥

2.

By summing over i = 1 to n, we obtain

1
2
∥Un∥

2
≤ k

n
i=1

∥Ui∥
2
+

1
2
∥U0∥

2.

Now discrete Gronwall’s lemma completes the proof. �

3. Regularity estimate

In this section, we derive the L∞(0, T ;H3(Ω)) regularity estimate for the solution u of (2.1)–(2.2) that is explicit in γ .
For this, we assume that the initial data u0 is in H4(Ω) and satisfies the boundary conditions (1.2). The resulting regularity
estimate will be used in our error analysis to derive a priori error estimates that are robust in γ . To this end, we use the
elliptic regularity result for second order problems. The idea of using elliptic regularity results for second order problems
in the error analysis of the C0 interior penalty method for a fourth order elliptic singular perturbation problem is exploited
in [18].
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Theorem 3.1. Let u0 ∈ H4(Ω) be such that

γ ∥∆2u0∥ + ∥1u0∥ + ∥φ(u0)∥ ≤ M2, (3.1)

for some M2 > 0. Moreover, assume that u0 satisfies the boundary conditions (1.2). Then, the solution u of (2.1)–(2.2) satisfies

∥u∥
L∞

0,T ;H2(Ω)

 ≤ C(T ,M1,M2) and ∥u∥
L∞

0,T ;H3(Ω)

 ≤
C(T ,M1,M2)

√
γ

, (3.2)

for some constant C(T ,M1,M2) independent of γ .

Proof. First of all, we need to bound the L2 norm of ut . For this, differentiate (2.1) formally with respect to t and then set
v = ut in the resulting equation to obtain

1
2

d
dt

∥ut∥
2
+ γ ∥1ut∥

2
+ ∥∇ut∥

2
+ ((3u2

− 1)ut , ut) = 0.

Since (3u2ut , ut) ≥ 0,

1
2

d
dt

∥ut∥
2
+ γ ∥1ut∥

2
+ ∥∇ut∥

2
≤ ∥ut∥

2. (3.3)

By integrating (3.3) from 0 to t for t ∈ (0, T ], we obtain

1
2
∥ut(t)∥2

+

 t

0


γ ∥1ut(s)∥2

+ ∥∇ut(s)∥2 ds ≤
1
2
∥ut(0)∥2

+

 t

0
∥ut(s)∥2ds.

An appeal to Gronwall’s lemma yields for t ∈ (0, T ],

1
2
∥ut(t)∥2

+

 t

0


γ ∥1ut(s)∥2

+ ∥∇ut(s)∥2 ds ≤ C(T )
1
2
∥ut(0)∥2. (3.4)

To find a bound for ∥ut(0)∥, we take t → 0 in (2.1) and obtain

(ut(0), v) + γ (1u0, 1v) + (∇u0, ∇v) + (φ(u0), v) = 0 ∀v ∈ V . (3.5)

Now set v = ut(0) in (3.5) and derive

∥ut(0)∥2
= −γ (1u0, 1ut(0)) − (∇u0, ∇ut(0)) − (φ(u0), ut(0))
= −γ (∆2u0, ut(0)) + (1u0, ut(0)) − (φ(u0), ut(0))

≤

γ ∥∆2u0∥ + ∥1u0∥ + ∥φ(u0)∥


∥ut(0)∥. (3.6)

Use (3.1) in (3.6) to find

∥ut(0)∥ ≤ M2. (3.7)

From (3.4) and (3.7), we find for t ∈ (0, T ]

1
2
∥ut(t)∥2

+

 t

0


γ ∥1ut(s)∥2

+ ∥∇ut(s)∥2 ds ≤ C(T )M2
2 , (3.8)

which implies an L∞(0, T ; L2(Ω)) bound for ut . From (2.1), it can easily be seen that
Ω

