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The Signature Method for DAEs arising in the
Modeling of Electrical Circuits

Lena Scholz

Institut für Mathematik, TU Berlin, Straße des 17. Juni 136, D-10623 Berlin, Germany

Abstract

We consider the Signature Method (Σ-method) for the structural analysis of

differential-algebraic equations (DAEs) that arise in the modeling and simula-

tion of electrical circuits. Different formulations of the set of model equations

are considered. We show that for some formulations the structural approach

may fail for certain circuit topologies, while other formulations are better suited

for a structural analysis. In particular, we show that for the branch-oriented

model equations the Signature Method always succeeds with a structural index

that corresponds to the differentiation index of the system. The results are

illustrated by a number of examples.

Keywords: Differential-algebraic equation, structural analysis, signature

method, modified nodal analysis, MNA, modified loop analysis, MLA,

branch-oriented model.
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1. Introduction

Modeling and simulation of dynamical systems is an important issue in the

development of technical innovations. More and more equation-based object-

oriented modeling environments such as Dymola, MapleSim or 20sim are used

as tools for automatized modeling and simulation of multi-physical systems. An5

important problem class are electrical circuits or electrical components that are

Email address: lscholz@math.tu-berlin.de (Lena Scholz)

Preprint submitted to Journal of Computational and Applied Mathematics June 1, 2017

Manuscript
Click here to view linked References



embedded in multi-physical applications. Circuit equations typically lead to

large-scale systems of differential-algebraic equations (DAEs). For such DAE

systems it is well-known that, due to the occurrence of hidden constraints, an

index reduction or regularization is required for a robust numerical integration,10

e.g., to avoid drift-off, instabilities or artificial oscillations, see [1, 2, 3, 4]. In

most modeling environments a structural analysis of the model equations is used

to perform a regularization, i.e., to determine a formulation that is suited for

the numerical integration. Here, usually Pantelides Algorithm [5] or the Signa-

ture Method (Σ-method) [6] are used in combination with the dummy derivative15

approach [7]. These structural methods are powerful tools since they are com-

putationally very efficient. In [6] it has been shown that the structural analysis

based on the Σ-method works reliable for many classes of DAEs (including

mechanical multibody systems or systems is Hessenberg form). However, it is

also known that structural approaches may fail for certain problems [8, 9]. In20

this paper, we will consider the structural analysis for commonly used circuit

equations. We will present a number of examples that show that the structural

approach may fail for certain circuit topologies or certain formulations of the

model equations. Fortunately, an appropriate formulation of the circuit equa-

tions using branch-oriented model equations allows the secure application of the25

Σ-method.

The paper is organized as follows. In Section 2 we collect some preliminaries.

Then, in Section 3, we consider different formulations of the model equations

for electrical circuits. Next, in Section 4, we recapitulate the basic ideas of the

Σ-method and apply the approach to the different circuit equations. We will see30

that for some formulations the Σ-method may fail depending on the topology of

the circuit, while other formulations are better suited for the structural analysis.

We end with some concluding remarks in Section 5. Some additional graph

theoretical results are given in Appendix A.
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2. Preliminaries35

In general, a DAE is given as a nonlinear system

F (t, x, ẋ) = 0, (1)

where F : I × Dx × Dẋ → Rn is a continuous function, Dx,Dẋ ⊂ Rn are open,

I = [t0, tf ] ⊂ R and x : I → Dx is a continuously differentiable unknown

function. For a differentiable time depending function x, the i-th derivative

of x with respect to t is denoted by x(i)(t) = dix(t)/dti for i ∈ N, using the40

convention x(1)(t) = ẋ(t), and x(2)(t) = ẍ(t).

For a matrix A ∈ Rm,n, imA denotes the image of A, kerA denotes the kernel

of A, and rankA denotes the rank of A. Furthermore, a square matrix A that

is positive definite or positive semi-definite is denoted by A > 0 or A ≥ 0,

respectively.45

Definition 1. A function x : I→ Dx is said to be a solution of the DAE (1) if

it is continuously differentiable for all t ∈ I and (1) is fulfilled pointwise for all

t ∈ I. A function x : I→ Dx is called a solution of the initial value problem (1)

and x(t0) = x0 with x0 ∈ Dx if it is a solution of (1) and satisfies the initial

condition x(t0) = x0. An initial value x0 ∈ Dx is called consistent, if the initial50

value problem (1) and x(t0) = x0 has a solution.

The original equation (1) and its derivatives up to order ` can be gathered into

a so-called derivative array

F`(t, x, ẋ, w) =




F (t, x, ẋ)

d
dtF (t, x, ẋ)

...

( d
dt )

`F (t, x, ẋ)



, (2)

where

w = [ẍ, . . . , x(`+1)].

Definition 2 ([10]). Suppose that (1) is solvable. If v is uniquely determined

by (t, x) and F`(t, x, v, w) = 0 for all consistent values and νd is the least such
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integer ` that this holds for, we call νd the differentiation index (d-index) of the55

DAE (1).

If the d-index is well-defined, one can extract a so-called underlying ODE ẋ(t) =

Φ(x(t), t) from the derivative array with the property that every solution of the

DAE (1) also solves the underlying ODE.

In the following, we will also need some basic results of graph theory. Let60

G = (V,B,Ψ) denote a directed graph with V = {v1, v2, . . . } the finite set of

nodes (or vertices) and B = {b1, b2, . . . } the finite set of branches (or edges).

Ψ : B → V × V denotes the incidence map that maps every branch b ∈ B onto

some ordered pair of nodes (v1, v2), i.e., Ψ(b) = (v1, v2) for some v1, v2 ∈ V ,

and we say that b is directed from v1 to v2. Here, v1 is called the initial node65

and v2 the terminal node of b. For every branch b ∈ B, we define an additional

branch −b being directed from the terminal to the initial node of b, that is

Ψ(−b) = (v2, v1), and the set B̃ = {b,−b | b ∈ B}. A tuple (b1, . . . , br) of

branches bi ∈ B̃, i = 1, . . . , r, and Ψ(bi) = (vki , vki+1
) for all i = 1, . . . , r − 1

is called path from vk1 to vkr . A path is called simple, if vk1 , . . . , vkr−1
are70

distinct. A loop is a simple path such that vk1 = vkr . A directed graph G

is connected if for every pair of nodes there exists a path between them. A

subgraph G′ := (V ′, B′,Ψ|B′) of a connected graph G is a graph such that

V ′ ⊂ V , B′ ⊂ B|V ′ := {b ∈ B | Ψ(b) ∈ V ′ × V ′}.
A cutset is a set Bc of branches of a connected graph G such that the graph Gc75

that results when the branches in Bc are deleted from G is disconnected, and

adding any branch in Bc to Gc would result again in a connected graph.

A (spanning) tree in a connected graph is a connected subgraph which contains

all nodes and has no loops. We will also use the term tree to refer to the set of

branches contained in this subgraph. Once a tree has been chosen the branches80

in the tree are called twigs, whereas the remaining ones are called links. The set

of links defines the cotree. Let nη be the number of nodes and nb denote the

number of branches in the connected graph. Then, any tree defines nη−1 twigs

and nb − nη + 1 links. For more details we refer to [11, 12] and to Appendix A.
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3. Model Equations for Electrical Circuits85

We consider lumped electrical circuits containing (possibly nonlinear) resistors,

capacitors, and inductors, as well as voltage sources and current sources. The

modeling of the dynamical behavior of such electrical circuits is based on Kirch-

hoff’s laws together with the constitutive relations for the electrical components.

However, there are different ways to set up the set of model equations. We will90

present four different approaches to model electrical circuits in this section.

3.1. The Modified Nodal Analysis

A common way for the modeling of electrical circuits is the Modified Nodal Anal-

ysis (MNA) [13]. The circuit is modeled as a directed graph whose branches

correspond to the circuit elements and whose nodes correspond to the intercon-

nections of these elements. The topological structure of such a graph with nη

nodes and nb branches can be described by an incidence matrix A0 ∈ Rnη,nb

with entries

aij =





1 if branch j leaves node i,

−1 if branch j enters node i,

0 if branch j is not incident with node i.

If the network graph is connected the rows of A0 are linearly dependent and

we can choose one arbitrary node as reference node. By eliminating the corre-

sponding row in the incidence matrix we obtain the reduced incidence matrix

A ∈ Rnη−1,nb that then has full row rank. Kirchhoff’s current law and Kirch-

hoff’s voltage law takes the form

Aı = 0, ν = AT η, (3)

where ı denotes the vector of all branch currents, ν denotes the vector of all

branch voltages, and η denotes the vector of all node potentials (excepting the

reference node for which the node potential is set to zero). Assuming that the95
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branches are ordered by the type of component, we can split A into element-

related incidence matrices

A =
[
AC AL AR AV AI

]
, (4)

such that AC ∈ Rnη−1,nC , AL ∈ Rnη−1,nL , AR ∈ Rnη−1,nR , AV ∈ Rnη−1,nV , and

AI ∈ Rnη−1,nI . Here, nV denotes the number of voltage sources, nI the number

of current sources, nC the number of capacitors, nL the number of inductors,100

and nR the number of resistors in the circuit, respectively. The vectors ν and ı

are split accordingly into

ν =
[
νTC νTL νTR νTV νTI

]T
, ı =

[
ıTC ıTL ıTR ıTV ıTI

]T
.

Furthermore, we use the constitutive element relations

νL =
d

dt
φ(ıL), ıC =

d

dt
q(νC ), ıR = g(νR ), ıI = I s(t), νV = V s(t) (5)

for inductors, capacitors, resistors, current and voltage sources, where g : RnR →
RnR is the conductance function, q : RnC → RnC is the charge function and

φ : RnL → RnL is the flux function. Here, we restrict to the case of independent105

current and voltage sources described by the source functions I s(t) and V s(t),

respectively. In general, also controlled sources are possible, see [14]. Altogether,

we get a DAE system of the form

AC
d

dt
q(ATC η) +AL ıL +AR g(ATR η) +AV ıV +AI I s = 0, (6a)

d

dt
φ(ıL)−ATLη = 0, (6b)

ATV η −V s = 0. (6c)

The system (6) consists of (nη − 1) + nL + nV equations in the (nη − 1) +

nL + nV unknowns [η, ıL , ıV ] and is also known as the MNA equations of the110

electrical circuit. Note that in (6) we have omitted the dependency on time for

better readability. For details on the constitutive element relations and on the

derivation of the MNA equations, see also [12, 14, 15, 16].

We say that the DAE system (6) is well-posed if it satisfies the following as-

sumptions.115

6



(A1) The circuit contains no V -loops, i.e., AV has full column rank.

(A2) The circuit contains no I -cutsets, i.e., [AC AL AR AV ] has full row rank.

(A3) The charge function q : RnC → RnC is continuously differentiable and the

Jacobian

C (νC ) :=
∂

∂νC
q(νC )

is symmetric and pointwise positive definite.120

(A4) The flux function φ : RnL → RnL is continuously differentiable and the

Jacobian

L(ıL) :=
∂

∂ıL
φ(ıL),

is symmetric and pointwise positive definite.

(A5) The conductance function g : RnR → RnR is continuously differentiable

and the Jacobian

G(νR ) :=
∂

∂νR
g(νR ),

is symmetric and pointwise positive definite.

A V -loop is defined as a loop in the circuit graph that consists only of branches

corresponding to voltage sources. In the same way, a C V -loop means a loop

that consists only of branches corresponding to capacitances and/or voltage125

sources. Likewise, an I -cutset is a cutset in the circuit graph that consists only

of branches corresponding to current sources, and an LI -cutset is a cutset that

consists only of branches corresponding to inductances and/or current sources.

Assumption (A1) implies that there are no short-circuits. In a similar manner,

the occurrence of I -cutsets may lead to contradictions in the Kirchhoff laws130

(source functions may not sum up to zero), which is excluded by assumption

(A2). The assumptions (A3), (A4) and (A5) imply that all circuit elements

are passive, i.e., they do not generate energy.

Due to the special structure of (6), it is possible to determine the index by graph

theoretical considerations.135
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Theorem 3 ([14, 16]). Consider an electrical circuit with circuit equations as

in (6). Assume that the assumptions (A1)-(A5) hold.

1. The following statements are equivalent:

• the MNA equations (6) are of d-index νd = 0;

• the circuit contains neither voltage sources nor R LI -cutsets;140

• nV = 0 and rankAC = nη − 1.

2. The following statements are equivalent:

• the MNA equations (6) are of d-index νd = 1;

• the circuit contains neither LI -cutsets nor C V -loops (except for pure

C -loops);145

• rank[AC , AR , AV ] = nη − 1 and ker[AC , AV ] = kerAC × {0}.

3. The following statements are equivalent:

• the MNA equations (6) are of d-index νd = 2;

• the circuit contains LI -cutsets or C V -loops which are no pure C -

loops;150

• rank[AC , AR , AV ] < nη − 1 or ker[AC , AV ] 6= kerAC × {0}.

In the case that νd = 2 the MNA equations (6) contain hidden constraints

that can be revealed by differentiating certain parts of the system, see [14]. In

particular, the source functions that belong to C V -loops or LI -cutsets have

to be differentiable if the DAE has d-index νd = 2. Note that under the given155

assumptions, the MNA equations (6) will always have a d-index νd ≤ 2.

Remark 4. The formulation using the MNA equations (6) belong to the class of

nodal methods that are characterized by the use of node potentials as fundamen-

tal modal variables together with some branch variables. The MNA equations

(6) are often used in circuit simulation programs (e.g. in SPICE or TITAN), be-160

cause their compact form allows for efficient numerical computations [14, 15, 17].
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3.2. The Modified Loop Analysis

An alternative way to model electrical circuits is the Modified Loop Analysis

(MLA) [18]. Here, in order to describe the topology of the circuit graph, instead

of the incidence matrix A one uses the so-called loop matrix B0 ∈ Rn`,nb with

entries defined as follows

bij =





1 if branch j belongs to loop i and has the same orientation,

−1 if branch j belongs to loop i and has the contrary orientation,

0 if branch j does not belong to loop i.

Here, n` denotes the number of all oriented loops in the directed graph. By

removing all linearly dependent rows in the loop matrix we get the reduced loop

matrix B ∈ Rnb−nη+1,nb of full row rank (for details see Appendix A). Now,

Kirchhoff’s current law and Kirchhoff’s voltage law takes the form

Bν = 0, ı = BT j,

where j(t) ∈ Rnb−nη+1 is the vector of all loop currents. If we split B into

element-related loop matrices

B =
[
BC BL BR BV BI

]

and insert the constitutive element relations we get a DAE system of the form

BLL(BTL j)B
T
L

d

dt
j +BR r(B

T
R j) +BCνC +BI νI +BV V s = 0,

C (νC )
d

dt
νC −BTC j = 0,

BTI j + I s = 0.

(7)

Here, r : RnR → RnR denotes the resistance function 1 and system (7) consists

of nb−nη+1+nC +nI equations in the nb−nη+1+nC +nI unknowns [j, νC , νI ].165

The equations (7) are also known as the MLA equations. Again, the index of

the MLA equations (7) can be determined based on the topology of the circuit.

1If the resistance function r is continuously differentiable with R = ∂
∂ıR

r, then R is the

pointwise inverse of G .
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Theorem 5 ([16]). Consider an electrical circuit with MLA equations (7). As-

sume that (A1)-(A5) hold.

1. The following statements are equivalent:170

• the MLA equations (7) are of d-index νd = 0;

• the circuit contains neither current sources nor C R V -loops;

• nI = 0 and rankBL = nb − nη + 1.

2. The following statements are equivalent:

• the MLA equations (7) are of d-index νd = 1;175

• the circuit contains neither C V -loops nor LI -cutsets (except for pure

L-cutsets);

• rank[BL , BR , BI ] = nb − nη + 1 and ker[BL , BI ] = kerBL × {0}.

3. The following statements are equivalent:

• the MLA equations (7) are of d-index νd = 2;180

• the circuit contains C V -loops or LI -cutsets which are no pure L-

cutsets;

• rank[BL , BR , BI ] < nb − nη + 1 or ker[BL , BI ] 6= kerBL × {0}.

Remark 6. Note that for a given electrical circuit the MNA equations (6) and

the MLA equations (7) may have different d-index depending on the topology of185

the circuit, in particular, if the circuit contains pure C -loops or pure L-cutsets,

cf. Example 6.

3.3. Branch-Oriented Model Equations

In branch-oriented model formulations Kirchhoff’s current and voltage laws are

stated as

Aı = 0, (8)

Bν = 0. (9)
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Together with the constitutive element relations (5) we obtain a DAE system

of the form

C (νC )
d

dt
νC = ıC , (10a)

L(ıL)
d

dt
ıL = νL , (10b)

0 = ıR − g(νR ), (10c)

0 = AC ıC +AR ıR +AL ıL +AI ıI +AV ıV , (10d)

0 = BCνC +BR νR +BLνL +BI νI +BV νV , (10e)

0 = ıI − I s, (10f)

0 = νV −V s, (10g)

which consists of 2nb = 2(nC + nR + nL + nI + nV ) equations in the unknown

branch currents ı∗ and branch voltages ν∗ for ∗ ∈ {C , R , L, I , V}. We will call190

(10) the branch-oriented model equations of the electrical circuit.

Theorem 7. Consider an electrical circuit with branch-oriented model equa-

tions (10). Assume that (A1)-(A5) hold.

1. The following statements are equivalent:

• the branch-oriented model equations (10) are of d-index νd = 1;195

• rank[AR , AC , AV ] = nη − 1 and ker[AC , AV ] = {0};

• rank[BL , BR , BI ] = nb − nη + 1 and ker[BL , BI ] = {0};

• the circuit contains neither LI -cutsets nor C V -loops (including pure

C -loops and pure L-cutsets).

2. The following statements are equivalent:200

• the branch-oriented model equations (10) are of d-index νd = 2;

• rank[AR , AC , AV ] < nη − 1 or ker[AC , AV ] 6= {0};

• rank[BL , BR , BI ] < nb − nη + 1 or ker[BL , BI ] 6= {0};

• the circuit contains LI -cutsets or C V -loops (including pure C -loops

and pure L-cutsets).205

11



Proof. For the geometric index the proof is given in [12]. Except for differences

in the smoothness requirements (which do not apply here) the geometric index

is equal to the differentiation index [10, 19].

Next, we introduce the cutset matrix Q0 of a connected directed graph. The

removal of any cutset in the graph results in a directed graph with two connected210

components C1 and C2. Given a branch in the cutset, one terminal node must

be in C1 and the other one in C2. Thus, we can define two different orientations

in this cutset: from C1 to C2 or from C2 to C1. With this the cutset matrix

Q0 = [qij ] can be defined as follows

qij =





1 if branch j is in cutset i with the same orientation,

−1 if branch j is in cutset i with the opposite orientation,

0 if branch j is not in cutset i.

Again, nη−1 linearly independent rows of Q0 define a reduced cutset matrix Q ∈215

Rnη−1,nb . Furthermore, it holds that BAT = BQT = 0 and imBT = kerA =

kerQ, see Theorem 24. Thus, we have that Q = MA for some nonsingular

matrix M and Kirchhoff’s current law (8) can be replaced by the relation Qı = 0.

In any circuit graph, we can always choose a tree such that all voltage sources

correspond to twigs and all current sources correspond to links. This choice

of a tree leads to a set of fundamental cutsets and fundamental loops (each one

uniquely defined by a twig or a link, respectively), and choosing the orientations

of these cutsets and loops coherently with the orientations of the corresponding

twig or link, the matrices Q and B take the form

Q =
[
Ir −FT

]
, B =

[
F Is

]

for a certain matrix F ∈ Rs,r with s = nb− nη + 1 and r = nη − 1. This results

from the orthogonality property BQT = 0, see Theorem 24 and the details in220

Appendix A. The first block matrix in B and Q is associated with the twigs of

the tree, whereas the second block is associated with the links.
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With this Kirchhoff’s current law (8) and Kirchhoff’s voltage law (9) can be

represented as

ı1 = FT ı2, (11a)

ν2 = −Fν1, (11b)

where the subscript 1 denotes the tree elements while the subscript 2 denotes

the cotree elements. We can split ν1 and ν2 into

ν1 = [νTC1, ν
T
L1, ν

T
V , ν

T
R 1]T ,

consisting of twig capacitors, twig inductors, voltage sources, and twig resistors,225

and

ν2 = [νTL2, ν
T
C2, ν

T
I , ν

T
R 2]T ,

consisting of link inductors, link capacitors, current sources, and link resistors.

Note again that the tree is chosen in such a way that voltage sources always

belong to the tree elements while current sources always belong to the cotree

elements. A similar splitting can be done for the vectors ı1 and ı2 into230

ı1 =
[
ıTC1 ıTL1 ıTV ıTR 1

]T
, ı2 =

[
ıTL2 ıTC2 ıTI ıTR 2

]T
,

and the matrix F into

F =




F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44



. (12)

A proper tree in a connected circuit graph is a tree which contains all voltage

sources and all capacitances as well as (possibly) some resistors, but neither

current sources nor inductors. Likewise, a normal tree in a connected circuit

graph is a tree which contains all voltage sources, no current sources, as many

capacitors as possible, and as few inductors as possible; it may also contain some

resistors. It can be shown that a connected circuit graph has neither C V -loops

nor LI -cutsets if and only if it contains a proper tree, see [12]. Note that due
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to Lemma 27 there exists no loops just defined by twigs, and no cutsets just

defined by links. Thus, in a normal tree the fundamental cutsets defined by each

twig inductor only have link inductors and currents sources. Analogously, in a

normal tree the fundamental loops defined by each link capacitor only involve

twig capacitors and voltage sources. Thus, for a normal tree we have F22 = 0,

F24 = 0 and F42 = 0 in (12). Summarizing these results we get from (10) by

replacing (10d),(10e) by (11a),(11b) that

C (νC1, νC2)
d

dt


νC1

νC2


 =


ıC1

ıC2


 ,

L(ıL1, ıL2)
d

dt


ıL1

ıL2


 =


νL1

νL2


 ,

0 =


ıR 1

ıR 2


− g(νR 1, νR 2),




νL2

νC2

νI

νR 2




= −




F11 F12 F13 F14

F21 0 F23 0

F31 F32 F33 F34

F41 0 F43 F44







νC1

νL1

νV

νR 1



,




ıC1

ıL1

ıV

ıR 1




=




FT11 FT21 FT31 FT41

FT12 0 FT32 0

FT13 FT23 FT33 FT43

FT14 0 FT34 FT44







ıL2

ıC2

ıI

ıR 2



,

0 = νV −V s

0 = ıI − I s.

(13)

Note that the DAEs (10) and (13) have the same d-index, since the performed

transformations do not change the analytical properties of the system. Thus,

the statements of Theorem 7 hold also for (13).
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3.4. Port-Hamiltonian Circuit Equations

If we consider the electrical circuit as a power-based network model of inter-235

connected subsystems that mutually influence each other via energy flow, this

directly leads us to the starting point of port-Hamiltonian systems theory, see

[20, 21]. The formulation of a physical system as port-Hamiltonian system has

many advantages as e.g. the preservation of energy, the preservation of passivity

or stability, see e.g. [21].240

Here, we consider linear port-Hamiltonian DAEs (pHDAE) of the form

Eẋ = (J −R)Qx− EKx+Bu,

y = BTQx,
(14)

where J,R,K ∈ C(I,Rn,n), E,Q ∈ C1(I,Rn,n) with R = RT ≥ 0, and ETQ =

QTE ≥ 0 pointwise on I, satisfying

d

dt
(QTE) = QT (EK − JQ) + (EK − JQ)TQ, (15)

as well as B ∈ C(I,Rn,p). Note that also more general formulations are possi-

ble, see [22, 23]. Here, u denotes the p-dimensional input of the system and y

denotes the p-dimensional output of the system; together they define the (ex-

ternal) ports. The matrix J can be seen as the interconnection matrix, R is the

resistance matrix, and ETQ describes the total energy of the system represented245

by the Hamiltonian H(x) = 1
2x

TETQx. The matrix K is required to describe

equivalence transformations in the time-varying setting, for constant coefficients

one may set K to zero.

Remark 8. Kirchhoff’s current law and Kirchhoff’s voltage law define a (sep-

arable) Dirac structure D = {(ı, ν)|Aı = 0, ν = AT η for some η ∈ Rn} that250

describes the underlying geometric structure of the port-Hamiltonian DAE. The

currents through the electrical components are the flows and the voltages across

the electrical components are the efforts defining the port variables of the Dirac

structure.
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In order to formulate the circuit equations as a pHDAE, we start by considering

the system of equations consisting of Kirchhoff laws (3) together with the con-

stitutive element relations (5). We insert the relations νV = V s, νL = ATLη and

ıI = I s, and, assuming linear element relations for the resistances, capacitances

and inductances, a reordering of the equations yields

C (t)
d

dt
νC = ıC , (16a)

L(t)
d

dt
ıL = ATLη, (16b)

0 = −νC +ATC η, (16c)

0 = −νR +ATR η, (16d)

0 = ATV η −V s, (16e)

0 = ıR −G(t)νR , (16f)

0 = −AL ıL −AC ıC −AR ıR −AV ıV −AI I s, (16g)

0 = −νI +ATI η. (16h)

Considering the last equation (16h) as an output equation, we obtain a pHDAE

of the form (14) with

E =




C (t) 0 0 0 0 0 0

0 L(t) 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




, R =




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 G(t) 0

0 0 0 0 0 0 0




,

J =




0 0 I 0 0 0 0

0 0 0 0 0 0 ATL

−I 0 0 0 0 0 ATC

0 0 0 0 0 −I ATR

0 0 0 0 0 0 ATV

0 0 0 I 0 0 0

0 −AL −AC −AR −AV 0 0




, B =




0 0

0 0

0 0

0 0

−I 0

0 0

0 −AI




, Q = I,
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and with state variables255

x = [νTC , ı
T
L , ı

T
C , ı

T
R , ı

T
V , ν

T
R , η

T ]T ,

and (external) port variables

u =


V s

I s


 , y =


−ıV
−νI


 .

The Hamiltonian is given by

H(x) =
1

2
xTETQx =

1

2
νTC C (t)νC +

1

2
ıTL L(t)ıL

and describes the total energy of the system. In the following, we call system

(16) the port-Hamiltonian Circuit equations (pHC equations).

Remark 9. Condition (15) is met by defining K = diag(K11,K22, 0), where

K11 = KT
11 and K22 = KT

22 are given by the unique solutions of the matrix

Lyapunov equations

CK11 +K11C = Ċ,

LK22 +K22L = L̇.

Since we can always find a variable transformation for x that eliminates K in

(14), we can omit these parts in the formulation of the port-Hamiltonian circuit260

equations (16) (cf. also [22]).

Theorem 10. Consider an electrical circuit with pHC equations (16). Assume

that (A1)-(A5) hold.

1. The following statements are equivalent:

• the pHC equations (16) are of d-index νd = 1;265

• rank[AR , AC , AV ] = nη − 1 and ker[AC , AV ] = {0};

• the circuit contains neither LI -cutsets nor C V -loops (including pure

C -loops).

2. The following statements are equivalent:
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• the pHC equations (16) are of d-index νd = 2;270

• rank[AR , AC , AV ] < nη − 1 or ker[AC , AV ] 6= {0};

• the circuit contains LI -cutsets or C V -loops.

In order to prove Theorem 10 we make use of the following Lemma.

Lemma 11. Let A ∈ Rn1,m, B ∈ Rn1,n2 , and C ∈ Rm,m be symmetric positive

definite. Then for275

M =


ACA

T B

−BT 0




it holds that kerM = ker [A,B]T × kerB. In particular, M is invertible if and

only if ker [A,B]T = {0} and kerB = {0}.

Proof. For v ∈ ker [A,B]T × kerB it follows immediately that v ∈ kerM . For

the converse, let v ∈ kerM and partition v =


v1

v2


 according to the block

structure of M . Then280

vTMv = vT1 ACA
T v1 + v1Bv2 − vT2 BT v1 = 0 ⇐⇒ vT1 ACA

T v1 = 0.

Thus, v1 ∈ kerAT and from Mv = 0 we get that Bv2 = 0 and −BT v1 = 0, and

consequently v ∈ ker [A,B]T × kerB.

In the following, we denote by QC , QV−C , QR−C V , QV , Q̄C , and Q̄V−C projec-

tors onto kerATC , kerATVQC , kerATR QCQV−C , kerATV , kerAC , and kerQTCAV ,

respectively. The complementary projectors will be denoted by P := I − Q,285

with the corresponding sub-index. In order to shorten notations, we use the

abbreviation QC R V := QCQV−CQR−C V .
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Lemma 12. [14] If C , L and G are positive definite, then the matrices

H1 := AC CATC +QTCQC

H2 := QTCAVA
T
VQC +QTV−CQV−C

H3 := ATVQCQ
T
CAV + Q̄TV−C Q̄V−C

H4 := QTV−CQ
T
CAR GATR QCQV−C +QTR−C VQR−C V

H5 := QTC R VALL−1
ATLQC R V + PTC R V P

T
C R V

H6 := Q̄TV−CA
T
VH

−1
1 AV Q̄V−C + P̄TV−C P̄V−C

H7 := ATCAC + Q̄TC Q̄C

are nonsingular.

Proof of Theorem 10. Omitting the output equations, the pHC equations (16)

are of the form

E11 0

0 0




ẋ1

ẋ2


 =


 0 A12

−AT12 A22




x1

x2


+


 0

f2


 , (17)

where E11 is (pointwise) nonsingular. The DAE (17) is of d-index 1 if and only

if A22 is invertible. In this case, differentiation of the constraints yields

0 = −AT12ẋ1 +A22ẋ2 + ḟ2

=⇒ ẋ2 = A−1
22 A

T
12ẋ1 −A−1

22 ḟ2 = A−1
22 A

T
12E

−1
11 A12x2 −A−1

22 ḟ2.

It holds that

A22 =




0 0 0 0 ATC

0 0 0 −I ATR

0 0 0 0 ATV

0 I 0 −G 0

−AC −AR −AV 0 0




∼




0 −I 0 0 0

I −G 0 0 0

0 0 0 0 ATC

0 0 0 0 ATV

0 0 −AC −AV −ARGATR




by basic row and column transformations. Due to Lemma 11, the matrix A22

is invertible if and only if

ker[AR, AC , AV ]T = {0} and ker[AC , AV ] = {0},
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i.e., if and only if the matrix [AC AR AV ] has full row rank and


A

T
C

ATV


 has

full column rank. Due to Lemma 26 the first condition is equivalent to the290

absence of LI -cutsets in the circuit, while the second condition is equivalent to

the absence of C V -loops (including pure C -loops).

If the matrix A22 is not invertible, then there are hidden constraints contained

in the system. We follow the lines of the proof of Theorem 5.1 in [14]. If we

differentiate the algebraic constraints in (16) we get

0 = − d

dt
νC +ATC

d

dt
η,

0 = − d

dt
νR +ATR

d

dt
η,

0 = ATV
d

dt
η +

d

dt
V s,

0 =
d

dt
ıR −G d

dt
νR ,

0 = −AC
d

dt
ıC −AR

d

dt
ıR −AI

d

dt
I s −AV

d

dt
ıV −AL

d

dt
ıL .

Inserting the expression for d
dtνC and d

dt ıL from (16a) and (16b), as well as

d
dt ıR = GATR

d
dtη yields

0 = −C−1
ıC +ATC

d

dt
η,

0 = ATV
d

dt
η +

d

dt
V s,

0 = −AC
d

dt
ıC −AR GA

T
R

d

dt
η −AI

d

dt
I s −AV

d

dt
ıV −ALL−1

ATLη.

(18)

In order to extract the underlying ODE, we need to derive expressions for d
dt ıC ,

d
dt ıV and d

dtη from (18). Then we also get representations for d
dt ıR and d

dtνR

from the above relations. We consider the following splitting

d

dt
η = PC

d

dt
η +QCPV−C

d

dt
η +QCQV−CPR−C V

d

dt
η +QC R V

d

dt
η

=:
d

dt
η1 +

d

dt
η2 +

d

dt
η3 +

d

dt
η4 = η̇1 + η̇2 + η̇3 + η̇4,

d

dt
ıV = P̄V−C

d

dt
ıV + Q̄V−C

d

dt
ıV =:

d

dt
ı1 +

d

dt
ı2,

d

dt
ıC = P̄C−V

d

dt
ıC + Q̄C−V

d

dt
ıC =:

d

dt
ı3 +

d

dt
ı4,
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giving

0 = −C−1
ıC +ATC η̇1, (19a)

0 = ATV (η̇1 + η̇2) + V̇ s, (19b)

0 = −AC
d

dt
ıC −AR GATR (η̇1 + η̇2 + η̇3)−AI İ s −AV

d

dt
ıV −ALL−1

ATLη.

(19c)

Multiplication of (19c) with QTC , QTV−CQ
T
C and QTC R V yields

0 = −QTC
[
AR GATR (η̇1 + η̇2 + η̇3) +AI İ s +AV

d

dt
ıV +ALL−1

ATLη

]
, (20a)

0 = −QTV−CQ
T
C

[
AR GATR (η̇1 + η̇2 + η̇3) +AI İ s +ALL−1

ATLη
]
, (20b)

0 = −QTC R V

[
AI İ s +ALL−1

ATLη
]
. (20c)

If we multiply (19a) with H−1
1 AC C we get

η̇1 = PC
d

dt
η = H−1

1 AC ıC , (21)

and inserting (21) into (19b) gives

0 = ATV (H−1
1 AC ıC + η̇2) + V̇ s. (22)

Moreover, multiplication with H−1
2 QTCAV yields

0 = H−1
2 QTCAVA

T
V (H−1

1 AC ıC + η̇2) + V̇ s,

giving PV−C
d
dtη = f(ıC , V̇ s) as a function depending on ıC and V̇ s, such that

η̇2 = QCf(ıC , V̇ s). Inserting the expressions for η̇1 and η̇2 into (20b) and multi-

plication of the resulting system with H−1
4 gives a representation of PR−C V

d
dtη295

such that the multiplication with QCQV−C gives η̇3 = g(η, ıC , V̇ s, İ s) as func-

tion of η, ıC , V̇ s, İ s. Furthermore, inserting the expressions for η̇1, η̇2 and η̇3

into (20a) and multiplying the resulting equation with H−1
3 ATVQC yields a rep-

resentation for P̄V−C
d
dt ıV = d

dt ı1 as function of η, ıC , V̇ s, I s.
Multiplication of (22) with Q̄TV−C yields

0 = Q̄TV−CA
T
VH

−1
1 AC ıC + Q̄TV−C V̇ s. (23)

21



If we differentiate (20c) and (23) a second time, we get

0 = −QTC R V

[
AI Ï s +ALL−1

ATL (η̇1 + η̇2 + η̇3 + η̇4)
]
, (24)

0 = Q̄TV−CA
T
VH

−1
1 AC

d

dt
ıC + Q̄TV−C V̈ s. (25)

Inserting the expressions for η̇1, η̇2 and η̇3 and multiplying (24) with H−1
5 gives

0 = −H−1
5 QTC R VALL−1

ATL η̇4 + f̃(ıC , η, V̇ s, İ s, Ï s),

which gives an expression for η̇4 as function of ıC , η, V̇ s, İ s, Ï s. Multiplication

of (25) with H−1
6 yields

0 = H−1
6 Q̄TV−CA

T
VH

−1
1 AC

d

dt
ıC +H−1

6 Q̄TV−C V̈ s,

and by inserting AC
d
dt ıC from (19c) we get d

dt ı2 as function of ıC , η, V̇ s, V̈ s, İ s.
Inserting the obtained expressions for η̇1, η̇2, η̇3, d

dt ı1 and d
dt ı2 into (19c) yields

AC (P̄C
d

dt
ıC + Q̄C

d

dt
ıC ) = F (η, ıC , V̇ s, İ s, V̈ s).

Finally, multiplication with H−1
7 ATC gives

P̄C
d

dt
ıC = H−1

7 ATCF (η, ıC , V̇ s, İ s, V̈ s),

and from the derivatives of (19a) and (21), and inserting the expression for

P̄C
d
dt ıC we get

Q̄C
d

dt
ıC = [CATCH−1

1 AC − I]H−1
7 ATCF (η, ıC , V̇ s, İ s, V̈ s).

300

Remark 13. Equation (20c) is a hidden constraint on η (in particular on η4)

and corresponds to the hidden constraints of the MNA equations (29) in case of

the existence of LI -cutsets, see [14]. In particular, QC R V = 0 if and only if the

circuit does not contain LI -cutsets. Equation (23) poses a hidden constraint on

ıC and it holds that Q̄V−C = 0 if and only if the circuit contains no C V -loops.305

Remark 14. In contrast to the MNA formulation (6) or the MLA formulation

(7) the pHC formulation (16) will never be a DAE of d-index νd = 0, i.e., it will
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never take the form of an ODE. Otherwise, the conditions for d-index νd = 1

and νd = 2 are similar to the conditions for the MNA equation (6) with the

exception of pure C -loops. If a circuit contains no LI -cutsets and only pure310

C -loops the MNA equations (6) are of d-index νd = 1 while the pHC equations

(16) are of d-index νd = 2 (cf. Example 6).

4. Structural Analysis of the Circuit Equations

For the analysis and regularization of DAEs structural approaches are widely

used in equation-based modeling environments. In this paper, we focus on the315

Signature method (Σ-method) [6] for the structural analysis of DAEs. Another

popular structural method is the Pantelides algorithm [5] that is related to the

Σ-method, see [6]. First, we will review the basic steps of the Σ-method. More

details can be found in [6]. Then, in Sections 4.2,4.3,4.4 and 4.5 we apply the

Σ-method to the different formulations of the circuit equations derived in the320

previous sections. Although, the four formulations describe the same dynamical

behavior of the circuit, there are small differences in the analytical properties (as

e.g. the index of the system) and, as we will see, there may be huge differences

when it comes to the applicability of the Σ-method. Some of the formulations are

suited for a structural analysis while others are not depending on the topology325

of the circuit.

4.1. The Signature Method for DAEs

The Σ-method can be applied to regular nonlinear DAEs of arbitrary high order

p of the form

F (t, x, ẋ, . . . , x(p)) = 0, (26)

with F : I× Rn × · · · × Rn → Rn sufficiently smooth. We denote by Fi the ith

component of the vector-valued function F and by xj the jth component of the

vector x. Then, the Σ-method consists of the following steps:330

23



1. Building the signature matrix Σ = [σij ]i,j=1,...,n with

σij =





highest order of derivative of xj in Fi,

−∞ if xj does not occur in Fi.

2. Finding a highest value transversal (HVT) of Σ, i.e., a transversal T of Σ

T = {(1, j1), (2, j2), . . . , (n, jn)},

where (j1, . . . , jn) is a permutation of (1, . . . , n), with maximal value

Val(T ) :=
∑

(i,j)∈T
σij .

3. Computing the offset vectors c = [ci]i=1,...,n and d = [dj ]j=1,...,n with

ci ≥ 0, dj ≥ 0 such that

dj − ci ≥ σij for all i, j = 1, . . . , n, (27a)

dj − ci = σij for all (i, j) ∈ T. (27b)

4. Forming the Σ-Jacobian J = [Jij ]i,j=1,...,n, with

Jij :=





∂Fi

∂x
(σij)

j

if dj − ci = σij ,

0 otherwise.

5. Building the reduced derivative array

F(t,X ) =




F1(t, x, ẋ, . . . , x(p))

d
dtF1(t, x, ẋ, . . . , x(p))

...

dc1

dtc1 F1(t, x, ẋ, . . . , x(p))
...

Fn(t, x, ẋ, . . . , x(p))

d
dtFn(t, x, ẋ, . . . , x(p))

...

dcn

dtcn Fn(t, x, ẋ, . . . , x(p))




= 0, (28)
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with

X =
[
x1 ẋ1 . . . x

(d1)
1 . . . xn ẋn . . . x

(dn)
n

]T
.

6. Success check: if F(t,X ) = 0, considered locally as an algebraic system,

has a solution (t∗,X ∗) ∈ I× Rn+
∑n
i=1 di and J is nonsingular at (t∗,X ∗),

then (t∗,X ∗) is a consistent point and the method succeeds.

If the Σ-method succeeds, it allows to determine the structural index of the DAE335

as

νS := max
i
ci +





0 if all dj > 0,

1 if some dj = 0,

and Val(Σ), defined as the value of the highest value transversal T , corresponds

to the number of degrees of freedom of the system. We call J the Σ-Jacobian

since it is in general not equal to the Jacobian ∂F
∂x or ∂F

∂ẋ , but defined by the offset

vectors. Note that the success check of the Σ-method is performed locally at a340

fixed point (t∗,X ∗), such that the result may hold only locally in a neighborhood

of a consistent point. The HVT defines a mapping of maximal value between

variables and equations, but it is usually not uniquely determined. A HVT,

as well as the offset vectors, can be computed by solving a linear assignment

problem (LAP), see [6]. That means, Σ is the matrix of the LAP, where each345

assignment is specified by a transversal. This LAP (as a special kind of a linear

programming problem) also has a dual problem, and the offset vectors c and d

are the corresponding solutions of the dual problem. Note that the offset vectors

c and d are not uniquely defined by the conditions (27), since for any feasible

solution c and d, also the vectors [ci + θ]i and [dj + θ]j form a solution for any350

θ > 0. However, since there exists a unique element-wise smallest solution of

the dual problem, these so-called canonical offsets are uniquely determined and

independent of the chosen HVT, see [6, Theorem 3.6].

The crucial step in the Σ-method is the success check, i.e., the verification of

regularity of the Σ-Jacobian at a consistent point. Systems for which the Σ-355

Jacobian is singular for all points (t,X ) that solve the enlarged system (28), or
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systems for which there exists no HVT, are called structurally singular. Accord-

ingly, we call systems for which the Σ-method succeeds structurally regular.

It has been shown in [6] that the Σ-method works successfully for certain (struc-

tured) classes of DAE systems, among others for systems in Hessenberg form360

including semi-explicit systems of d-index 2 and the equations of motion of

constrained multibody systems of d-index 3. For such systems the Σ-method

succeeds (locally at a consistent point) with νS = νd. In general, if the Σ-

method succeeds, the structural index gives an upper bound for the d-index

of the system, see [6], and the obtained structural information can be used to365

determine a regularization of the system, see [24]. However, there are also cases

where the Σ-method fails, see [8, 9]. In particular, this can happen for circuit

equations as we will see in the following sections.

4.2. The Signature Method for the MNA equations

We want to apply the Σ-method to the MNA equations (6). To start with, we370

consider the following two examples.

Example 1. Consider the circuit given in Figure 1 consisting of a current

source with source function I s, two inductors with inductances L1 and L2, a

capacitor with capacitance C and a resistor with conductance G . The directed

graph corresponding to the circuit is given in Figure 2.

G L2

I s
C

L1

2
3

4

1

Figure 1: LRCI-circuit

1

32 4

L2G

C L1

I s

Figure 2: Graph for LRCI-circuit

375

26



(a) If we select node 1 as reference node, the reduced incidence matrix is given

by

A = [AR , AC , AL , AI ] =




1 1 0 0 −1

0 −1 1 0 0

0 0 −1 −1 1




and the MNA equations are given by

0 = C (η̇2 − η̇3) + Gη2 − I s,

0 = −C (η̇2 − η̇3) + ıL1
,

0 = −ıL1
− ıL2

+ I s,

0 = L1 ı̇L1
− (η3 − η4),

0 = L2 ı̇L2
+ η4,

with unknowns x = [η2, η3, η4, ıL1
, ıL2

]T . The signature matrix corre-

sponding to this DAE system is given by

Σ =




1 1 − − −
1 1 − 0 −
− − − 0 0

− 0 0 1 −
− − 0 − 1




,

where one possible HVT is marked by gray boxes. Here, the entry −380

stands for −∞. The canonical offset vectors are c = [0, 0, 1, 0, 0] and

d = [1, 1, 0, 1, 1], and Val(Σ) = 3. The corresponding Σ-Jacobian is given

by

J =




C −C 0 0 0

−C C 0 0 0

0 0 0 −1 −1

0 0 1 L1 0

0 0 1 0 L2




,

and we see immediately that the success check of the Σ-method fails, since

J is singular.385
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(b) If we select node 2 as reference node, the reduced incidence matrix is given

by

A = [AR , AC , AL , AI ] =




−1 0 0 1 0

0 −1 1 0 0

0 0 −1 −1 1




and, in this case, the MNA equations take the form

0 = Gη1 + ıL2
,

0 = C η̇3 + ıL1
,

0 = −ıL1
− ıL2

+ I s,

0 = L1 ı̇L1
− η3 + η4,

0 = L2 ı̇L2
− η1 + η4,

with unknowns x = [η1, η3, η4, ıL1
, ıL2

]T . The signature matrix and Σ-

Jacobian are given by

Σ =




0 − − − 0

− 1 − 0 −
− − − 0 0

− 0 0 1 −
0 − 0 − 1




, J =




G 0 0 0 0

0 C 0 0 0

0 0 0 −1 −1

0 0 1 L1 0

−1 0 1 0 L2




with canonical offsets c = [0, 0, 1, 0, 0] and d = [0, 1, 0, 1, 1], and Val(Σ) =390

2. Now, the Σ-method succeeds, since J is regular, and the structural

index is determined to be νS = 2.

(c) If we select node 3 as reference node, the MNA equations take the form

0 = −G(−η1 + η2) + ıL2
,

0 = C η̇2 + G(−η1 + η2)− I s,

0 = −ıL1
− ıL2

+ I s,

0 = L1 ı̇L1
+ η4,

0 = L2 ı̇L2
− η1 + η4,

28



with unknowns x = [η1, η2, η4, ıL1
, ıL2

]T . The signature matrix and Σ-

Jacobian are given by

Σ =




0 0 − − 0

0 1 − − −
− − − 0 0

− − 0 1 −
0 − 0 − 1




, J =




G 0 0 0 0

−G C 0 0 0

0 0 0 −1 −1

0 0 1 L1 0

−1 0 1 0 L2




with canonical offsets c = [0, 0, 1, 0, 0] and d = [0, 1, 0, 1, 1] and Val(Σ) = 2.395

Again, the Σ-method succeeds with νS = 2.

(d) If we select node 4 as reference node, the MNA equations take the form

0 = −G(−η1 + η2) + ıL2
,

0 = C (η̇2 − η̇3) + G(−η1 + η2)− I s,

0 = −C (η̇2 − η̇3) + ıL1
,

0 = L1 ı̇L1
− η3,

0 = L2 ı̇L2
− η1,

with unknowns x = [η1, η2, η3, ıL1
, ıL2

]T . The signature matrix and Σ-

Jacobian are given by

Σ =




0 0 − − 0

0 1 1 − −
− 1 1 0 −
− − 0 1 −
0 − − − 1




, J =




G 0 0 0 0

−G C −C 0 0

0 −C C 0 0

0 0 0 L1 0

−1 0 0 0 L2




with canonical offsets c = [0, 0, 0, 0, 0] and d = [0, 1, 1, 1, 1] and Val(Σ) = 4.

In this case, the success check fails due to the singularity of the Σ-Jacobian.400

/

In Example 1 we can observe that failure or success of the Σ-method can depend

on the selection of the reference node. If we select node 1 or node 4, the Σ-

method fails due to a singular Σ-Jacobian, if we select node 2 or node 3, the
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Σ-method succeeds with νS = 2. Note that due to the occurrence of an LI -405

cutset in the circuit given in Example 1, the MNA equations have d-index νd = 2

and this analytical property is independent of the chosen reference node.

Example 2. Consider the circuit given in Figure 3 with corresponding circuit

graph given in Figure 4. If we select node 1 as reference node, we get the reduced

L

G1

I s

G2

2

1 3

4

Figure 3: RLI-circuit

1

2 4

3
G

1

L I s

G
2

Figure 4: Graph for RLI-circuit

incidence matrix410

A = [AR , AL , AI ] =




0 −1 1 0

−1 0 0 1

0 1 0 −1




and the MNA equations take the form

0 = −G2(−η2 + η4) + ıL ,

0 = G1η3 + I s,

0 = G2(−η2 + η4)− I s,

0 = L ı̇L − η2.

The corresponding signature matrix and Σ-Jacobian are given by

Σ =




0 − 0 0

− 0 − −
0 − 0 −
0 − − 1



, J =




G2 0 −G2 0

0 G1 0 0

−G2 0 G2 0

−1 0 0 L




with canonical offsets c = [0, 0, 0, 0] and d = [0, 0, 0, 1] and Val(Σ) = 1. The

success check of the Σ-method fails due to singularity of the Σ-Jacobian. If we
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select node 2,3 or 4 as reference node, the Σ-method also fails due to singularity

of J. /415

Example 2 shows that there are cases where the Σ-method will always fail,

independently of the selection of the reference node. Note again, that the circuit

given in Example 2 contains an LI-cutset and, thus, the MNA equations have

d-index νd = 2.

In order to explain the problems that show up in the examples we first rewrite

the MNA equations (6) in the following form

AC C (ATC η)ATC
d

dt
η +AL ıL +AR g(ATR η) +AV ıV +AI I s = 0,

L(ıL)
d

dt
ıL −ATLη = 0,

ATV η −V s = 0,

(29)

using the definition of the Jacobians C (νC ) and L(ıL) in (A3) and (A4). For

such a system, we get a signature matrix of the form

Σ =




ΣCG ΣAL ΣAV

ΣTAL
ΣL −

ΣTAV
− −


 , (30)

where ΣCG = ΣTCG is of size nη−1×nη−1 with entries in {−∞, 0, 1}, ΣL = ΣTL

is of size nL × nL with entries in {−∞, 0, 1}, ΣAL is of size nη − 1 × nL with

entries in {−∞, 0} and ΣAV is of size nη − 1× nV with entries in {−∞, 0}. The

corresponding Σ-Jacobian has a block structure according to (30) with

J =




J11 J12 J13

J21 J22 0

J31 0 0


 . (31)

Note that due to the symmetry of Σ, also the positions of the HVT will be

symmetric on Σ, i.e., if (i, j) ∈ T , then also (j, i) ∈ T . In contrast to (30) the

Σ-Jacobian (31) is not symmetric. If nL = 0 or nV = 0, then some blocks in (30)
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and (31) may be void. Furthermore, under assumption (A4) we know that

ΣL =




1 ≤ 1

. . .

≤ 1 1


 ,

i.e., there are ones on the diagonal and entries ≤ 1 (i.e., −∞, 0 or 1) on the420

off-diagonal of ΣL.

Case 1: no capacitances and no voltage sources. At first, we assume that nC = 0

and nV = 0 (cf. Example 2). In this case, the MNA equations (29) take the

form

AR g(ATR η) +AL ıL +AI I s = 0,

L(ıL)
d

dt
ıL −ATLη = 0,

(32)

and the signature matrix (30) reduces to

Σ =


ΣG ΣAL

ΣTAL
ΣL


 , (33)

with ΣG = ΣTG of size nη − 1× nη − 1 and entries in {−∞, 0}.
If we assume that we can find a HVT on the diagonal of (33), we get the

canonical offsets c = [0, . . . , 0] and d = [0, . . . , 0, 1 . . . , 1] and the Σ-Jacobian

J =


AR GATR 0

−ATL L


 .

Thus, J is nonsingular if and only if AR GATR is nonsingular, and in this case the425

Σ-method will succeed with structural index νS = 1. Due to (A5) the matrix

AR GATR is nonsingular if and only if ATR has full column rank. In particular,

the following statements are equivalent (see [14, 16]):

• AR GATR is nonsingular;

• kerATR = {0};430
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• the graph corresponding to the circuit contains no C LV I -cutsets. 1

Note that C LV I -cutsets include LI -cutsets as special case. Thus, the Σ-

method will fail for systems of the form (32) and HVT on the diagonal whenever

νd > 1. But also pure I -cutsets (which are excluded by Assumption (A2)) or

pure L-cutsets will lead to failure of the Σ-method in this setting.435

If there exists no HVT on the diagonal (but the system is structurally well-

posed), then necessarily AR GATR contains zero rows/columns. In this case, we

can reorder the rows of AR such that

ΠR AR =


ÃR

0


 r̃

nη − 1− r̃

where ΠR is a permutation such that ÃR contains no zero rows. Then, the

corresponding permutation of (32) yields

ÃR

0


 g(ÃTR η̃1) +


ÃL,1

ÃL,2


 ıL +


ÃI ,1

ÃI ,2


 I s = 0,

L(ıL)
d

dt
ıL −

[
ÃTL,1 ÃTL,2

]

η̃1

η̃2


 = 0,

(34)

where440

ΠR η =:


η̃1

η̃2


 , ΠR AL =:


ÃL,1

ÃL,2


 ΠR AI =:


ÃI ,1

ÃI ,2


 .

The Σ-matrix for this permuted system takes the form

Σ =




Σ̃G − ΣÃL,1

− − ΣÃL,2

ΣT
ÃL,1

ΣT
ÃL,2

ΣL




r̃

nη − 1− r̃
nL

with Σ̃G = Σ̃TG of size r̃ × r̃ and entries in {−∞, 0} having zero-entries on the

diagonal (which can be assumed w.l.o.g due to Assumption (A5)). Since the

1Note that ATR can only be of full column rank if nη − 1 ≤ nR . If nη − 1 > nR , then there

will be C LV I -cutsets in the circuit.
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system is structurally well-posed, there must be s̃ := nη − 1 − r̃ positions for

the HVT be taken from the block ΣÃL,2
, which can w.l.o.g. assumed to be

positioned on the diagonal of the first s̃-by-s̃ block of ΣÃL,2
. This results in a

Σ-matrix of the form




0 ≤ 0

. . . − ≤ 0

≤ 0 0

0

− − . . . ≤ 0

0

0 1

. . .
. . . ≤ 1

≤ 0 0 1

1

≤ 0 ≤ 1
. . .

1




with canonical offsets

c =
[

0, . . . , 0 1, . . . , 1 0, . . . , 0
]
, d =

[
0, . . . , 0 0, . . . , 0 1, . . . , 1

]
,

and the Σ-Jacobian takes the form

J =




ÃR GÃTR 0 0

0 0 −ÃL,2

−ÃTL,1 −ÃTL,2 L


 .

We see that J can only be nonsingular if ÃR GÃTR is nonsingular. As before,

ÃR GÃTR is nonsingular if and only if ker ÃTR = {0} or, equivalently, if the

subgraph consisting of the nodes corresponding to ÃR contains no C LV I -

cutsets.
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Case 2: no resistors and no voltage sources. Next we assume that nR = 0 and

nV = 0. In this case, the MNA equations (29) take the form

AC C (ATC η)ATC
d

dt
η +AL iL +AI Is = 0,

L(iL)
d

dt
iL −ATLη = 0,

(35)

and the signature matrix (30) reduces to

Σ =


 ΣC ΣAL

ΣTAL
ΣL


 ,

where ΣC = ΣTC is of size nη − 1× nη − 1 with entries in {−∞, 0, 1}. Assuming445

that there is a HVT on the diagonal we get

Σ =




1

. . . ≤ 0

1

1

≤ 0
. . .

1




,

with c = [0, . . . , 0], d = [1, . . . , 1] and the Σ-Jacobian takes the form

J =


AC CATC 0

0 L


 .

We see that J is nonsingular if and only if AC CATC is nonsingular. Since C is

assumed to be symmetric positive definite, AC CATC will be nonsingular if and

only if ATC has full column rank. Similar as before the following statements are

equivalent (see [14, 16]):450

• AC CATC is nonsingular;

• kerATC = {0};

• the graph corresponding to the circuit contains no R LV I -cutsets.2

2Similar as before, ATC can only be of full column rank if nη − 1 ≤ nC .
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Again, LI -cutsets are included as special case. Thus, the Σ-method will fail for

the MNA equations (35) whenever νd > 1. But, again, also pure I -cutsets or455

pure L-cutsets will lead to a singular Σ-Jacobian in this setting.

If there is no HVT on the diagonal, then AC CATC contains zero rows/columns

and we can proceed in a similar manner as before using permutations of the

system such that

ΠCAC =


ÃC

0


 . (36)

In this case the success check will fail whenever there are R LV I -cutsets (in

particular LI -cutsets) in the subgraph consisting of the nodes corresponding to

ÃC .

Remark 15. We have seen that AR GATR and AC CATC can be singular depend-460

ing on the topology of the circuit. However, from Example 1 (cases (b) and

(c)) we can observe that AR GATR and AC CATC can both be singular and nev-

ertheless the Σ-method can succeed with νS = νd, even for higher index DAEs.

On the other hand, singular blocks in the Σ-Jacobian can also result from a

combination of the matrices AR GATR and AC CATC as can be seen in Example465

1, case (d).

The previous discussion might suggest that the failure of the Σ-method is related

to the occurrence of LI -cutsets. That this is not the case can be seen in the

following example.

Example 3. Consider the circuit given in Figure 5 with corresponding directed

graph given in Figure 6. If we select node 3 as reference node, the MNA equa-

tions take the form



C 1 + C 2 −C 2 −C 1

−C 2 C 2 0

−C 1 0 C 1







η̇1

η̇2

η̇4


+




G1 0 0

0 G2 0

0 0 0







η1

η2

η4


+




0

0

−1


 I s = 0,
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and the signature matrix and Σ-Jacobian are given by470

Σ =




1 1 1

1 1 −
1 − 1


 , J =




C 1 + C 2 −C 2 −C 1

−C 2 C 2 0

−C 1 0 C 1


 .

The success check fails, since J is singular. If we choose one of the other nodes as

reference node, then the Σ-method succeeds with structural index νS = 1 = νd.

/

In Example 3 we have nV = 0 and nL = 0 such that (30) reduces to Σ = ΣCG.

Now, if AC CATC is singular (in Example 3 due to the occurrence of an R I -475

cutset), and as reference a node is chosen that is not adjacent to a capacitor, we

get J = AC CATC and the Σ-method fails. Example 3 shows that the Σ-method

can fail also for MNA equations (29) of d-index νd = 1.

We might consider more general forms of the MNA equations (29), but still,

combining the ideas of Case 1 and Case 2 above, singular blocks of the form480

ÃRGÃ
T
R or ÃCCÃ

T
C can occur, corresponding to the occurrence of C LV I -

cutsets or R LV I -cutsets in certain (sub)graphs. A complete characterization

of all circuit configurations that lead to failure of the Σ-method for the MNA

equations (29) has proven to be quite tedious. Since we will see later on that the

Σ-method will always succeed for another formulation of the circuit equations485

we refrain from presenting a more detailed discussion of circuit topologies for

37



which the Σ-method will always give the right structural information at this

point. At least we can formulate the following result.

Theorem 16. Consider the system of MNA equations (29) and assume that

(A1)-(A5) hold.490

1. If the system (29) is of d-index νd = 0, then the Σ-method succeeds with

c = [0, . . . , 0], d = [1, . . . , 1] and structural index νS = 0.

2. If nC = 0 and nV = 0 and there are no LI -cutsets (including pure L-

cutsets) in the circuit, then the Σ-method for (29) succeeds with structural

index νS = 1.495

3. If nR = 0 and nV = 0 and there are no LI -cutsets (including pure L-

cutsets) in the circuit, then the Σ-method for (29) succeeds with structural

index νS = 1.

Proof. If the MNA equations (29) have d-index νd = 0, then from Theorem 3 we

know that nV = 0 and rankAC = nη − 1. Thus, the matrix AC CATC is regular

and, consequently, also the Σ-Jacobian

J =


AC CATC 0

0 L




is regular. As a result the Σ-method succeeds with c = [0, . . . , 0] and d =

[1, . . . , 1], such that νS = maxi ci = 0. The other statements follow directly500

from the previous discussion.

In the previous examples we have observed that failure or success of the Σ-

method for the MNA equations (29) can depend on the selection of the reference

node. However, in some cases the Σ-method always fails independently of the

chosen reference (see Example 2, where AR GATR is a singular block in J for all505

possible choices of the reference node). Note again, that the selection of the

reference node does not influence the analytical properties of the system (e.g.

the index or the hidden constraints), and, in particular, the regularity of the

matrices AC CATC and AR GATR is independent of the selection of the reference
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node. Can we nevertheless give a characterization for a “good” choice of a510

reference node?

Consider Y = [yij ] = AKKATK with K = diag(K1, . . . ,K`) > 0 and incidence

matrix AK. Then, we have ykk =
∑`
j=1 a

2
kjKj with

a2
kj =





1 if branch j is adjacent to node k,

0 else,

i.e., for all k the diagonal entry ykk of Y is the sum of the weights Ki’s
of all branches that are adjacent to node k . Furthermore, we have yki =
∑`
j=1 akjaijKj , with

akjaij =




−1 if branch j connects the nodes k and i,

0 else,

for k 6= i, i.e., each off-diagonal entry yki of Y is the negative sum of the weights

Ki’s of all branches that connect node k with node i. If we replace Y by AC CATC
or AR GATR , respectively, we see that the characteristic values of components

that are connected to the reference node appear only on the diagonal of Y , while515

the characteristic values of elements that are not connected to the reference node

appear both on the diagonal and off-diagonal terms. In particular, AC CATC is

only nonsingular if there exists a capacitive tree in the circuit graph. These

observations (and numerous examples) show that if there exists no tree in the

circuit graph that consists only of capacitive and resistive branches, then as520

reference a node that is adjacent to a capacitance or, if no capacitances are

present, adjacent to a resistance should be chosen. In this case, if the reference

node is adjacent to a capacitance, AC CATC contains at least one zero-row and

by permutation with ΠC as in (36) this row is removed from ÃC . However, this

is no guarantee for the success of the Σ-method as Example 2 shows, since the525

remaining part ÃC C ÃTC can still be singular.

A simple check for failure of the Σ-method in the case that nV = 0 can be
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performed as follows. We permute [AC , AR ] as

Π[AC , AR ] =




ÃC ÃR ,1

0 ÃR ,2

0 0




ñ1

ñ2

nη − 1− ñ1 − ñ2

where Π is a permutation, ÃC is of size ñ1 × nC , with ñ1 minimal, ĀR ,1 is

of size ñ1 × nR , and ĀR ,2 is of size ñ2 × nR with ñ2 minimal. The ñ1 nodes

corresponding to the first block row are the nodes that are directly connected to

a capacitance, the ñ2 nodes corresponding to the second block row are the nodes

that are directly connected to a resistance, but not connected to a capacitance,

and the nη − 1 − ñ1 − ñ2 nodes corresponding to the last block row are the

nodes that are neither connected to a capacitance nor connected to a resistance.

Then, if nV = 0, the Σ-method will fail if ÃC C ÃTC or ÃR ,2GÃTR ,2 is singular,

i.e., if

rank ÃC < ñ1 or rank ĀR ,2 < ñ2.

4.3. The Signature Method for the MLA equations

In this section we apply the Σ-method to the MLA equations (7). Again, we530

start by considering the two examples from Section 4.2.

Example 4. We consider again the circuit given in Example 1. The oriented

loops contained in the graph are depicted in Figure 7. A reduced loop matrix

1

32 4

L2G

C L1

I s

Figure 7: Loops in the LRCI-circuit
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is given by

B =


 1 −1 −1 1 0

0 1 1 0 1


 =

[
BR BC BL BI

]

and the MLA equations (7) take the form

(L1 + L2)
d

dt
j1 − L1

d

dt
j2 + R j1 − νC = 0,

−L1
d

dt
j1 + L1

d

dt
j2 + νC + νI = 0,

C d

dt
νC + j1 − j2 = 0,

j2 + I s = 0.

Thus, the Σ-matrix and Σ-Jacobian are given by535

Σ =




1 1 0 −
1 1 0 0

0 0 1 −
− 0 − −



, J =




L1 + L2 −L1 0 0

−L1 L1 0 1

0 0 C 0

0 1 0 0



.

We see that J is nonsingular and, thus, the Σ-method succeeds with νS = 2 = νd.

/

Example 5. We consider again the circuit given in Example 2. In this case,

the circuit graph contains only one loop and the loop matrix is given by

B0 = B =
[
1 1 1 1

]
.

The MLA equations (7) take the form

L d

dt
j + (R 1 + R 2)j + νI = 0,

j + I s = 0,

and the Σ-matrix and Σ-Jacobian for this system are given by540

Σ =


 1 0

0 −


 , J =


 L 1

1 0


 .

We see that J is nonsingular such that the Σ-method succeeds with νS = 2 = νd.

/
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We see that, if we use the MLA equations (7) instead of the MNA equations (6)

to describe the behavior of the electrical circuits given in Example 1 and 2, the

Σ-method succeeds with νS = 2 = νd.545

A natural question that arises is: Will the Σ-method always succeed for the

MLA equations? Unfortunately, this is not the case. For the MLA equations

(7) we get a signature matrix of the form

Σ =




ΣLR ΣBC ΣBI

ΣTBC
ΣC −

ΣTBI
− −


 ,

where ΣLR = ΣTLR is of size nb−nη +1×nb−nη +1 with entries in {−∞, 0, 1},
ΣC = ΣTC is of size nC×nC with entries in {−∞, 0, 1}, ΣBC is of size nb−nη+1×nC

with entries in {−∞, 0}, and ΣBI is of size nb − nη + 1 × nI with entries in

{−∞, 0}. Due to Assumption (A3) we know that

ΣC =




1 ≤ 1

. . .

≤ 1 1




with ones on the diagonal and entries ≤ 1 on the off-diagonal.

Hence, the signature matrix has a similar structure as the signature matrix (30)

for the MNA equations and therefore also similar problems will arise. Analo-

gously as in Section 4.2 Assumption (A1) means that the matrix [BL BR BC BI ]

has full row rank. In the same way Assumption (A2) means that the matrix550

BI has full column rank. Moreover, the following statements are equivalent (see

[14, 16]):

• BLLBTL is nonsingular;

• kerBTL = {0};

• the graph corresponding to the circuit does not contain C R V I -loops.555

Analogously, the following statements are equivalent (see [14, 16]):
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• BR R BTR is nonsingular;

• kerBTR = {0};

• the graph corresponding to the circuit does not contain C LV I -loops.

Note that C R V I -loops and C LV I -loops include C V -loops (but also pure560

C -loops) as special cases. So again, certain topological configurations lead to

singular blocks BLLBTL or BR R BTR .

In Example 4 the Σ-Jacobian is of the form

J =




BLLBTL 0 BI

0 C 0

BTI 0 0


 ,

and in Example 5 it is of the form

J =


BLLBTL BI

BTI 0


 ,

and both are nonsingular. However, we can easily construct an example where565

the Σ-method fails for the MLA equations (7).

Example 6. Consider the circuit given in Figure 8. The graph together with

V s

G1 G2
C 2 C 1

C 3

1
2

3

4

Figure 8: RC-circuit

the loops corresponding to the circuit is given in Figure 9. A reduced loop
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1 2 3

4

G
1

G
2

C 3

C 2 C 1V s

Figure 9: Graph of RC-circuit with loops

matrix is given by

B =




1 0 0 1 0 1

0 1 1 −1 0 0

0 −1 0 0 1 0


 =

[
BR BC BV

]

and the MLA equations (7) take the form




R 1 0 0

0 R 2 −R 2

0 −R 2 R 2


 j +




0 1 0

1 −1 0

0 0 1


 νC +




1

0

0


V s = 0,




C 1 0 0

0 C 2 0

0 0 C 3




d

dt
νC −




0 1 0

1 −1 0

0 0 1


 j = 0.

Since the circuit contains a C -loop the MLA equations are of d-index νd = 2.570

The corresponding Σ-matrix and Σ-Jacobian are given by

Σ =




0 − − − 0 −
− 0 0 0 0 −
− 0 0 − − 0

− 0 − 1 − −
0 0 − − 1 −
− − 0 − − 1




, J =




R 1 0 0 0 0 0

0 R 2 −R 2 0 0 0

0 −R 2 R 2 0 0 0

0 1 0 C 1 0 0

1 −1 0 0 C 2 0

0 0 1 0 0 C 3



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and J is singular. /

In Example 6 the Σ-Jacobian is of the form

J =


BR R BTR 0

−BTC C


 ,

and the block BR R BTR is singular due to presence of the C -loop. Note that, if

we choose for B the fundamental loop matrix for the fundamental loops that are575

defined according to the normal tree T = {C 1,C 2,V s} in the graph depicted in

Figure 9, then the Σ-method succeeds with nonsingular Σ-Jacobian and νS =

νd = 2.

Remark 17. If we use the MNA equations (6) to describe the behavior of

the circuit given in Example 6, then the corresponding DAE system is of d-580

index νd = 1, and the Σ-method succeeds for all choices of the reference node.

However, for node 1 as reference the Σ-methods determines the structural index

νS = 2 > νd, while for all other nodes the Σ-method succeeds with νS = νd = 1.

Both, AC CATC and AR GATR are singular (there is a C V -cutset and a R V -

cutset), however J is regular for all cases.585

We get the corresponding result of Theorem 16 for the MLA equations.

Theorem 18. Consider the system of MLA equations (7) and assume that

(A1)-(A5) hold.

1. If the system (7) is of d-index νd = 0, then the Σ-method succeeds with

c = [0, . . . , 0], d = [1, . . . , 1] and structural index νS = 0.590

2. If nL = 0 and nI = 0 and there are no C V -loops (including pure C -loops)

in the circuit, then the Σ-method for (7) succeeds with structural index

νS = 1.

3. If nR = 0 and nI = 0 and there are no C V -loops (including pure C -loops)

in the circuit, then the Σ-method for (7) succeeds with structural index595

νS = 1.

Proof. Analogously to the proof of Theorem 16.
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4.4. The Signature Method for the Branch-Oriented Model Equations

In the previous sections we have seen that certain circuit configurations lead to

failure of the Σ-method for the MNA equations while other configurations lead600

to failure of the Σ-method for the MLA equations. For more complex circuit

examples one could construct configurations where the Σ-method fails for both

formulations. In this section we apply the Σ-method to the branch-oriented

model equations (13). The key result is formulated in the following theorem.

Theorem 19. Consider the branch-oriented model equations (13) and let As-605

sumptions (A1)-(A5) hold. Then the Σ-method applied to system (13) always

succeeds with nonsingular Σ-Jacobian and structural index νS = νd.

Proof. If the DAE (13) is of d-index νd = 1, the normal tree used for the formu-

lation of (13) is actually a proper tree, such that ν1 = [νTC , ν
T
V , ν

T
R 1]T consists

of the branch voltages for all capacitors, voltage sources and twig resistors, and

ν2 = [νTL , ν
T
I , ν

T
R 2]T consists of the branch voltages for all inductors, current

sources and link resistors. Thus, system (13) reduces to

C (νC )
d

dt
νC = ıC ,

L(ıL)
d

dt
ıL = νL ,

0 =


ıR 1

ıR 2


− g(νR 1, νR 2),




νL

νI

νR 2


 = −




F11 F13 F14

F31 F33 F34

F41 F43 F44







νC

νV

νR 1


 ,




ıC

ıV

ıR 1


 =




FT11 FT31 FT41

FT13 FT33 FT43

FT14 FT34 FT44







ıL

ıI

ıR 2


 ,

0 = νV −V s(t),

0 = ıI − I s(t),
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and the corresponding Σ-matrix for the variables

x = [νC , νR 1, νR 2, νV , νL , νI , ıC , ıR 1, ıR 2, ıV , ıL , ıI ]

takes the form



ΣC − − − − − OC − − − − −
− − − − OL − − − − − ΣL −
− Σ22 Σ23 − − − − OR 1 − − − −
− Σ32 Σ33 − − − − − OR 2 − − −

Σ51 Σ52 − Σ54 OL − − − − − − −
Σ61 Σ62 − Σ64 − OI − − − − − −
Σ71 Σ72 OR 2 Σ74 − − − − − − − −

− − − − − − OC − ΣT71 − ΣT51 ΣT61

− − − − − − − − ΣT74 OV ΣT54 ΣT64

− − − − − − − OR 1 ΣT72 − ΣT52 ΣT62

− − − OV − − − − − − − −
− − − − − − − − − − − OI




.

Here, O∗ for ∗ ∈ {V , L, C , R 1, R 2, I} denotes square blocks of appropriate size

with 0-entries on the diagonal and −∞-entries elsewhere. Moreover, ΣL and

ΣC are defined as before. Consequently, the positions for the HVT can be taken

from the diagonal entries of the marked blocks, and we get the canonical offsets

c = [0] and

d = [1, . . . , 1︸ ︷︷ ︸
nC

, 0, . . . , 0︸ ︷︷ ︸
2nR +2nV +nL +nI +nC

, 1, . . . , 1︸ ︷︷ ︸
nL

, 0, . . . , 0︸ ︷︷ ︸
nI

].
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The corresponding Σ-Jacobian is given by

J =




C 0 0 0 0 0 −I 0 0 0 0 0

0 0 0 0 −I 0 0 0 0 0 L 0

0 G11 G12 0 0 0 0 −I 0 0 0 0

0 G22 G22 0 0 0 0 0 −I 0 0 0

0 F14 0 F13 I 0 0 0 0 0 0 0

0 F34 0 F33 0 I 0 0 0 0 0 0

0 F44 I F43 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 −FT41 0 0 −FT31

0 0 0 0 0 0 0 0 −FT43 I 0 −FT33

0 0 0 0 0 0 0 I −FT44 0 0 −FT34

0 0 0 I 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 I




,

which is nonsingular if the matrix610




G
11

G
12
−I 0

G
21

G
22

0 −I
F44 I 0 0

0 0 I −FT44



∼




I 0 0 −FT44
0 I F44 0

−G−1
11

G−1
11

G
12

I 0

−G
21

G−1
11

G
21

G−1
11

G
12
− G

22
0 I




is nonsingular. Under Assumption (A5) and using Lemma 20 and Lemma 21

the nonsingularity of J follows and the Σ-method succeeds with νS = νd = 1.

If the DAE (13) is of d-index νd = 2, the Σ-matrix for (13) takes the form as in

(37) for the variables

x = [νC1, νC2, νR 1, νR 2, νV , νL1, νL2, νI , ıC1, ıC2, ıR 1, ıR 2, ıV , ıL1, ıL2, ıI ],

where, again, the positions for the HVT can be taken from the diagonal entries

of the marked blocks. Since we have chosen a normal tree in the formulation

of (13), and F22 = 0, F42 = 0 as well as F24 = 0, this choice for the HVT is

unique (up to permutations within each block) and the canonical offset vectors
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are given by

c = [0 . . . 0︸ ︷︷ ︸
nC +nR

,≤ 1 · · · ≤ 1︸ ︷︷ ︸
nV

, 0 . . . 0︸ ︷︷ ︸
nL

,≤ 1 · · · ≤ 1︸ ︷︷ ︸
nI

, 0 . . . 0︸ ︷︷ ︸
nL2

, 1 . . . 1︸ ︷︷ ︸
nC2

, 0 . . . 0︸ ︷︷ ︸
nI +nR 2+nC1

, 1 . . . 1︸ ︷︷ ︸
nL1

, 0 . . . 0︸ ︷︷ ︸
nV +nR 1

],

d = [1 . . . 1︸ ︷︷ ︸
nC

, 0 . . . 0︸ ︷︷ ︸
nR

,≤ 1 · · · ≤ 1︸ ︷︷ ︸
nV

, 0 . . . 0︸ ︷︷ ︸
nL+nI +nC +nR +nV

, 1 . . . 1︸ ︷︷ ︸
nL

,≤ 1 · · · ≤ 1︸ ︷︷ ︸
nI

].

The entries with values≤ 1 in the offset vectors depend on the sparsity structure

of the blocks F23 and FT32. However, these particular values do not influence

the result of the Σ-method, since the corresponding Σ-Jacobian always has the

form




C11 C12 0 0 0 0 0 0 −I 0 0 0 0 0 0 0

C21 C22 0 0 0 0 0 0 0 −I 0 0 0 0 0 0

0 0 0 0 0 −I 0 0 0 0 0 0 0 L11 L12 0

0 0 0 0 0 0 −I 0 0 0 0 0 0 L21 L22 0

0 0 G
11

G
12

0 0 0 0 0 0 −I 0 0 0 0 0

0 0 G
21

G
22

0 0 0 0 0 0 0 −I 0 0 0 0

0 0 F14 0 ∗ F12 I 0 0 0 0 0 0 0 0 0

F21 I 0 0 ∗ 0 0 0 0 0 0 0 0 0 0 0

0 0 F34 0 ∗ F32 0 I 0 0 0 0 0 0 0 0

0 0 F44 I ∗ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 I −FT21 0 −FT41 0 0 0 ∗
0 0 0 0 0 0 0 0 0 0 0 0 0 I −FT12 ∗
0 0 0 0 0 0 0 0 0 −FT23 0 −FT43 I 0 0 ∗
0 0 0 0 0 0 0 0 0 0 I −FT44 0 0 0 ∗
0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I




,

which is nonsingular due to Assumptions (A3)-(A5) no matter which entries615

occur in the blocks denoted with ∗. Thus, the Σ-method succeeds with structural

index νS = νd = 2.
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                                             

(3
7
)
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Lemma 20. Consider a matrix of the form

A =


 I F̃

G̃ I


 ,

where F̃ is skew-symmetric and G̃ is definite. Then A is nonsingular.

Proof. The matrix A is nonsingular if and only if the Schur complement I− G̃F̃
is nonsingular. Assume that

(I − G̃F̃ )v = 0 (38)

for some vector v. Then620

vT F̃T (I − G̃F̃ )v = vT F̃T v − vT F̃T G̃F̃ v = −vT F̃T G̃F̃ v = 0

due to the skew-symmetry of F̃ . Since G̃ is definite we get F̃ v = 0 and from

(38) it follows that v = 0.

Lemma 21. Let G =


G11 G12

G21 G22


 be a symmetric positive definite matrix.

Then the matrix

G̃ =


 G−1

11 −G−1
11 G12

G21G
−1
11 G22 −G21G

−1
11 G12




is again positive definite.625

Proof. Since G is symmetric positive definite we have that G11 is symmetric

positive definite, and in particular G−1
11 exists. Thus, from a relation


x
y


 =


G11 G12

G21 G22




v
w




we get

v = G−1
11 (x−G12w),

y = G21G
−1
11 (x−G12w) +G22w.
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Thus, for arbitrary vectors v and w we get

[
vT wT

]

G11 G12

G21 G22




v
w


 = vTx+ wT y = xT v + wT y

=
[
xT wT

]

 G−1

11 −G−1
11 G12

G21G
−1
11 G22 −G21G

−1
11 G12




x
w




and positive definiteness of G transfers to G̃.

In contrast to the formulation of the circuit equations using the MNA equations

(6) or the MLA equations (7), the Σ-method for the branch-oriented model630

equations (13) will always succeed.

Example 7. We consider again the circuit given in Example 2. The only proper

tree for the graph depicted in Figure 4 is given by the set of branches {G1,G2,L}
and the branch I s is the only link. Based on this tree the fundamental cutset

matrix and fundamental loop matrix are given by

Q =




1 0 0 −1

0 1 0 −1

0 0 1 −1


 , B =

[
1 1 1 1

]
,

i.e., we have F =
[

1 1 1
]
. Thus, the branch-oriented model equations (13)

take the form

L d

dt
ıL = νL ,

ıR 1 = G1νR 1,

ıR 2 = G2νR 2,

νI = −(νL + νR 1
+ νR 2

),

ıL = ıI ,

ıR 1
= ıI ,

ıR 2
= ıI ,

0 = ıI − I s(t),
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and the corresponding Σ-matrix and Σ-Jacobian are given by

Σ =




− − 0 − − − 1 −
0 − − − 0 − − −
− 0 − − − 0 − −
0 0 0 0 − − − −
− − − − − − 0 0

− − − − 0 − − 0

− − − − − 0 − 0

− − − − − − − 0




and

J =




0 0 −1 0 0 0 L 0

G1 0 0 0 −1 0 0 0

0 G2 0 0 0 −1 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 1 −1

0 0 0 0 1 0 0 −1

0 0 0 0 0 1 0 −1

0 0 0 0 0 0 0 1




.

Here, J is nonsingular such that the Σ-method succeeds with νS = 2. /
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4.5. The Signature Method for the pHC equations

Finally, we apply the Σ-method to the pHC equations (16). We consider the

pHC equations (16) given in the form

C (t)
d

dt
νC − ıC = 0, (39a)

ıR −G(t)νR = 0, (39b)

−νC +ATC η = 0, (39c)

−νR +ATR η = 0, (39d)

ATV η −V s(t) = 0, (39e)

L(t)
d

dt
ıL −ATLη = 0, (39f)

−AC ıC −AR ıR −AI I s(t)−AV ıV −AL ıL = 0, (39g)

with symmetric and pointwise positive definite matrices C (t), G(t) and L(t)

due to Assumptions (A3)-(A5). For such a system we get a Σ-matrix of the

form

ΣpHC =




ΓC − OC − − − −
− ΓR − OR − − −
OC − − − − − ΣTAC

− OR − − − − ΣTAR

− − − − − − ΣTAV

− − − − − ΣL ΣTAL

− − ΣAC ΣAR ΣAV ΣAL −




, (40)

where the blocks OC and OR of size nC × nC and nR × nR , respectively, have

0-diagonal and entries −∞ on the off-diagonal, the block ΓC of size nC × nC has635

1-diagonal and entries ≤ 1 on the off-diagonal, and the block ΓR of size nR ×nR

has 0-diagonal and entries ≤ 0 on the off-diagonal. The other blocks are defined

as before. In this case we get the following result.

Theorem 22. Consider an electrical circuit that contains neither LI -cutsets

nor C V -loops (including pure C -loops) and let Assumptions (A1)-(A5) hold.640
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Then the pHC equations (39) are of d-index νd = 1 and the Σ-method succeeds

with nonsingular Σ-Jacobian and structural index νS = 1.

Proof. Due to (A1), (A2) we can always rearrange the rows and columns of

the matrix [AC , AR , AV , AL ] such that

[
AC AR AV AL

]
∼


AV 1

AC1
AR 1

AL1

AV 2
AC2

AR 2
AL2


 nV

nη − 1− nV

where AV 1
is regular and

[
AC2

AR 2
AL2

]
has full row rank nη − 1 − nV .

Here, the assumption that nη − 1 ≥ nV is reasonable, since otherwise there

would be V -loops in the circuit contradicting (A1). As a consequence, we can

always find nη−1 positions for the HVT in the last block row and block column

of (40) and nV of these positions can be chosen from the blocks ΣAV and ΣTAV

guaranteeing the existence of a HVT. If the circuit contains no C V -loops and

also no V -loops or C -loops we have nC + nV ≤ nη − 1 as well as

rank[AC , AR , AV ] = nη − 1 and ker[AC , AV ] = {0}

due to Theorem 10, such that the nη−1 positions for the HVT in the last block

row can be picked from
[
ΣAC ,ΣAR ,ΣAV

]
only. If nV > 0, then nV position of

the HVT in the last block row are fixed in ΣAV , and the remaining nη − 1− nV

positions can be chosen form
[
ΣAC ,ΣAR

]
. In particular, nC positions can be

chosen from ΣAC . If nη − 1 > nC + nV , then the remaining nη − 1 − nV − nC

positions for the last block row have to be taken from ΣAR . Due to the symmetry

of (40) the transposed entries can be picked as positions for the HVT in the

last block column. The remaining positions for the HVT can be picked from

the diagonal of ΓC , ΓR , OR and ΣL . Concluding, we get a HVT of value

Val(HV T ) = nC + nL and the canonical offset vectors are given by c = [0] and

d = [1 . . . 1︸ ︷︷ ︸
nC

, 0 . . . 0︸ ︷︷ ︸
nR

, 0 . . . 0︸ ︷︷ ︸
nC

, 0 . . . 0︸ ︷︷ ︸
nR

, 0 . . . 0︸ ