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Abstract

We briefly introduce typical and important direct and iterative methods for solving sys-
tems of linear equations, concretely describe their fundamental characteristics in viewpoints
of both theory and applications, and clearly clarify the substantial differences among these
methods. In particular, the motivations of searching the solution of a linear system in a
Krylov subspace are described and the algorithmic realizations of the generalized minimal
residual (GMRES) method are shown, and several classes of state-of-the-art algebraic pre-
conditioners are briefly reviewed. All this is useful for correctly, deeply and completely
understand the application scopes, theoretical properties and numerical behaviors of these
methods, and is also helpful in designing new methods for solving systems of linear equations.

Keywords: linear system, direct method, iterative method, Krylov subspace, precon-
ditioning.

AMS(MOS) Subject Classifications: 65F10, 65F15, 65C40; CR: G1.3.

1 Introduction

The system of linear equations

Ax = b, with A ∈ Rn×n nonsingular and x, b ∈ Rn, (1)
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can be solved efficiently by either a direct or an iterative method [40, 43, 21, 1, 25]. Roughly
speaking, the direct methods are based on the lower-upper triangular and the orthogonal-
triangular factorizations, or in brief, the LU (or the Gaussian elimination) and the QR fac-
torizations [25], and the iterative methods are based on the matrix splittings [40, 43, 25, 11, 9]
and the Krylov subspaces [1, 25, 5, 33]. These two classes of methods are principally different
but computationally dependent. More specifically, an iterative method can be used to refine an
approximate solution computed by a direct method, and a direct method can be employed to
precondition an iterative method. In particular, in the Krylov subspace iteration methods the
orthogonal basis of the subspace is often computed through a stable variant of the QR factor-
ization [39]. Therefore, a technical and skillful combination of direct and iterative methods can
produce fast, stable and accurate linear solvers for the linear system (1).

While numerical stability and computational complexity are main issues in theoretically an-
alyzing the direct methods, and balanced scaling, proper pivoting and effective ordering are
essential strategies in their practical implementations [21, 23], a challenge in theoretical study
of the Krylov subspace iteration methods is convergence analysis of the iteration sequences, and
a major difficulty in practical usage of these methods is algorithmic construction of high-quality
preconditioner and algebraic analysis of the corresponding preconditioned matrix [5, 33, 35].

In this paper, we will briefly review several typical and important direct and iterative methods
that are economical and effective for solving the linear system (1). The motivations of searching
the solution x∗ of the linear system (1) in a Krylov subspace are described in detail, and the
algorithmic realizations of GMRES [34] are shown deliberately. Also, we discuss convergence
properties of the Krylov subspace iteration methods such as GMRES when the matrix A is
symmetric and when it is nonsymmetric but diagonalizable, and review several classes of ef-
fective preconditioners such as those based on incomplete LU (ILU), incomplete QR (IQR),
sparse approximate inverses, matrix splitting iterations, and algebraic multilevel and multigrid
iteration techniques. All this could be useful for correctly, deeply and completely understand
the application scopes, theoretical properties and numerical behaviors of these methods, and
should be helpful in designing new methods for solving systems of linear equations.

2 The Direct Methods

In the Gaussian elimination method, we successively operate the Gauss transforms one a time on
the expanded matrix [A | b], and finally obtain the target matrix [I | x∗], that is, [A | b] → [I | x∗]
in symbolic, where I is the identity matrix. This method can solve only one system a time,
requiring approximately the storage n2 + n (n2 for the coefficient matrix A and n for the right-
hand side b) and the operations 2

3n3. The methodology of the LU factorization is a little bit
different from the Gaussian elimination, which first factorizes the coefficient matrix A into the
product of a lower-triangular matrix L and an upper-triangular matrix U , i.e., A = LU , and
then computes the exact solution x∗ of the linear system (1) through a forward elimination and
a backward substitution. The LU factorization method can solve many linear systems having
the same coefficient matrix A but different right-hand sides b a time.

For the QR factorization method, we first factorize the coefficient matrix A into a product
of an orthogonal matrix Q and an upper-triangular matrix R, obtaining A = QR, and then
compute the exact solution x∗ of the linear system (1) through a backward substitution due to
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Rx = QT b. The QR factorization requires approximately the storage n2 + n and the operations
2n3. Here and in the sequel, we use (·)T to indicate the transpose of either a vector or a matrix.