(ut + φ(u)) dx = 0,

and hence there is a solution w ∈ H1(Ω) to the following problem

(∇w, ∇v) = −(ut + φ(u), v) ∀v ∈ H1(Ω) (3.9)

satisfying (w, 1) = 0. Moreover since Ω is convex, w ∈ V and satisfies the following elliptic regularity [19]:

∥w∥H2(Ω) ≤ C∥ut + φ(u)∥L2(Ω). (3.10)

From (2.7) and Sobolev embedding, we note that

∥φ(u(t))∥2
L2(Ω) = ∥u(t)3 − u(t)∥2

L2(Ω)

= ∥u(t)∥6
L6(Ω) + ∥u(t)∥2

L2(Ω) − 2∥u(t)∥4
L4(Ω) ≤ C(T ,M1). (3.11)
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Combining (3.8), (3.10) and (3.11), we find

∥w∥H2(Ω) ≤ C(T ,M1,M2). (3.12)

Note from (2.1) and (3.9) that,

γ (∆(u − w), ∆(u − w)) + (∇(u − w), ∇(u − w)) = −γ (1w, ∆(u − w))

≤ γ ∥1w∥ ∥∆(u − w)∥. (3.13)

Therefore

∥∆(u − w)∥ ≤ ∥1w∥,

which together with (3.12) implies that ∥1u∥ ≤ C(T ,M1,M2). Using Lemma 2.1 and (2.7), we deduce

∥u∥H2(Ω) ≤ C(T ,M1,M2)

and complete the proof of the first inequality in (3.2). From (3.13), we also find that

∥∇(u − w)∥ ≤


γ

2
∥1w∥.

We note from (2.1) that u satisfies

(1u, 1v) =
1
γ

(−ut − φ(u) + 1u, v)

=
1
γ

(∆(u − w), v),

and hence using the regularity theory of fourth order elliptic problems on convex domains [25], we find

∥u∥H3(Ω) ≤
C
γ

∥∆(u − w)∥H−1(Ω) ≤
C
γ

∥∇(u − w)∥ ≤
C

√
γ

∥w∥H2(Ω)

for some positive constant C which is independent of γ . This and (3.12) complete the proof. �

4. Error analysis

In this section, we derive a priori error analysis of our fully discrete C0 interior penalty method. For this, we recall the
following approximation properties of the standard Lagrange nodal interpolation operator Ih : H3(Ω) −→ Vh from [26,27].

Lemma 4.1. Let w ∈ H3(Ω). Then there is a constant C independent of h such that

|w − Ihw|Hℓ(τ ) ≤ Ch3−ℓ
τ |w|H3(τ ) for 0 ≤ ℓ ≤ 3, (4.1)

∂τ

 ∂

∂n
(w − Ihw)

2 ds ≤ Ch3
τ |w|

2
H3(τ )

, (4.2)
∂τ

|∆(w − Ihw)|2 ds ≤ Chτ |w|
2
H3(τ )

, (4.3)

where τ ∈ Th and ∂τ is the boundary of τ .

The estimate (4.1) is standard while the estimates (4.2)–(4.3) follow from (4.1) and the following trace inequality with
scaling [19]:

∥v∥L2(∂τ ) ≤ Ch−1/2
τ


∥v∥

2
L2(τ ) + hτ∥v∥L2(τ )∥∇v∥L2(τ )

1/2
,

where C is independent of h and τ ∈ Th.
Using Lemma 4.1, it is easy to show the following [9].
There is some constant C which is independent of h such that

∥w − Ihw∥h ≤ Ch∥w∥H3(Ω) ∀w ∈ H3(Ω). (4.4)

In the error analysis, we require an elliptic projection Rh : V ∩ H3(Ω) → Vh defined by

γAh(w − Rhw, vh) +

∇(w − Rhw), vh


= 0, ∀vh ∈ Vh, (4.5)

(w − Rhw, 1) = 0 (4.6)
and for all w ∈ V ∩ H3(Ω). Using Lemma 2.5, we deduce that the projection Rh is well-defined.

