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Abstract

In this paper, we modify the general iterative method to approximate a common element of the set

of solutions of split variational inclusion problem and the set of common fixed points of a finite family

of k-strictly pseudo-contractive nonself mapping. Strong convergence theorem is established under some

suitable conditions in a real Hilbert space, which also solves some variational inequality problems. Results

presented in this paper may be viewed as a refinement and important generalizations of the previously

known results announced by many other authors. Finally, some examples to study the rate of convergence

and some illustrative numerical examples are presented.
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1 Introduction

Let H1 and H2 be real Hilbert spaces with inner product 〈·, ·〉 and norm ‖ · ‖. Let C and Q be nonempty
closed convex subsets of H1 and H2, respectively. Let {xn} be a sequence in H1, then xn → x will denote
strong and xn ⇀ x denote weak convergence of the sequence {xn} respectively. A mapping S : C → C is called
nonexpansive if ‖Sx− Sy‖ ≤ ‖x− y‖,∀x, y ∈ C.

The fixed point problem (FPP) for the mapping S is to find x ∈ C such that

Sx = x. (1.1)

We denote F (S) := {x ∈ C : Sx = x}, the set of solutions of FPP.

Throughout in this paper we assumed that S is a nonexpansive mapping such that F (S) 6= ∅. Recall that
a self-mapping f : C → C is a contraction on C if there exists a constant α ∈ (0, 1) and x, y ∈ C such that
‖f(x)− f(y)‖ ≤ α‖x− y‖.

Given a nonlinear mapping B : C → H1. Then the variational inequality problem (VIP) is to find u ∈ C
such that

〈Bu, v − u〉 ≥ 0, ∀v ∈ C. (1.2)

The solution of VIP (1.2) is denoted by V I(C,B). It is well known that if B is strongly monotone and Lipschitz
continuous mapping on C then VIP (1.2) has a unique solution. There are several different approaches towards
solving this problem in finite dimensional and infinite dimensional spaces see [5, 6, 7, 8, 9, 10, 11, 12, 13] and
the research in this direction is intensively continued. Then VIP is satisfies the following Lemma;

Lemma 1.1. For a given z ∈ H1, u ∈ C satisfies the inequality

〈u− z, v − u〉 ≥ 0, ∀v ∈ C, iff u = PCz, (1.3)

where PC is the projection of H1 onto a closed convex set C.

Recall that a nonself mapping T : C → H1 is called a k-strict pseudo-contraction if there exists a constant
k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C. (1.4)

A mapping T is said to be pseudo-contractive if k = 1, and is also said to be strongly pseudo-contractive
if there exists a positive constant λ ∈ (0, 1) such that T + λI is pseudo-contractive. Clearly, the class of k-
strict pseudo-contractions falls into the one between classes of nonexpansive mappings and pseudo-contraction
mappings. We remark also that the class of strongly pseudo-contractive mappings is independent of the class
of k-strict pseudo-contraction mapping (see, e.g., [18, 19]).
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Iterative schemes for strict pseudo-contractions are far less developed than those for nonexpansive map-
pings though Browder and Petryshyn [19] initiated their work in 1967 ; the reason is probably that the second
term appearing in the right-hand side of (1.4) impedes the convergence analysis for iterative algorithms used to
find a fixed point of the strict pseudo-contraction. On the other hand, strict pseudo-contractions have more pow-
erful applications than nonexpansive mappings do in solving inverse problems; see, e.g., [20, 21, 22, 23, 24, 25, 26]
and the references therein.

In 2006, Marino and Xu [22] introduced a general iterative method and proved that for a given x0 ∈ H1,
the sequence {xn} generated by

xn+1 = αnγnf(xn) + (I − αnD)Txn, ∀n ∈ N,

where T is a self-nonexpansive mapping on H1, f is a contraction on H1 into itself and {αn} ⊆ (0, 1) satisfies
certain conditions, D is a strongly positive bounded linear operator on H1, converges strongly to x∗ ∈ F (T ),
which is the unique solution of the following variational inequality:

〈(D − γf)x∗, x∗ − x〉 ≤ 0, ∀x ∈ F (T ),

and is also the optimality condition for some minimization problem.

Recall also that a multi-valued mapping M : H1 → 2H1 is called monotone if, for all x, y ∈ H1, u ∈ Mx

and v ∈My such that

〈x− y, u− v〉 ≥ 0.

A monotone mapping M is maximal if the Graph(M) is not properly contained in the graph of any other
monotone mapping. It is well known that a monotone mapping M is maximal if and only if for (x, u) ∈
H1 ×H1, 〈x− y, u− v〉 ≥ 0 for every (y, v) ∈ Graph(M) implies that u ∈Mx.

Let M : H1 → 2H1 be a multi-valued maximal monotone mapping. Then the resolvent mapping JMλ :
H1 → H1 associated with M is defined by

JMλ (x) := (I + λM)−1(x), ∀x ∈ H1,

for some λ > 0, where I stands for the identity operator on H1. Note that for all λ > 0 the resolvent operator
JMλ is single-valued, nonexpansive, and firmly nonexpansive.

In 2011, Moudafi [33] introduced the following split monotone variational inclusion problem: Find x∗ ∈ H1

such that {
0 ∈ f1(x∗) +B1(x∗),
y∗ = Ax∗ ∈ H2 : 0 ∈ f2(y∗) +B2(y∗),

(1.5)

where B1 : H1 → 2H1 and B2 : H2 → 2H2 are multi-valued maximal monotone mappings.

The split monotone variational inclusion problem (1.5) includes as special cases: the split common fixed
point problem, the split variational inequality problem, the split zero problem, and the split feasibility prob-
lem, which have already been studied and used in practice as a model in intensity-modulated radiation therapy
treatment planning, see e.g. [14, 27, 28]. This formalism is also at the core of the modeling of many in-
verse problems arising for phase retrieval and other real-world problems; for instance, in sensor networks in
computerized tomography and data compression; see [29, 30] and the references therein.
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If f1 ≡ 0 and f2 ≡ 0, the problem (1.5) reduces to the following split variational inclusion problem: Find
x∗ ∈ H1 such that

{
0 ∈ B1(x∗),
y∗ = Ax∗ ∈ H2 : 0 ∈ B2(y∗),

(1.6)

which constitutes a pair of variational inclusion problems connected with a bounded linear operator A in two
different Hilbert spaces H1 and H2. The solution set of problem (1.6) is denoted by Γ̄ = {x∗ ∈ H1 : 0 ∈
B1(x∗), y∗ = Ax∗ ∈ H2 : 0 ∈ B2(y∗)}.