Besides the differences in storage and operation mentioned above, it has been proved that
the LU factorization exists only for strictly diagonal dominant matrices and symmetric positive
definite matrices, but the QR factorization may exist for any matrix even for a rectangular one.
Hence, the QR factorization can be employed to solve the linear least-squares problems via, e.g.,
the seminormal equation RT Rx = AT b; see [36]. Moreover, if A ∈ Rn×n is sparse, then both L
and U may be also sparse, but Q and R could be dense. Hence, each of these two factorizations
has its pros and cons.

As we have known, Givens rotation, Householder reflection and Gram-Schmidt orthogonal-
ization are three classical and typical tools for computing a QR factorization for a given matrix.
Below we review the classical Gram-Schmidt orthogonalization process and its stabilized modifi-
cation, in which the latter is the elementary ingredient of the Krylov subspace iteration methods.

Let

A = [a1, a2, . . . , an], Q = [q1, q2, . . . , qn]

and

R =




r11 r12 · · · r1n

r22
...

. . .
...

rnn




,

where ai and qi are the i-th columns of the matrices A and Q, respectively. Then A = QR or

[a1, a2, . . . , an] = [q1, q2, . . . , qn]




r11 r12 · · · r1n

r22
...

. . .
...

rnn




is equivalent to





a1 = r11 q1,
a2 = r12 q1 + r22 q2,
a3 = r13 q1 + r23 q2 + r33 q3,
· · ·
an = r1n q1 + r2n q2 + · · ·+ rnn qn,

which straightforwardly results in the following orthogonalization process, called the classical
Gram-Schmidt process.
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The Classical Gram-Schmidt Process

For j = 1 : n

vj = aj

For i = 1 : j − 1

rij = qT
i aj

vj = vj − rij qi

rjj = ‖vj‖
qj = vj/rjj

The classical Gram-Schmidt process is numerically unstable. A stabilized modification, called
the modified Gram-Schmidt process, is described in the following.

The Modified Gram-Schmidt Process

v1 = a1/‖a1‖

For j = 1 : n

ṽj = aj

For i = 1 : j − 1

ṽj = ṽj − (vT
i ṽj) vi

vj = ṽj/‖ṽj‖

We remark that the modified Gram-Schmidt process is, philosophically speaking, an applica-
tion of the idea of the Gauss-Seidel sweep used for iteratively solving linear systems.

Of course, besides the LU and the QR factorization methods stated above, the famous Gram
rule gives the most beautiful analytic formula for the solution x∗ of the linear system (1).
Precisely speaking, in terms of the determinants of the matrices A and

Aj = [a1, . . . , aj−1, b, aj+1, . . . , an], j = 1, 2, . . . , n,

the j-th element x
[j]
∗ of x∗ is given by

x
[j]
∗ =

det(Aj)
det(A)

, j = 1, 2, . . . , n, (2)

where det(·) denotes the determinant of the corresponding matrix. As is well known, the cost
of this formula is tremendous like O(n2 n!), so it is practically prohibitive especially when the
matrix A is large and sparse. However, by making use of the LU or the QR factorization we
propose here a practical implementation for the Gram rule. To this end, we only consider the
general case that A is nonsingular and nonsymmetric, as the special case that A is symmetric
positive definite can be treated analogously by utilizing the Cholesky factorization [25] of the
matrix A instead of LU or QR. Let A = LU be the LU factorization, ej = (0, . . . , 0, 1, 0, . . . , 0)T
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be the j-th unit basis vector in Rn, and vj = ej −A−1b. Then we have Aej = aj and

Aj = A− (aj − b)eT
j = A(I − vje

T
j ).

So

det(Aj) = det(A) · det(I − vje
T
j ).

Because

(I − vje
T
j )vj = (1− eT

j vj)vj = (eT
j A−1b)vj

and

(I − vje
T
j )ei = ei, for i 6= j,

the eigenvalues of the matrix I − vje
T
j are 1 with multiplicity n− 1 and eT

j A−1b, which implies
that

det(I − vje
T
j ) = eT

j A−1b.

It follows immediately from (2) that

x
[j]
∗ = det(I − vje

T
j ) = eT

j A−1b.

As a result, we obtain the following procedure for computing x∗.

A Practical Implementation of the Gram Rule

Compute A = LU

Solve Lv = b and Ux∗ = v

This procedure is the same as the LU factorization method. It implements the Gram rule
in 2

3n3 operations, in the same cost as that of either the LU or the Gaussian elimination.
Alternatively, using the QR instead of the LU factorization of the matrix A we can analogously
obtain a corresponding practical implementation of the Gram rule, too.

3 The Iterative Methods

The successive relaxation methods and the Krylov subspace methods are two basic classes of
iteration methods aiming to solve large sparse linear systems of the form (1). The former is
often parameter-dependent and definitely breaks down when one diagonal entry of the matrix
A is zero; its construction is perceptual in the sense that one entry of the residual vector
is annihilated at each step by solving one variable from one equation. However, the latter
is often parameter-free and possibly breaks down due to various reasons; its construction is
rational in the sense that the residual vector is minimized at each step (e.g., in the Euclidean
or the energy norm). Representatives of the successive relaxation iteration methods are Jacobi,
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Gauss-Seidel, SOR (successive overrelaxation) and their symmetric variants [28, 11, 27, 19],
and examples of the Krylov subspace iteration methods are CG (conjugate gradient), MINRES
(minimal residual), Bi-CGSTAB (stabilized bi-conjugate gradient) and GMRES (generalized
minimal residual) [34, 1, 25]. For more references, we refer to [9, 18].

The elementary motivations of these two classes of iteration methods are the same, that is,
from the given coefficient matrix A ∈ Rn×n and right-hand side b ∈ Rn, how can we construct
a sequence {xk} such that it approximates the solution x∗ of the linear system Ax = b rapidly,
accurately and stably?

For the Krylov subspace iteration methods, an important feature is that at each iteration
only one matrix-vector multiplication and a small number of vector operations (dot products
and vector updates) are required. For sparse or structured matrices, the matrix times vector
product may be efficiently computed and so the main issue concerning the overall computational
work in the iterative solution of a linear system with such methods is the number of iterations
it takes for convergence to an acceptable accuracy. For the successive relaxation methods,
besides one matrix-vector multiplication they also require to solve one or two triangular linear
sub-systems at each iteration step.

A basic and practical strategy of the Krylov subspace iteration methods is as follows: Find

x1 ∈ span{b}, x2 ∈ span{b,Ab}, . . . , xk ∈ span{b,Ab, . . . , Ak−1b}, . . .

by certain prescribed rule so that lim
k→+∞

xk = x∗. Here the linear subspace

Kk(A, b) = span{b,Ab, . . . , Ak−1b}

is called the k-th order Krylov subspace. Then two questions naturally arise:

(i) why do we use a Krylov subspace to construct an iterative method?

(ii) how good an approximate solution is contained in a Krylov subspace?

For Question (i), a traditional reasoning is given via the Richardson extrapolation iteration

xk+1 = xk + ω(b−Axk), k = 0, 1, 2, . . . ,

where ω is an iteration parameter. As

xk = (I − ωA)xk−1 + ωb =
k−1∑

j=0

(I − ωA)jωb ∈ Kk(A, b)

for x0 = 0, it holds that

x∗ ∈ K∞(A, b)

provided the iteration sequence {xk} is convergent. Alternatively, another reasoning can be given
through the minimum-degree polynomial of A; see, e.g., [30]. Let φk(A) be the minimum-degree
polynomial of the matrix A with the degree k, and denote

φk(A) = α0I + α1A + · · ·+ αkA
k.
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Then we know α0 6= 0 from the nonsingularity of the matrix A and αk 6= 0 from the minimum-
degree property of the polynomial φk(A). It follows straightforwardly from φk(A) = 0 that

A(α1I + α2A + · · ·+ αkA
k−1) = −α0I,

or equivalently,

A−1 = − 1
α0

(α1I + α2A + · · ·+ αkA
k−1). (3)

Therefore,

x∗ = A−1b = − 1
α0

(α1I + α2A + · · ·+ αkA
k−1)b

∈ span{b,Ab, . . . , Ak−1b} = Kk(A, b).

Note that these two explanations show distinguishable facts: The former implies that for any
fixed k the iterate xk ∈ Kk(A, b) so that x∗ ∈ K∞(A, b), but the latter exhibits that x∗ ∈ Kk(A, b)
for the k being the degree of the minimum polynomial of the matrix A.

An answer to Question (ii) is, however, more involved. From xk ∈ Kk(A, b) we have

rk := b−Axk ∈ b−AKk(A, b) ⊆ Kk+1(A, b),

or in other words,

rk =
k∑

j=0

αjA
jb, with α0 = 1.

Define a polynomial

Ψk(t) =
k∑

j=0

αjt
j , with Ψk(0) = 1.

Then we have

rk = Ψk(A) b.

When the matrix A is symmetric, by writing the eigendecomposition of A as A = QΛQT , with
Λ = diag(λ1, λ2, . . . , λn) being a diagonal matrix of the eigenvalues and Q being an orthogonal
matrix of the eigenvectors of the matrix A, we can further obtain

‖rk‖ ≤ ‖QΨk(Λ)QT b‖ ≤ ‖Ψk(Λ)‖ · ‖b‖ ≤ min
Ψk(0)=1

max
1≤i≤n

|Ψk(λi)| · ‖b‖.

Here and in the sequel we use ‖ · ‖ to denote the Euclidean norm of either a vector or a matrix.
The important implication is that the Euclidean norm of the residual (for the worst-case right-
hand side) is completely determined by the eigenvalues of the matrix A, and we have at least
intuitive ideas of what constitute good and bad eigenvalue distributions. More precisely, for a real
symmetric matrix, convergence depends only on its eigenvalues: if there are only a few distinct
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eigenvalues or they are sufficiently clustered away from the origin then there are polynomials
of low degree which will be small at the eigenvalues. At each additional iteration the degree
increases by one and so reasonable accuracy is quickly achieved in such cases [1, 16].

And when A is nonsymmetric but diagonalizable, by writing the eigendecomposition of A as
A = V ΛV −1, with Λ being a diagonal matrix of the eigenvalues and V being a nonsingular
matrix of the eigenvectors of the matrix A, we can obtain

‖rk‖ ≤ ‖V Ψk(Λ)V −1b‖ ≤ κ(V ) min
Ψk(0)=1

max
1≤i≤n

|Ψk(λi)| · ‖b‖.

In this case, the Euclidean norm of the residual is determined not only by the eigenvalues, but
also by the eigenvectors of the matrix A. Of course, if there are only a few distinct eigenvalues
or they are sufficiently clustered away from the origin then there are polynomials of low degree
which will be small at the eigenvalues. Provided that the linearly independent eigenvectors are
complete and the matrix formed by these eigenvectors is well-conditioned, at each additional
iteration the degree increases by one and so reasonable accuracy is quickly achieved in such
cases. Then an interesting open question is to determine when an ill-conditioned eigenvector
matrix implies poor convergence for a Krylov subspace method and when it simply means that
the above bound is a large overestimate.

In general, when A is nonsymmetric and non-diagonalizable, we refer the readers to [5] for a
different treatment, and to [5, 38] and the references therein for more estimates on the Euclidean
norm of the residual.

In terms of both theory and practice, we then have to ask how a good approximation from the
Krylov subspace can be computed with a moderate amount of work and storage? A standard
approach answering this question is described in the following.

Let x0 ∈ Rn be an initial vector. Then the linear system (1) is equivalent to A(x∗ − x0) = r0.
It follows from (3) that

x∗ − x0 = A−1r0 ∈ span{r0, Ar0, . . . , A
k−1r0} = Kk(A, r0)

or

x∗ ∈ x0 +Kk(A, r0) and r = b−Ax∗ ∈ r0 −AKk(A, r0).

Let xk ∈ Rn be the k-th approximation to x∗ such that

xk ∈ x0 +Kk(A, r0).

Then we have

rk ∈ r0 −AKk(A, r0).

Obviously, we need first to compute an orthonormal basis for the Krylov subspace Kk(A, r0)
by using, for example, the modified Gram-Schmidt process or the so-called Arnoldi process.
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The Arnoldi Process
Given q1 satisfying ‖q1‖ = 1
For j = 1, 2, . . . , k − 1

q̃j+1 = Aqj

For i = 1 : j

hij = qT
i q̃j+1

q̃j+1 = q̃j+1 − hijqi

hj+1,j = ‖q̃j+1‖

qj+1 = q̃j+1/hj+1,j

Denote by

Qk = [q1, q2, . . . , qk] ∈ Rn×k.

Then the Arnoldi process yields

AQk = QkHk + hk+1,kqk+1ξ
T
k = Qk+1Hk+1,k,

where

Hk =




h11 h12 · · · · · · h1k

h21 h22 · · · · · · h2k

h32
. . . · · · h3k

. . . . . .
...

hk,k−1 hkk




and

Hk+1,k =




h11 h12 · · · · · · h1k

h21 h22 · · · · · · h2k

h32
. . . · · · h3k

. . . . . .
...

. . . hkk

hk+1,k




,

with ξk = (0, 0, . . . , 0, 1)T ∈ Rk being the last unit basis vector in Rk. As a result, it holds that

QT
k AQk = Hk.

As for the GMRES method, computing an approximate xk such that xk ∈ x0 + Kk(A, r0) is
equivalent to computing a vector yk ∈ Rk such that

xk = x0 + Qkyk or rk = r0 −AQkyk.
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Let β = ‖r0‖ and ξ = (1, 0, . . . , 0)T ∈ Rk+1. Then from

Qk+1ξ = q1 =
r0

‖r0‖
=

r0

β

we have

min ‖rk‖ = min
y∈Rk

‖r0 −AQky‖

= min
y∈Rk

‖r0 −Qk+1Hk+1,ky‖

= min
y∈Rk

‖Qk+1(βξ −Hk+1,ky)‖

= min
y∈Rk

‖βξ −Hk+1,ky‖.

This property straightforwardly leads to the GMRES method described below.

The GMRES Method

• Given x0, compute r0 = b−Ax0 and set q1 = r0
‖r0‖.

• For k = 1, 2, . . ., compute qk+1 and hi,k, i = 1, 2, . . . , k + 1, by using
the Arnoldi process.

• Form xk = x0 +Qkyk, where yk is the solution of the least-squares
problem min

y
‖βξ −Hk+1,ky‖.

The least-squares problem min
y
‖βξ − Hk+1,ky‖ can be solved by the QR factorization. For

practical realizations of this QR factorization based on Givens rotations and Householder reflec-
tions, we refer to [34, 41, 33].

Alternatively, we can give another procedure to determine an iterate xk, an approximate
to the exact solution x∗ of the linear system (1), by using the Krylov subspace Kk(A, r0) =
span{r0, Ar0, . . . , A

k−1r0}. Recall that

rk ∈ r0 −AKk(A, r0).

By letting

Kk = (r0, Ar0, . . . , A
k−1r0)

we have

AKk = (Ar0, A
2r0, . . . , A

kr0).

Note that the space of the columns of this matrix is AKk. Now we can find a vector c ∈ Rk

such that ‖r0 − AKkc‖ is minimized. The vector c could be computed by means of the QR
factorization of the matrix AKk. Once c is available, we would set xk = x0+Kkc. Unfortunately,
this procedure might be numerically unstable and it constructs a factor R that is not needed.
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4 Preconditioning

If it turns out that the Krylov subspace does not contain a good approximate solution for
any moderate size k, or if such an approximate solution cannot be easily computed, then one
might consider modifying the original linear system (1) to obtain a better Krylov subspace; see
[1, 25, 30, 33]. This may be reached by using a preconditioner, say, M . Then the solution x∗
can be obtained through effectively solving the modified (or preconditioned) linear system

M−1Ax = M−1b.

It is widely recognized that preconditioning is the most critical ingredient in the development
of efficient solvers for challenging problems in scientific computation, and that the importance of
preconditioning is destined to increase even further [1, 25, 15, 24]. Below we enumerate several
typical preconditioning methods in order.

(a) Incomplete LU and QR factorizations, which include such kinds of factorizations based
on level-of-fill, drop-to-tolerance, and dual threshold, as well as their modified, block and
parallel variants [1, 7, 15, 33, 14].

(b) Sparse approximate inverses, which include such kinds of preconditioning strategies based
on Frobenius norm minimization and incomplete biconjugation in componentwise and
blockwise forms [31, 26, 15].

(c) Matrix splitting iterations, which include the classical Jacobi, Gauss-Seidel, and SOR, as
well as their extrapolated and modified variants; and the modern Hermitian and skew-
Hermitian splitting (HSS), normal and skew-Hermitian splitting (NSS), and the positive-
definite and skew-Hermitian splitting (PSS) iteration methods, as well as their precon-
ditioned and accelerated variants. For more details, we refer to [1, 9, 8, 10, 12] and the
references therein.

(d) Algebraic multilevel and multigrid iteration techniques, as well as their parallel versions
[2, 3, 42, 4, 6, 15].

Indeed, Krylov subspace iteration methods, when appropriately incorporated with such effec-
tive preconditioners, can often rapidly, accurately and robustly solve large sparse linear systems
arising from real-world applications; see, e.g., [24, 32, 22, 29, 37, 17].

5 Concluding Remarks

We have provided a brief but concise overview of some of the most promising and typical
direct and iterative methods for solving large sparse linear systems, including preconditioning
techniques for the Krylov subspace iteration methods, and pointed out possible connections
between linear solvers and matrix preconditioners. As have been shown, preconditioning is
usually vital to ensure rapid, accurate and stable convergence of Krylov subspace iteration
methods, and has been a more active research area than either direct solution methods or
Krylov subspace methods, though much effort has already been put in the development of
effective preconditioners. Of course, matrix factorizations and matrix splittings provide feasible
ways for constructing high-quality and economical preconditioners [1, 13, 15, 20, 16].
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