We now prove error estimates for Rh.
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Fig. 4.1. Degrees of freedom for the P3-HCT macro element. Thick dots denote the values of the function, circles denote the values of its first order
derivatives and arrows denote the values of its normal derivatives.

Lemma 4.2. Let w ∈ V ∩ H3(Ω). Then, there exists a constant C > 0 which is independent of h, k and γ such that

γ ∥w − Rhw∥
2
h + ∥∇(w − Rhw)∥2

≤ C

γ h2

+ h4
∥w∥

2
H3(Ω)

,

and

∥w − Rhw∥
2

≤ C

γ h4

+ h6
+ γ −1h8

∥w∥
2
H3(Ω)

.

Proof. First of all, using the arguments analogous to Cea’s Lemma [26] and Lemma 2.5, it is easy to find that

γ ∥w − Rhw∥
2
h + ∥∇(w − Rhw)∥2

≤ C min
v∈Vh


γ ∥w − v∥

2
h + ∥∇(w − v)∥2 .

Using Lemma 4.1 and (4.4), we find

γ ∥w − Rhw∥
2
h + ∥∇(w − Rhw)∥2

≤ C

γ h2

∥w∥
2
H3(Ω)

+ h4
∥w∥

2
H3(Ω)


.

To derive the L2 norm error estimate, we consider the following adjoint elliptic problem: find z ∈ V such that

γ (1z, 1v) + (∇z, ∇v) = (w − Rhw, v), ∀v ∈ V . (4.7)

Since Ω is convex, we can derive ∥z∥H3(Ω) ≤ C 1
√

γ
∥w − Rhw∥ and ∥z∥H2(Ω) ≤ C∥w − Rhw∥ using the same technique in

Theorem 3.1. Let zh = Ihz ∈ Vh be an approximation of z as in Lemma 4.1. Then using (4.7), Lemmas 2.5 and 4.1,

∥w − Rhw∥
2

= γAh(z, w − Rhw) + (∇z, ∇(w − Rhw))

= γAh(z − zh, w − Rhw) + (∇(z − zh), ∇(w − Rhw))

≤ Cγ ∥w − Rhw∥h∥z − zh∥h + ∥∇(w − Rhw)∥ ∥∇(z − zh)∥
≤ Cγ h∥w − Rhw∥h∥z∥H3(Ω) + Ch2

∥∇(w − Rhw)∥ ∥z∥H3(Ω)

≤ C


√
γ h∥w − Rhw∥h + Ch2 1

√
γ

∥∇(w − Rhw)∥


∥w − Rhw∥

which implies

∥w − Rhw∥
2

≤ C

γ h2

∥w − Rhw∥
2
h + Ch4γ −1

∥∇(w − Rhw)∥2
≤ C


h2(γ h2

+ h4) + Ch4γ −1(γ h2
+ h4)


∥w∥

2
H3(Ω)

.

Hence the proof. �

Below, we derive a discrete Sobolev inequality on Vh. To prove this without any quasi-uniformity assumption on the
mesh Th, we let Vc ⊂ H2(Ω) be the P3-Hsieh–Clough–Tocher finite element space associated with Th [27,26]. In order to
construct a P3-HCT finite element, each triangle τ ∈ Th is subdivided into three triangles as in Fig. 4.1. Then using this mesh
for τ , the P3-HCT element is constructed by using C1-piecewise cubic polynomials based on the degrees of freedom given
in Fig. 4.1.

From [28,9], note that there is an enriching map Eh : Vh → Vc such that
τ∈Th

h−4
τ ∥v − Ehv∥

2
L2(τ ) ≤ C


e∈Eh


e

1
he

[[∇v ]]
2 ds,
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τ∈Th

h−2
τ ∥v − Ehv∥

2
H1(τ )

≤ C

e∈Eh


e

1
he

[[∇v ]]
2 ds,


τ∈Th

∥v − Ehv∥
2
H2(τ )

≤ C

e∈Eh


e

1
he

[[∇v ]]
2 ds.

Also recall the following local inverse inequality from [27,26]:

∥v∥L∞(τ ) ≤ Ch−d/2
τ ∥v∥L2(τ ), (4.8)

for all τ ∈ Th.
We now prove a lemma on the discrete Sobolev inequality.

Lemma 4.3. There is a constant C which is independent of h, k and γ such that

∥v∥L∞(Ω) ≤ C∥v∥h, ∀v ∈ Vh.

Proof. Using the inverse inequality (4.8), Sobolev embedding and Lemma 2.1

∥v∥
2
L∞(Ω) ≤ ∥v − Ehv∥

2
L∞(Ω) + ∥Ehv∥

2
L∞(Ω)

≤


τ∈Th

∥v − Ehv∥
2
L∞(τ ) + C∥Ehv∥

2
H2(Ω)

≤ C

τ∈Th

h−d
τ ∥v − Ehv∥

2
L2(τ ) + C


∥1Ehv∥

2
+ ∥Ehv∥

2
H1(Ω)


≤ C


e∈Eh


e

1
he

[[∇v ]]
2 ds + C


τ∈Th

∥∆(Ehv − v)∥2
L2(τ ) + ∥Ehv − v∥

2
H1(Ω)



+ C


τ∈Th

∥1v∥
2
L2(τ ) + ∥v∥

2
H1(Ω)


≤ C∥v∥

2
h.

Hence the proof. �

Below, we prove some stability estimates for Rhu, where u is the solution of (2.1)–(2.2). For this, we recall the following
trace inequality [27,26]:

∥v∥L2(∂τ ) ≤ Ch−1/2
τ ∥v∥L2(τ ), ∀v ∈ Vh, (4.9)

for all τ ∈ Th.

Lemma 4.4. For the solution u of (2.1)–(2.2), it holds that

∥Rhu∥H1(Ω) ≤ C, (4.10)

where C is a constant independent of h, k and γ . Moreover, if h ≤
√

γ

∥Rhu∥h ≤ C, (4.11)
∥Rhu∥L∞(Ω) ≤ C . (4.12)

Proof. First of all, we note from Theorem 3.1 that

∥u∥H3(Ω) ≤
C

√
γ

and ∥u∥H2(Ω) ≤ C . (4.13)

Using Lemma 2.5, Lemma 4.1 and (4.13), we obtain

γ ∥u − Rhu∥2
h + ∥∇(u − Rhu)∥2

≤ C

γ ∥u − Ihu∥2

h + ∥∇(u − Ihu)∥2
≤ C


γ h2

∥u∥2
H3(Ω)

+ h2
∥u∥2

H2(Ω)


≤ Ch2,
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which implies

γ ∥u − Rhu∥2
h ≤ Ch2,

∥∇(u − Rhu)∥2
≤ Ch2. (4.14)

The proof of (4.10) follows from (4.14) and (4.13). Now since h ≤
√

γ ,

∥u − Rhu∥2
h ≤ Cγ −1h2

≤ C .

To prove (4.11), first we note using the trace inequality (4.9) that

∥Rhu∥2
h =


τ∈Th

∥1Rhu∥2
L2(τ ) +


e∈Eh


e

he

η
{{1Rhu}}2 ds +


e∈Eh


e

η

he
[[∇Rhu ]]

2 ds



≤ C


τ∈Th

∥1Rhu∥2
L2(τ ) +


e∈Eh


e

η

he
[[∇Rhu ]]

2 ds



≤ C


τ∈Th

∥∆(u − Rhu)∥2
L2(τ ) +


e∈Eh


e

η

he
[[∇(u − Rhu) ]]

2 ds


+ C


τ∈Th

∥1u∥2
L2(τ )


≤ C,

which proves (4.11). The proof of (4.12) follows from (4.11) and Lemma 4.3. �

We now derive a priori error estimates.

Theorem 4.5. There is a constant C = C(T ) which depends on T but is independent of h, k and γ such that

∥Un − u(tn)∥2
≤ ∥u(tn) − Rhu(tn)∥2

+ C(T )

∥Πhu0 − Rh(u0)∥

2
+ ∥u0 − Rhu0∥

2
+ C(T )

 tn

0
∥(Rh − I)ut∥

2ds + k2
 tn

0
∥utt(s)∥2ds


for all 1 ≤ n ≤ N.

Proof. Let 1 ≤ i ≤ n ≤ N, θi = Rhu(ti) − Ui and ρi = Rhu(ti) − u(ti). Then

(∂θi, v) + γAh(θi, v) + (∇θi, ∇v) = (φ(Ui) − φ(u(ti)), v) + (∂Rhu(ti) − ut(ti), v)

= (φ(Ui) − φ(u(ti)), v) + (ωi, v), (4.15)

where ωi = ωi,1 + ωi,2, ωi,1 = (Rh − I)∂u(ti) and ωi,2 = ∂u(ti) − ut(ti).
Set v = θi in (4.15),

(∂θi, θi) + γAh(θi, θi) + ∥∇θi∥
2

= (φ(Ui) − φ(u(ti)), θi) + (ωi, θi).

Since we can write

(φ(Ui) − φ(u(ti)), θi) = (φ(Ui) − φ(Rhu(ti)), θi) + (φ(Rhu(ti)) − φ(u(ti)), θi),

and since the first term

(φ(Ui) − φ(Rhu(ti)), θi) = ∥θi∥
2
− (U2

i + UiRhu(ti) + Rhu(ti)2, θ2
i ) ≤ ∥θi∥

2,

we have

(∂θi, θi) + γAh(θi, θi) + ∥∇θi∥
2

≤ (φ(Rhu(ti)) − φ(u(ti)), θi) + (ωi, θi) + ∥θi∥
2. (4.16)

The first term on the right-hand side of (4.16) is estimated using Theorem 2.2 and (4.10) as

(φ(Rhu(ti)) − φ(u(ti)), θi) = ((u(ti)2 + u(ti)Rhu(ti) + Rhu(ti)2 − 1)ρi, θi)

≤
3
2
(u(ti)2|ρi|, |θi|) +

3
2
(Rhu(ti)2|ρi|, |θi|) + ∥ρi∥ ∥θi∥

≤
3
2


∥u(ti)∥2

L6(Ω) + ∥Rhu(ti)∥2
L6(Ω)


∥ρi∥ ∥θi∥L6(Ω) + ∥ρi∥ ∥θi∥

≤ C∥ρi∥
2
+

1
2


∥∇θi∥

2
+ ∥θi∥

2 .
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The Cauchy–Schwarz inequality implies

(ωi, θi) ≤
1
2
∥ωi∥

2
+

1
2
∥θi∥

2.

From (4.16),

(∂θi, θi) + γAh(θi, θi) +
1
2
∥∇θi∥

2
≤ C


∥θi∥

2
+ ∥ρi∥

2
+ ∥ωi∥

2 .
Since

(∂θi, θi) ≥
1
2k

∥θi∥
2
−

1
2k

∥θi−1∥
2,

we obtain by summing over i = 1 to n that

∥θn∥
2

≤ ∥θ0∥
2
+ Ck

n
i=1


∥θi∥

2
+ ∥ρi∥

2
+ ∥ωi∥

2 . (4.17)

Using the similar techniques in [29, Theorem 1.5], we estimate the third term on the right-hand side of (4.17) as follows:
Since ωi in (4.15) is ωi = ωi,1 + ωi,2, we first take

ωi,1 = k−1(Rh − I)
 ti

ti−1

ut(s)ds.

We square, integrate over Ω and use Cauchy–Schwarz for the above,

∥ωi,1∥
2

≤ k−1
 ti

ti−1

∥(Rh − I)ut(s)∥2ds.

By summing over i = 1 to n, we obtain

k
n

i=1

∥ωi,1∥
2

=

 tn

0
∥ρt∥

2ds.

Next we take

kωi,2 = u(ti) − u(ti−1) − kut(ti) = −

 ti

ti−1

(s − ti−1)utt(s)ds.

It implies

∥ωi,2∥
2

≤ k
 ti

ti−1

∥utt(s)∥2ds,

and

k
n

i=1

∥ωi,2∥
2

≤ k2
 tn

0
∥utt(s)∥2ds.

Now we will bound ∥ρi∥. We can write

ρi = (Rh − I)u(ti) = (Rh − I)u(0) +

 ti

0
(Rh − I)ut(s)ds.

Therefore

∥ρi∥
2

≤ 2


∥ρ0∥
2
+ ti

 ti

0
∥ρt∥

2ds


and

k
n

i=1

∥ρi∥
2

≤ 2tn


∥ρ0∥

2
+ tn

 tn

0
∥ρt∥

2ds


.

We obtain

∥θn∥
2

≤


∥θ0∥

2
+ Ctn∥ρ0∥

2
+ C(1 + 2t2n )

 tn

0
∥ρt∥

2ds + Ck2
 tn

0
∥utt(s)∥2ds


+ Ck

n
i=1

∥θi∥
2.
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Discrete Gronwall’s lemma implies

∥Un
− u(tn)∥2

≤ ∥u(tn) − Rhu(tn)∥2
+ C(T )


∥Πhu0 − Rh(u0)∥

2
+ ∥u0 − Rhu0∥

2
+ C(T )

 tn

0
∥(Rh − I)ut∥

2ds + k2
 tn

0
∥utt(s)∥2ds


.

This completes the proof. �

From Theorem 4.5 and Lemma 4.2, we deduce the following.

Corollary 4.6. Let Πhu0 = Ihu0 or Rhu0. Then, there is a constant C = C(T ) which depends on T but is independent of h, k and
γ such that

∥Un
− u(tn)∥2

≤ C(T )

γ h4

+ h6
+ γ −1h8 

∥u(tn)∥2
H3(Ω)

+ ∥u0∥
2
H3(Ω)

+

 tn

0
∥ut∥

2
H3(Ω)

ds


+ C(T )k2
 tn

0
∥utt(s)∥2ds,

for all 1 ≤ n ≤ N.

We next derive a super-convergence result for

Un − Rhu(tn)


in the H1 norm.

Theorem 4.7. Let h ≤
√

γ and Πhu0 = Rhu0. Then,

γ ∥Un
− Rhu(tn)∥2

h + ∥∇(Un
− Rhu(tn))∥2

≤ C(T )∥u0 − Rhu0∥
2

+ C(T )

 tn

0
∥(Rh − I)ut∥

2ds + k2
 tn

0
∥utt(s)∥2ds


,

for all 1 ≤ n ≤ N and for a constant C(T ) which is independent of h, k and γ but depending on T .

Proof. Let 1 ≤ i ≤ n ≤ N . Then, set v = θi − θi−1 in (4.15).

(∂θi, θi − θi−1) + γAh(θi, θi − θi−1) + (∇θi, ∇(θi − θi−1)) = (φ(Ui) − φ(u(ti)), θi − θi−1) + (ωi, θi − θi−1).

First note that

(∂θi, θi − θi−1) + γAh(θi, θi − θi−1) + (∇θi, ∇(θi − θi−1))

≥
1
k
∥θi − θi−1∥

2
+

γ

2
(Ah(θi, θi) − Ah(θi−1, θi−1)) +

1
2


∥∇θi∥

2
− ∥∇θi−1∥

2 .
(φ(Ui) − φ(u(ti)), θi − θi−1) = (φ(Ui) − φ(Rhu(ti)), θi − θi−1) + (φ(Rhu(ti)) − φ(u(ti)), θi − θi−1).

For the first term, we use Lemma 2.7 and (4.10) to find

(φ(Ui) − φ(Rhu(ti)), θi − θi−1) = ((U2
i + UiRhu(ti) + Rhu(ti)2 − 1)θi, θi − θi−1)

≤
3
2
(U2

i |θi|, |θi − θi−1|) +
3
2
(Rhu(ti)2|θi|, |θi − θi−1|) + ∥θi∥ ∥θi − θi−1∥

≤
3
2


∥Ui∥

2
L6(Ω) + ∥Rhu(ti)∥2

L6(Ω)


∥θi∥L6(Ω)∥θi − θi−1∥ + ∥θi∥ ∥θi − θi−1∥

≤ Ck∥θi∥2
H1(Ω)

+
1
4k

∥θi − θi−1∥
2.

Using Theorem 3.1, Sobolev embedding and (4.12), we bound the second term as

(φ(Rhu(ti)) − φ(u(ti)), θi − θi−1) = ((u(ti)2 + u(ti)Rhu(ti) + Rhu(ti)2 − 1)ρi, θi − θi−1)

≤
3
2
(u(ti)2|ρi|, |θi|) +

3
2
(Rhu(ti)2|ρi|, |θi − θi−1|) + ∥ρi∥ ∥θi − θi−1∥

≤
3
2


∥u(ti)∥2

L∞(Ω) + ∥Rhu(ti)∥2
L∞(Ω)


∥ρi∥ ∥θi − θi−1∥ + ∥ρi∥ ∥θi − θi−1∥

≤ Ck∥ρi∥
2
+

1
4k

∥θi − θi−1∥
2.
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We obtain,

1
4k

∥θi − θi−1∥
2
+

γ

2
(Ah(θi, θi) − Ah(θi−1, θi−1)) +

1
2


∥∇θi∥

2
− ∥∇θi−1∥

2
≤ Ck


∥θi∥

2
H1(Ω)

+ ∥ρi∥
2
+ ∥ωi∥

2


.

By summing over i = 1 to n, we obtain

γ

2
Ah(θn, θn) +

1
2
∥∇θn∥

2
≤

γ

2
Ah(θ0, θ0) +

1
2
∥∇θ0∥

2
+ Ck

n
i=1


∥θi∥

2
H1(Ω)

+ ∥ρi∥
2
+ ∥ωi∥

2


≤ Ck
n

i=1

∥∇θi∥
2
+ Ck

n
i=1

∥θi∥
2
+ 2T∥ρ0∥

2
+ 2T

 tn

0
∥ρt∥

2ds + 2k2
 tn

0
∥utt(s)∥2ds

≤ Ck
n

i=1

∥∇θi∥
2
+ ∥θ0∥

2
+ C(T )


∥ρ0∥

2
+

 tn

0
∥ρt∥

2ds + k2
 tn

0
∥utt(s)∥2ds


.

Discrete Gronwall’s lemma completes the proof. �

We now deduce the following super-convergence result from Theorem 4.7.

Corollary 4.8. Let h ≤
√

γ and Πhu0 = Rhu0. Then,

γ ∥Un
− Rhu(tn)∥2

h + ∥∇(Un
− Rhu(tn))∥2

≤ C(T )

γ h4

+ h6
+ γ −1h8 

∥u(tn)∥2
H3(Ω)

+ ∥u0∥
2
H3(Ω)

+

 tn

0
∥ut∥

2
H3(Ω)

ds


+ C(T )k2
 tn

0
∥utt(s)∥2ds,

for all 1 ≤ n ≤ N and for a constant C(T ) which is independent of h, k and γ but depending on T .

5. Conclusions

In this article, we have developed a fully discrete C0 interior penalty finite element method for the Extended Fisher–
Kolmogorov (EFK) equation. We have derived robust a priori error estimates for the numerical scheme. To this end, we have
derived a regularity estimate and some stability bounds for the continuous solution. The results in this article are derived
under the assumption that the domain is convex polyhedral and the initial data is inH4(Ω). We leave the subject of analysis
for general polyhedral domains and more general initial data to the future.
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