Very recently, Byrne et al. [31] studied the weak and strong convergence of the following iterative method
for problem (1.6): For given x0 ∈ H1 and λ > 0, compute iterative sequence {xn} generated by the following
scheme:

xn+1 = JB1
λ [xn + εA∗(JB2

λ − I)Axn]. (1.7)

In 2013, Kazmi and Rivi [32] modified scheme (1.6) to the case of a split variational inclusion and the fixed
point problem of a nonexpansive mapping. To be more precise, they proved the following strong convergence
theorem.
Theorem KR Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be a bounded linear operator. Let
f : H1 → H1 be a contraction mapping with constant ρ ∈ (0, 1) and T : H1 → H1 be a nonexpansive mapping
such that Ω = Fix(T ) ∩ Γ̄ 6= ∅. For a given x0 ∈ H1 arbitrarily, let the iterative sequences {un} and {xn} be
generated by

{
un = JB1

λ [xn + εA∗(JB2
λ − I)Axn],

xn+1 = αnf(xn) + (1− αn)Tun,
(1.8)

where λ > 0 and ε ∈ (0, 1
L ), L is the spectral radius of the operator A∗A, and A∗ is the adjoint of A; {αn} is a

sequence in (0, 1) such that lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞ and
∞∑
n=1
|αn − αn−1| < ∞. Then the sequence {un} and

{xn} both convergence strongly to z ∈ Ω, where z = PΩf(z).

Inspiration and motivation by research going on in this area, a modified general iterative method for a
split variational inclusion and a finite family of k-strictly pseudo-contractive nonself mapping, which is defined
in the following way:





un = JB1
λ (xn + γA∗(JB2

λ − I)Axn),
yn = βnun + (1− βn)

∑N
i=1 η

(n)
i=1Tiun,

xn+1 = αnτf(xn) + (I − αnD)yn, n ≥ 1,
(1.9)

where λ > 0, γ ∈ (0, 1
L ), L is the spectral radius of the operator A∗A, and A∗ is the adjoint of A, τ > 0, f is

a contraction and D is operator, {Ti}Ni=1 : C → H1 is a finite family of ki-strict pseudo-contractions, {η(n)
i }Ni=1

is a finite sequence of positive numbers, {αn} and {βn} are some sequences with certain conditions.

Our purpose is not only to modify the general iterative method to the case of a finite family of ki-strictly
pseudo-contractive nonself mappings, but also to establish strong convergence theorems for split variational
inclusion problem and ki-strict pseudo-contractions in a real Hilbert space, which also solves some variational
inequality problems.
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2 Preliminaries

Let H1 be a real Hilbert space. Then

‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, (2.1)

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, (2.2)

and
‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2, (2.3)

for all x, y ∈ H1 and y ∈ [0, 1].

We recall some concepts and results which are needed in sequel. A mapping PC is said to be metric
projection of H1 onto C if for every point x ∈ H1, there exists a unique nearest point in C denoted by PCx

such that
‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C. (2.4)

It is well known that PC is a nonexpansive mapping and is characterized by the following property:

‖PCx− PCy‖2 ≤ 〈x− y, PCx− PCy〉, ∀x, y ∈ H1. (2.5)

Moreover, PCx is characterized by the following properties:

〈x− PCx, y − PCx〉 ≤ 0, (2.6)

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2, ∀x ∈ H1, y ∈ C, (2.7)

and
‖(x− y)− (PCx− PCy)‖2 ≥ ‖x− y‖2 − ‖PCx− PCy‖2, ∀x, y ∈ H1. (2.8)

It is known that every nonexpansive operator S : H1 → H1 satisfies, for all (x, y) ∈ H1×H1, the inequality

〈(x− S(x))− (y − S(y)), S(y)− S(x)〉 ≤ 1
2
‖(S(x)− x)− (S(y)− y)‖2, (2.9)

and therefore, we get, for all (x, y) ∈ H1 × F (S),

〈x− S(x), y − S(x)〉 ≤ 1
2
‖S(x)− x‖2, (2.10)

(see, e.g., Theorem 3 in [1] and Theorem 1 in [2]).

Lemma 2.1. A point x∗ ∈ C is a solution of the variational inequality if and only if x∗ ∈ C satisfies the
ralation

x∗ = PC(x∗ − λBx∗), (2.11)

where PC is the projection of H1 onto a closed convex set C and λ > 0 is a constant.

Lemma 2.2. [22] Assume that D is a strongly positive linear operator on the Hilbert space H1 with a coefficient
τ̄ > 0 and 0 < % < ‖D‖−1. Then ‖I − %D‖ ≤ 1− %τ̄ .

Lemma 2.3. [24] If T : C → H1 is a k-strict pseudo-contraction, then the fixed point set F (T ) is closed convex
so that the projection PF (T ) is well defined.
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Lemma 2.4. [24] Let T : C → H1 be a k-strict pseudo-contraction. For λ ∈ [k, 1), define S : C → H1 by
Sx = λx+ (1− λ)Tx for each x ∈ C. Then S is a nonexpansive mapping such that F (S) = F (T ).

Proposition 2.5. [16] Let C be a nonempty closed convex subset of the Hilbert space H1. Given an integer
N ≥ 1, assume that {Ti}Ni=1 : C → H1 is a finite family of ki-strict pseudo-contractions. Suppose that {ηi}Ni=1

is a positive sequence such that
N∑
i=1

ηi = 1. Then
N∑
i=1

ηiTi is a k-strict pseudo-contraction with k = max{ki : 1 ≤
i ≤ N}.

Proposition 2.6. [16] Let {Ti}Ni=1 and {ηi}Ni=1 be given as in Proposition 2.5 above. Then F (
N∑
i=1

ηiTi) =

N∩
i=1
F (Ti).

Lemma 2.7. [3] Let E be an inner product space. Then, for any x, y, z ∈ E and α, β, γ ∈ [0, 1] with α+β+γ =
1, we have

‖αx+ βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2 − αγ‖x− z‖2 − βγ‖y − z‖2.

Lemma 2.8. [4] Each Hilbert space H1 satisfies the Opial condition that is, for any sequence {xn} with xn ⇀ x,

the inequality lim infn−→∞ ‖xn − x‖ < lim infn−→∞ ‖xn − y‖, holds for every y ∈ H with y 6= x.

Lemma 2.9. [15] Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + γnδn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a real sequence such that a sequence in R such that

(i)
∑∞
n=1 γn =∞,

(ii) lim supn−→∞ δn ≤ 0 or
∞∑
n=1
|γnδn| <∞.

Then, limn−→∞ an = 0.

Lemma 2.10. [17] Assume that T is nonexpansive self mapping of a closed convex subset C of a Hilbert space
H1. If T has a fixed point, then I − T is demiclosed, i.e., whenever {xn} converges strongly to some y, it
follows that (I − T )x = y. Here I is the identity mapping on H1.

Lemma 2.11. [22] Let C be a nonempty, closed and convex subset of a Hilbert space H1. Assume that
f : C → C is a contraction with a coefficient ρ ∈ (0, 1) and D is a strongly positive linear bounded operator
with a coefficient γ̄ > 0. Then, for 0 < γ < γ̄

ρ ,

〈x− y, (D − γf)x− (D − γf)y〉 ≥ (γ̄ − γρ)‖x− y‖2, ∀x, y ∈ H1.

That is, D − γf is strongly monotone with coefficient γ̄ − γρ.

3 Main Result

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces and let C ⊆ H1 and Q ⊆ H2 be nonempty closed
convex subsets. Let A : H1 → H2 be a bounded linear operator. Let D be a strongly positive bounded linear
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operator on H1 with a coefficient τ̄ > 0. Assume that {T}Ni=1 : C → H1 be a finite family of ki-strict pseudo-
contraction mappings. such that F := ∩N

i F (Ti) ∩ Γ̄ 6= ∅. Suppose that f ∈ ∏C with a coefficient ρ ∈ (0, 1)
and {η(n)

i }Ni=1 are finite sequences of positive numbers such that
∑N
i=1 η

(n)
i = 1 for all n ≥ 0, for a given point

x0 ∈ C,αn, βn ∈ (0, 1) and 0 < τ < τ̄
ρ . Let {xn} be a sequence generated in the following;





un = JB1
λ (xn + γA∗(JB2

λ − I)Axn),
yn = βnun + (1− βn)

∑N
i=1 η

(n)
i=1Tiun,

xn+1 = αnτf(xn) + (I − αnD)yn, n ≥ 1,
(3.1)

where λ > 0 and γ ∈ (0, 1
L ), L is the spectral radius of the operator A∗A, and A∗ is the adjoint of A. The

following control conditions are satisfied:

(C1) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞ and
∞∑
n=1
|αn − αn−1| <∞;

(C2) ki ≤ βn ≤ ` < 1, lim
n→∞

βn = ` and
∞∑
n=1
|βn − βn−1| <∞;

(C3)
∞∑
n=1

N∑
i=1

|η(n)
i − η(n−1)

i | <∞.

Then the sequence {xn} generated by (3.1) converges strongly to q ∈ F which solves the variational inequality

〈(D − τf)q, q − p〉 ≤ 0, ∀p ∈ F .

Proof. Step 1. First we will prove that {xn} is bounded.

Putting Wn =
N∑
i=1

η
(n)
i Ti we have Wn : C → H1 is a k-strict pseudo-contraction and F (Wn) =

N∩
i=1
F (Ti) by

Proposition 2.5 and 2.6, where k = max{ki : 1 ≤ i ≤ N}.

First, we show that the mapping I − rnD is nonexpansive. Indeed, for each x, y ∈ C, we have

‖(I − rnD)x− (I − rnD)y‖2 = ‖x− y‖2 − 2rn〈x− y,Dx−Dy〉+ r2
n‖Dx−Dy‖2

≤ ‖x− y‖2 − 2αrn‖Dx−Dy‖2 + r2
n‖Dx−Dy‖2

= ‖x− y‖2 − rn(2α− rn)‖Dx−Dy‖2.

It follows from the condition rn ∈ (0, 2α) that the mapping I − rnD is nonexpansive.

Let p ∈ F , we have p = JB1
λ p,Ap = JB2

λ (Ap) and Wnp = p. We estimate

‖un − p‖2 = ‖JB1
λ (xn + γA∗(JB2

λ − I)Axn)− p‖2

= ‖JB1
λ (xn + γA∗(JB2

λ − I)Axn)− JB1
λ p‖2

≤ ‖xn + γA∗(JB2
λ − I)Axn − p‖2

≤ ‖xn − p‖2 + γ2‖A∗(JB2
λ − I)Axn‖2 + 2γ〈xn − p,A∗(JB2

λ − I)Axn〉. (3.2)

Thus, we have

‖un − p‖2 ≤ ‖xn − p‖2 + γ2〈(JB2
λ − I)Axn, AA∗(JB2

λ − I)Axn〉+ 2γ〈xn − p,A∗(JB2
λ − I)Axn〉. (3.3)
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Now, we have

γ2〈(JB2
λ − I)Axn, AA∗(JB2

λ − I)Axn〉 ≤ Lγ2〈(JB2
λ − I)Axn, (JB2

λ − I)Axn〉
= Lγ2‖(JB2

λ − I)Axn‖2. (3.4)

Setting Λ := 2γ〈xn − p,A∗(JB2
λ − I)Axn〉 and using (2.10), we have

Λ = 2γ〈xn − p,A∗(JB2
λ − I)Axn〉

= 2γ〈A(xn − p), (JB2
λ − I)Axn〉

= 2γ〈A(xn − p) + (JB2
λ − I)Axn − (JB2

λ − I)Axn, (JB2
λ − I)Axn〉

= 2γ
{
〈JB2
λ Axn −Ap, (JB2

λ − I)Axn〉 − ‖(JB2
λ − I)Axn‖2

}

≤ 2γ
{

1
2
‖(JB2

λ − I)Axn‖2 − ‖(JB2
λ − I)Axn‖2

}

≤ −γ‖(JB2
λ − I)Axn‖2. (3.5)

Using (3.3), (3.4) and (3.5), we obtain

‖un − p‖2 ≤ ‖xn − p‖2 + γ(Lγ − 1)‖(JB2
λ − I)Axn‖2. (3.6)

Since γ ∈ (0, 1
L ), we obtain

‖un − p‖2 ≤ ‖xn − p‖2. (3.7)

From (3.1), condition (C2), (2.3) and (3.7), we have

‖yn − p‖2 = ‖βn(un − p) + (1− βn)(Wnun − p)‖2

= βn‖un − p‖2 + (1− βn)‖Wnun − p‖2 − βn(1− βn)‖un −Wnun‖2

≤ βn‖un − p‖2 + (1− βn)[‖un − p‖2 + k‖un −Wnun‖2]− βn(1− βn)‖un −Wnun‖2

= ‖un − p‖2 − (1− βn)(βn − k)‖un −Wnun‖2

≤ ‖un − p‖2. (3.8)

This together with (3.7) and (3.8), we obtain

‖yn − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖. (3.9)

Furthermore, by Lemma 2.2, we have

‖xn+1 − p‖ = ‖αn[τf(xn)−Dp] + (I − αnD)(yn − p)‖
≤ (1− αnτ̄)‖yn − p‖+ αn‖τf(xn)−Dp‖
≤ (1− αnτ̄)‖yn − p‖+ αn[‖τf(xn)− τf(p)‖+ ‖τf(p)−Dp‖]
≤ [1− (τ̄ − τρ)αn]‖xn − p‖+ αn‖τf(p)−Dp‖.

It follows from induction that

‖xn − p‖ ≤ max
{
‖x0 − p‖,

1
τ̄ − τρ‖τf(p)−Dp‖

}
, n ≥ 1, (3.10)

which gives that sequence {xn} is bounded, and so are {un} and {yn}.

Step 2. We will prove that lim
n→∞

‖xn+1 − xn‖ = 0.
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Define a mapping Snx := βnx+(1−βn)Wnx for each x ∈ C. Then Sn : C → H1 is nonexpansive. Indeed,
by using (1.4), (2.3) and condition (C2), we have for all x, y ∈ C that

‖Snx− Sny‖2 = ‖βn(x− y) + (1− βn)(Wnx−Wny)‖2

= βn‖x− y‖2 + (1− βn)‖Wnx−Wny‖2

−βn(1− βn)‖x−Wnx− (y −Wny)‖2

≤ βn‖x− y‖2 + (1− βn)[‖x− y‖2 + k‖x−Wnx− (y −Wny)‖2]

−βn(1− βn)‖x−Wnx− (y −Wny)‖2

= ‖x− y‖2 − (1− βn)(βn − k)‖x−Wnx− (y −Wny)‖2

≤ ‖x− y‖2,

which shows that Sn : C → H1 is nonexpansive.
Next, we show that lim

n→∞
‖xn+1 − xn‖ = 0. From (3.1) and Lemma 2.2, we have

‖xn+1 − xn‖ = ‖αnτf(xn) + (I − αnD)yn − [αn−1τf(xn−1) + (I − αn−1D)yn−1]

= ‖αnτf(xn) + (I − αnD)yn − αnf(xn−1) + αnf(xn−1)

−αn−1τf(xn−1) + (I − αn−1D)yn−1‖
≤ αnτ‖f(xn)− f(xn−1)‖+ |αn − αn−1|[‖τf(xn−1)‖+ ‖Dyn−1‖]

+‖(I − αnD)(yn − yn−1)‖
≤ αnτρ‖xn − xn−1‖+ |αn − αn−1|M1 + (1− αnτ̄)‖yn − yn−1‖, (3.11)

where M1 = supn≥1{τ‖f(xn)‖+ ‖Dyn‖} <∞. Moreover, we note that yn = Snun and

‖yn − yn−1‖ ≤ ‖Snun − Snun−1‖+ ‖Snun−1 − Sn−1un−1‖
≤ ‖un − un−1‖+ ‖βnun−1 + (1− βn)Wnun−1

−[βn−1un−1 + (1− βn−1)Wn−1un−1]‖
≤ ‖un − un−1‖+ |βn − βn−1|‖un−1 −Wn−1un−1‖

+(1− βn)‖Wnun−1 −Wn−1un−1‖
≤ ‖un − un−1‖+ |βn − βn−1|M2

+(1− βn)
N∑

i=1

|η(n)
i − η(n−1)

i |‖Tiun−1‖, (3.12)

where M2 = supn≥1{‖un−1 −Wn−1un−1‖}. Since, for γ ∈ (0, 1
L ), the mapping JB1

λ (I + γA∗(JB2
λ − I)A) is

averaged and hence nonexpansive, then we obtain

‖un − un−1‖ = ‖JB1
λ (xn + γA∗(JB2

λ − I)Axn − JB1
λ (xn−1 + γA∗(JB2

λ − I)Axn−1‖
≤ ‖JB1

λ (I + γA∗(JB2
λ − I)A)xn − JB1

λ (I + γA∗(JB2
λ − I)A)xn−1‖

≤ ‖xn − xn−1‖. (3.13)

Substitution (3.13) into (3.12), we get

‖yn − yn−1‖ ≤ ‖xn − xn−1‖+ |βn − βn−1|M2 + (1− βn)
N∑

i=1

|η(n)
i − η(n−1)

i |‖Tiun−1‖. (3.14)
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Combining (3.11), (3.12), (3.13) and (3.14), we have

‖xn+1 − xn‖ ≤ αnτρ‖xn − xn−1‖+ |αn − αn−1|M1 + (1− αnτ̄)[‖xn − xn−1‖

+|βn − βn−1|M2 + (1− βn)
N∑

i=1

|η(n)
i − η(n−1)

i |‖Tiun−1‖]

≤ [1− (τ̄ − τρ)αn]‖xn − xn−1‖+ |αn − αn−1|M1 + |βn − βn−1|M2

+
N∑

i=1

|η(n)
i − η(n−1)

i |‖Tiun−1‖. (3.15)

It follows from 0 < τ < τ̄
ρ and Lemma 2.9 that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.16)

Moreover, we observe that

‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖
= ‖xn − xn+1‖+ ‖αnτf(xn) + (I − αnD)yn − yn‖
≤ ‖xn − xn+1‖+ αn‖τf(xn)−Dyn‖.

It follows from (3.16) and lim
n→∞

αn = 0 that

lim
n→∞

‖xn − yn‖ = 0. (3.17)

Step 3. We will prove that lim
n→∞

‖xn −Wnxn‖ = 0.

It follows from (3.1) and (3.6) that

‖xn+1 − p‖2 = ‖αn[τf(xn)−Dp] + (I − αnD)(yn − p)‖2

≤ (1− αnτ̄)2‖yn − p‖2 + α2
n‖τf(xn)−Dp‖2

+2αn(1− αnτ̄)‖τf(xn)−Dp‖‖yn − p‖
≤ (1− αnτ̄)2‖un − p‖2 + α2

n‖τf(xn)−Dp‖2

+2αn(1− αnτ̄)‖τf(xn)−Dp‖‖yn − p‖
≤ (1− αnτ̄)2[‖xn − p‖2 + γ(Lγ − 1)‖(JB2

λ − I)Axn‖2]

+α2
n‖τf(xn)−Dp‖2 + 2αn(1− αnτ̄)‖τf(xn)−Dp‖‖yn − p‖

= (1− 2αnτ̄ + (αnτ̄)2)‖xn − p‖2 + (1− αnτ̄)2γ(Lγ − 1)‖(JB2
λ − I)Axn‖2

+α2
n‖τf(xn)−Dp‖2 + 2αn(1− αnτ̄)‖τf(xn)−Dp‖‖yn − p‖

≤ ‖xn − p‖2 + (αnτ̄)2‖xn − p‖2 + (1− αnτ̄)2γ(Lγ − 1)‖(JB2
λ − I)Axn‖2

+α2
n‖τf(xn)−Dp‖2 + 2αn(1− αnτ̄)‖τf(xn)−Dp‖‖yn − p‖

= ‖xn − p‖2 + (αnτ̄)2‖xn − p‖2 − (1− αnτ̄)2γ(1− Lγ)‖(JB2
λ − I)Axn‖2

+α2
n‖τf(xn)−Dp‖2 + 2αn(1− αnτ̄)‖τf(xn)−Dp‖‖yn − p‖, (3.18)
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and hence

(1− αnτ̄)2γ(1− Lγ)‖(JB2
λ − I)Axn‖2

≤ (αnτ̄)2‖xn − p‖2 + α2
n‖τf(xn)−Dp‖2

+2αn(1− αnτ̄)‖τf(xn)−Dp‖‖yn − p‖
+‖xn − p‖2 − ‖xn+1 − p‖2

= (αnτ̄)2‖xn − p‖2 + α2
n‖τf(xn)−Dp‖2

+2αn(1− αnτ̄)‖τf(xn)−Dp‖‖yn − p‖
+‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖).

Since γ(1− Lγ) > 0, αn → 0, {xn} is bounded and ‖xn − xn+1‖ → 0 as n→∞, we have

lim
n→∞

‖(JB2
λ − I)Axn‖ = 0. (3.19)

Furthermore, using (3.2), (3.6) and γ ∈ (0, 1
L ), we observe that

‖un − p‖2 = ‖JB1
λ (xn + γA∗(JB2

λ − I)Axn)− p‖2

= ‖JB1
λ (xn + γA∗(JB2

λ − I)Axn)− JB1
λ p‖2

≤ 〈un − p, xn + γA∗(JB2
λ − I)Axn − p〉

=
1
2
{‖un − p‖2 + ‖xn + γA∗(JB2

λ − I)Axn − p‖2

−‖(un − p)− [xn + γA∗(JB2
λ − I)Axn − p]‖2}

=
1
2
{‖un − p‖2 + ‖xn − p‖2 + γ(Lγ − 1)‖(JB2

λ − I)Axn‖2

−‖un − xn − γA∗(JB2
λ − I)Axn‖2}

≤ 1
2
{‖un − p‖2 + ‖xn − p‖2 − [‖un − xn‖2 + γ2‖A∗(JB2

λ − I)Axn‖2

−2γ〈un − xn, A∗(JB2
λ − I)Axn〉]}

≤ 1
2
{‖un − p‖2 + ‖xn − p‖2 − ‖un − xn‖2 + 2γ‖A(un − xn)‖‖(JB2

λ − I)Axn‖}.

Hence, we obtain

‖un − p‖2 ≤ ‖xn − p‖2 − ‖un − xn‖2 + 2γ‖A(un − xn)‖‖(JB2
λ − I)Axn‖. (3.20)

From (3.18) and (3.20), we have

‖xn+1 − p‖2 ≤ (1− αnτ̄)2‖un − p‖2 + α2
n‖τf(xn)−Dp‖2

+2αn(1− αnτ̄)‖τf(xn)−Dp‖‖yn − p‖
≤ (1− αnτ̄)2[‖xn − p‖2 − ‖un − xn‖2 + 2γ‖A(un − xn)‖‖(JB2

λ − I)Axn‖]
+α2

n‖τf(xn)−Dp‖2 + 2αn(1− αnτ̄)‖τf(xn)−Dp‖‖yn − p‖
= (1− 2αnτ̄ + (αnτ̄)2)‖xn − p‖2 − (1− αnτ̄)‖un − xn‖2

+2γ(1− αnτ̄)2‖A(un − xn)‖‖(JB2
λ − I)Axn‖

+α2
n‖τf(xn)−Dp‖2 + 2αn(1− αnτ̄)‖τf(xn)−Dp‖‖yn − p‖

≤ ‖xn − p‖2 + (αnτ̄)2‖xn − p‖2 − (1− αnτ̄)2‖un − xn‖2

+2γ(1− αnτ̄)2‖A(un − xn)‖‖(JB2
λ − I)Axn‖

+α2
n‖τf(xn)−Dp‖2 + 2αn(1− αnτ̄)‖τf(xn)−Dp‖‖yn − p‖,
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we get

(1− αnτ̄)2‖un − xn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + (αnτ̄)2 + 2γ(1− αnτ̄)2‖A(un − xn)‖‖(JB2
λ − I)Axn‖

+α2
n‖τf(xn)−Dp‖2 + 2αn(1− αnτ̄)‖τf(xn)−Dp‖‖yn − p‖

≤ (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖+ (αnτ̄)2‖xn − p‖2

+2γ(1− αnτ̄)2‖A(un − xn)‖‖(JB2
λ − I)Axn‖

+α2
n‖τf(xn)−Dp‖2 + 2αn(1− αnτ̄)‖τf(xn)−Dp‖‖yn − p‖. (3.21)

Since from condition (C1), (3.16) and (3.19), we have

lim
n→∞

‖un − xn‖ = 0. (3.22)

By the nonexpansion of Sn, we have

‖xn − Snxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Snxn‖
≤ ‖xn − xn+1‖+ ‖αnτf(xn) + (I − αnD)yn − Snxn‖
≤ ‖xn − xn+1‖+ αn[‖τf(xn)‖+ ‖Dyn‖] + ‖Snun − Snxn‖
≤ ‖xn − xn+1‖+ αn[‖τf(xn)‖+ ‖Dyn‖] + ‖un − xn‖.

This together (3.16), (3.22) and condition (C1), we obtain

lim
n→∞

‖xn − Snxn‖ = 0. (3.23)

Furthermore, we note that

‖xn − Snxn‖ = ‖βnxn + (1− βn)Wnxn − xn‖
= ‖βnxn + (1− βn)Wnxn − (βn + (1− βn))xn‖
= ‖βnxn + (1− βn)Wnxn − βnxn − (1− βn)xn‖
= (1− βn)‖xn −Wnxn‖.

It follows from condition (C2),

lim
n→∞

‖xn −Wnxn‖ = 0. (3.24)

On the other hand, by condition (C3), we may assume that η(n)
i → ηi as n→∞ for every 1 ≤ i ≤ N. It is easy

to see that each ηi > 0 and
N∑
i=1

ηi = 1. Define W =
N∑
i=1

ηiTi, then W : C → H1 is a k-strict pseudo-contraction

such that F (W ) = F (Wn) =
N∩
i=1
F (Ti) by Proposition 2.5 and 2.6. Consequently,

‖xn −Wxn‖ ≤ ‖xn −Wnxn‖+ ‖Wnxn −Wxn‖

≤ ‖xn −Wnxn‖+
N∑

i=1

|η(n)
i − ηi|‖Tixn‖,

which implies that

lim
n→∞

‖xn −Wxn‖ = 0. (3.25)
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Observe that

‖Wnxn −Wxn‖ = ‖Wnxn − xn + xn −Wxn‖ ≤ ‖Wnxn − xn‖+ ‖xn −Wxn‖.

From (3.24) and (3.25), we obtain that

lim
n→∞

‖Wnxn −Wxn‖ = 0. (3.26)

Define S : C → H1 by Sx = λx + (1 − λ)Wx. Again by condition (C2) again, we have lim
n→∞

βn = ` ∈ [k, 1).

Then, S is nonexpansive with F (S) = F (W ) by Lemma 2.4. Notice that

‖xn − Sxn‖ ≤ ‖xn − Snxn‖+ ‖Snxn − Sxn‖
= ‖xn − Snxn‖+ ‖βnxn + (1− βn)Wnxn − `xn − (1− `)Wxn‖
≤ ‖xn − Snxn‖+ |βn − `|‖xn −Wxn‖+ (1− βn)‖Wnxn −Wxn‖.

It follows from (3.23), (3.25) and (3.26), we get

lim
n→∞

‖xn − Sxn‖ = 0. (3.27)

Step 4. We will prove that q ∈ F .

We next show that q ∈ F (W ) = F (Wn) =
N∩
n=1

F (Ti). Assume that q 6= F (W ). Since xnk
⇀ q and q 6= Wq,

from the Opial condition we have

lim inf
k→∞

‖xnk
− q‖ < lim inf

k→∞
‖xnk

−Wq‖
≤ lim inf

k→∞
{‖xnk

−Wxnk
‖+ ‖Wxnk

−Wq‖}
≤ lim inf

k→∞
‖xnk

− q‖,

which is a contradiction. Thus, we get q ∈ F (W ) = F (Wn) =
N∩
i=1
F (Ti).

On the other hand, unk
= JB1

λ (xnk
+ γA∗(JB2

λ − I)Axnk
) can be rewritten as

(xnk
− unk

) + γA∗(JB2
λ − I)Axnk

λ
∈ B1unk

. (3.28)

By passing to limit k →∞ in (3.28) and by taking into account (3.19) and (3.22) and the fact that the graph
of a maximal monotone operator is weakly-strongly closed, we obtain 0 ∈ B1(q), i.e., q ∈ SOLVIP(B1). Fur-
thermore, since {xn} and {un} have the same asymptotical behavior, {Axnk

} weakly converges to Aq. Again,
by (3.19) and the fact that the resolvent JB2

λ is nonexpansive and Lemma 2.10, we obtain that Aq ∈ B2(Aq),
i.e., Aq ∈ SOLVIP(B2). Thus, q ∈ F .

Step 5. We will prove that lim sup
k→∞

〈(D − τf)q, q − xn〉 ≤ 0, where q = lim
t→0

xt with xt being the fixed point of

the contraction Ψn on H1 defined by

Ψnx = tτf(x) + (I − τD)SnJB1
λ (I + γA∗(JB2

λ − I)A)x, ∀x ∈ H1,
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where t ∈ (0, 1). Indeed, by Lemma 2.2, we have

‖Ψnx−Ψny‖
≤ ‖tτf(x) + (I − τD)SnJB1

λ (I + γA∗(JB2
λ − I)A)x− [tτf(y) + (I − τD)SnJB1

λ (I + γA∗(JB2
λ − I)A)y]‖

≤ tτ‖f(x)− f(y)‖+ (1− tτ̄)‖SnJB1
λ (I + γA∗(JB2

λ − I)A)x− SnJB1
λ (I + γA∗(JB2

λ − I)A)y)‖
≤ tτ‖f(x)− f(y)‖+ (1− tτ̄)‖Snx− Sny‖
≤ tτρ‖x− y‖+ (1− tτ̄)‖x− y‖
≤ (1− t(τ̄ − τρ))‖x− y‖,

for all x, y ∈ H1. Since 0 < 1 − t(τ̄ − τρ) < 1, it follows that Ψn is a contraction. Therefore, by the Banach
contraction principle, Ψn has a unique fixed point xt ∈ H1 such that

xt = tτf(xt) + (I − τD)SnJB1
λ (I + γA∗(JB2

λ − I)A)xt.

By (2.3) and (3.17), we have

‖xt − xn‖2 = ‖(I − tD)[SnJB1
λ (I + γA∗(JB2

λ − I)A)xt − xn] + t[τf(xt)−Dxt]‖2

≤ (1− τ̄ t)2‖SnJB1
λ (I + γA∗(JB2

λ − I)A)xt − xn‖2 + 2t〈τf(xt)−Dxt, xt − xn〉
≤ (1− τ̄ t)2‖SnJB1

λ (I + γA∗(JB2
λ − I)A)xt − SnJB1

λ (I + γA∗(JB2
λ − I)A)xn

+SnJB1
λ (I + γA∗(JB2

λ − I)A)xn‖2 + 2t〈τf(xt)−Dxn, xt − xn〉
≤ (1− τ̄ t)2[‖xt − xn‖+ ‖yn − xn‖]2 + 2t〈τf(xt)−Dxn, xt − xn〉
≤ (1− τ̄ t)2‖xt − xn‖2 + 2(1− τ̄ t)2‖xt − xn‖‖yn − xn‖+ (1− τ̄ t)2‖yn − xn‖2

+2t〈τf(xt)−Dxn +Dxt −Dxt, xt − xn〉
≤ (1− τ̄ t)2‖xt − xn‖2 + Ψn(t) + 2t〈τf(xt)−Dxt, xt − xn〉

+2t〈Dxt −Dxn, xt − xn〉, (3.29)

where Ψn(t) = (1− τ̄ t)2(2‖xt − xn‖+ ‖yn − xn‖)‖yn − xn‖ → 0 as n→∞. Observe D is strongly positive, we
obtain

〈Dxt −Dxn, xt − xn〉 = 〈D(xt − xn), xt − xn〉 ≥ τ̄‖xt − xn‖2. (3.30)

Combining (3.29) and (3.30), we have

‖xt − xn‖2 ≤ (1− τ̄ t)2‖xt − xn‖2 + Ψn(t) + 2t〈τf(xt)−Dxt, xt − xn〉+ 2t〈Dxt −Dxn, xt − xn〉
= (1− 2τ̄ t+ (τ̄ t)2)‖xt − xn‖2 + Ψn(t) + 2t〈τf(xt)−Dxt, xt − xn〉+ 2t〈Dxt −Dxn, xt − xn〉,

so,

2t〈Dxt − τf(xt), xt − xn〉 ≤ (τ̄2t2 − 2τ̄ t)‖xt − xn‖2 + Ψn(t) + 2t〈Dxt −Dxn, xt − xn〉
≤ (τ̄ t2 − 2t)〈D(xt − xn), xt − xn〉+ Ψn(t) + 2t〈Dxt −Dxn, xt − xn〉
= τ̄ t2〈Dxt −Dxn, xt − xn〉+ Ψn(t).

It follows that
〈Dxt − τf(xt), xt − xn〉 ≤

τ̄ t

2
〈Dxt −Dxn, xt − xn〉+

1
2t

Ψn(t). (3.31)

Let n→∞ in (3.31) and note that Ψn(t)→ 0 as n→∞ yields,

lim sup
n→∞

〈Dxt − τf(xt), xt − xn〉 ≤
t

2
M4, (3.32)
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where M4 is an approximate positive constant such that M4 ≥ τ̄〈Dxt − Dxn, xt − xn〉 for all t ∈ (0, 1) and
n ≥ 1. Taking t→ 0 from (3.32), we have

lim sup
t→0

lim sup
n→∞

〈Dxt − τf(xt), xt − xn〉 ≤ 0. (3.33)

On the other hand, we have

〈τf(q)−Dq, xn − q〉 = 〈τf(q)−Dq, xn − q〉 − 〈τf(q)−Dq, xn − xt〉
+〈τf(q)−Dq, xn − xt〉 − 〈τf(q)−Dxt, xn − xt〉
+〈τf(q)−Dxt, xn − xt〉 − 〈τf(xt)−Dxt, xn − xt〉
+〈τf(xt)−Dxt, xn − xt〉.

It follows that

lim sup
n→∞

〈τf(q)−Dq, xn − q〉

≤ ‖τf(q)−Dq‖‖xt − q‖+ ‖D‖‖xt − q‖ lim
n→∞

‖xn − xt‖
+τρ‖xt − q‖ lim

n→∞
‖xn − xt‖+ lim sup

n→∞
〈τf(xt)−Dxt, xn − xt〉.

Therefore, from (3.33) and lim
t→0

xt = q, we have

lim sup
n→∞

〈τf(q)−Dq, xn − q〉 = lim sup
t→0

lim sup
n→∞

〈τf(q)−Dq, xn − q〉

≤ lim sup
t→0

‖τf(q)−Dq‖‖xt − q‖

+lim sup
t→0

‖D‖‖xt − q‖ lim
n→∞

‖xn − xt‖

+lim sup
t→0

τρ‖xt − q‖ lim
n→∞

‖xn − xt‖

+lim sup
t→0

lim sup
n→∞

〈τf(xt)−Dxt, xn − xt〉

≤ 0. (3.34)

On the other hand, we shall show that the uniqueness of a solution of the variational inequality

〈(D − τf)x, x− q〉 ≤ 0, q ∈ F . (3.35)

Suppose that q ∈ F and q̂ ∈ F both are solutions to (3.35), then

〈(D − τf)q, q − q̂〉 ≤ 0 (3.36)

and

〈(D − τf)q̂, q̂ − q〉 ≤ 0. (3.37)

Adding up (3.36) and (3.37) one gets

〈(D − τf)q − (D − τf)q̂, q − q̂〉 ≤ 0. (3.38)

By Lemma 2.11, the strong monotonicity of D − γf , we obtain q = q̂ and the uniqueness is proved.
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Finally, we prove that xn → q as n→∞. From (3.1) and (3.9) again, we have

‖xn+1 − q‖2 = 〈αnτf(xn) + (I − αnD)yn − q, xn+1 − q〉
= αn〈τf(xn)−Dq, xn+1 − q〉+ 〈(I − αnD)(yn − q), xn+1 − q〉
≤ αnτ〈f(xn)− f(q), xn+1 − q〉+ αn〈τf(q)−Dq, xn+1 − q〉

+(1− αnτ̄)‖yn − q‖‖xn+1 − q‖
≤ αnτρ‖xn − q‖‖xn+1 − q‖+ αn〈τf(q)−Dq, xn+1 − q〉

+(1− αnτ̄)‖xn − q‖‖xn+1 − q‖
= [1− (τ̄ − τρ)αn]‖xn − q‖‖xn+1 − q‖+ αn〈τf(q)−Dq, xn+1 − q〉

≤ 1− (τ̄ − τρ)αn
2

(‖xn − q‖2 + ‖xn+1 − q‖2) + αn〈τf(q)−Dq, xn+1 − q〉

≤ 1− (τ̄ − τρ)αn
2

‖xn − q‖2 +
1
2
‖xn+1 − q‖2 + αn〈τf(q)−Dq, xn+1 − q〉.

It follows that
‖xn+1 − q‖2 ≤ [1− (τ̄ − τρ)αn]‖xn − q‖2 + 2αn〈τf(q)−Dq, xn+1 − q〉. (3.39)

From 0 < τ < τ̄
ρ , condition (C1) and (3.34), we can arrive at the desired conclusion lim

n→∞
‖xn − q‖ = 0 by

Lemma 2.9. This complete the proof.

4 Consequently results

Corollary 4.1. Let H1 and H2 be two real Hilbert spaces and let C ⊆ H1 and Q ⊆ H2 be nonempty closed
convex subsets. Let A : H1 → H2 be a bounded linear operator. Let D be a strongly positive bounded linear
operator on H1 with τ̄ > 0 and 0 < τ < τ̄

ρ . Let T : C → H1 be a k-strict pseudo-contractions such that
F := F (T ) ∩ Γ̄ 6= ∅. Let {xn} be a sequence generated in the following;





un = JB1
λ (xn + γA∗(JB2

λ − I)Axn),
yn = βnun + (1− βn)Tun,
xn+1 = αnτf(xn) + (I − αnD)yn, n ≥ 1,

(4.1)

where λ > 0, γ ∈ (0, 1
L ), L is the spectral radius of the operator A∗A and A∗ is the adjoint of A. The following

control conditions are satisfied:

(C1) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞ and
∞∑
n=1
|αn − αn−1| <∞;

(C2) k ≤ βn ≤ ` < 1, lim
n→∞

βn = ` and
∞∑
n=1
|βn − βn−1| <∞.

Then the sequence {xn} generated by (4.1) converges strongly to q ∈ F which solves the variational inequality

〈(D − τf)q, q − p〉 ≤ 0, ∀p ∈ F .

Proof. Putting N = 1 and Wn = T , the desired conclusion follows immediately from Theorem 3.1. This
completes the proof.
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5 Numerical examples

In this section, we give an example and numerical results to illustrate our algorithm and the main result of
this paper.

Example 5.1. Let H1 = H2 = R3. Let two operators of matrix multiplication B1, B2 : R3 −→ R3 defined by

B1 =




12 0 0
0 18 0
0 0 27


 and B2 =




15 0 0
0 19 0
0 0 14


 .

So, we can define the resolvent mappings JB1
λ (x) := (I + λB1)−1(x) and JB2

λ := (I + λB2)−1(x) on R3

associated with B1 and B2 where λ > 0.

Let A ∈ R3×3 be a singular matrix operator in which elements are random and A∗ be an adjoint of A. The
mappings Ti : R3 −→ R3 defined by T1 = x

20(1+x) , T2 = sin x
30(1+x) and T3 = x

40+x are ki-strict pseudo-contractive
for i = 1, 2, 3 (see [34]). Then we present the following algorithm.

Algorithm 5.2. (Iteration algorithm for split variational inclusion)

Step 0. Choose the initial point x0 ∈ R3. Put λ = 1
2 , γ = 1

10 , τ = 10, αn = 1
2 , βn = 1

10 , η1 = η2 = η3 = 1
3 ,

D = I and let n = 1.

Step 1. Given xn ∈ R3 and compute xn+1 ∈ R3 as follows.




un = JB1
λ (xn + γA∗(JB2

λ − I)Axn),
yn = βnun + (1− βn)

∑N
i=1 η

(n)
i=1Tiun,

xn+1 = αnτf(xn) + (I − αnD)yn, n ≥ 1,

Step 2. Put n := n+ 1 and go to step 1.

Setting ‖xn − xn+1‖ ≤ 10−10 as stop criterion, then we obtain the numerical results of iteration scheme
for Algorithm 5.2.

Figure 1 shows the convergent of Algorithm 5.2 with different initial points where x1 = 2, 4,−4.

Figure 2 shows the convergent of Algorithm 5.2 with different contraction mappings f(x) = 0.1x, f(x) =
0.02x and f(x) = 0.05x.

We can see that both of Figure 1 and Figure 2, we can see that the sequence xn coverges to 0, that is, 0
is the solution in Example 5.1.
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x1 = 2 x1 = 4 x1 = −4
n |xn − xn+1| n |xn − xn+1| n |xn − xn+1|
1 8.563025 1 6.21 1 1.03
2 2.597529× 10−01 2 1.87× 10−01 2 4.26× 10−01

3 9.873640× 10−03 3 7.20× 10−03 3 1.72× 10−02

4 3.855163× 10−04 4 2.88× 10−04 4 6.91× 10−04

5 1.516538× 10−05 5 1.17× 10−05 5 2.78× 10−05

6 6.005162× 10−07 6 4.83× 10−07 6 1.13× 10−06

7 2.393081× 10−08 7 2.00× 10−08 7 4.58× 10−08

8 9.594050× 10−10 8 8.33× 10−10 8 1.87× 10−09

9 3.867765× 10−11 9 3.47× 10−11 9 7.67× 10−11

The number of iterations (n)
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Figure 1: The iteration chart with initial pointst x1 = 2, 4,−4.
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f(x) = 0.1x f(x) = 0.02x f(x) = 0.05x
n |xn − xn+1| n |xn − xn+1| n |xn − xn+1|
1 75.39948 1 131.9665 1 110.7537
5 34.90713 3 7.11× 10−01 3 5.324926
10 9.78× 10−02 5 5.41× 10−03 6 6.86× 10−02

15 2.68× 10−03 7 4.27× 10−05 9 9.17× 10−04

20 7.40× 10−05 9 3.44× 10−07 12 1.24× 10−05

25 2.05× 10−06 10 3.11× 10−08 14 7.04× 10−07

30 5.72× 10−08 11 2.81× 10−09 16 4.02× 10−08

35 1.60× 10−09 12 2.56× 10−10 18 2.30× 10−09

39 9.19× 10−11 13 2.33× 10−11 21 3.16× 10−11

The number of iterations (n)
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Figure 2 The iteration chart with different contraction mappings f(x) = 0.1x, 0.02x, 0.05x
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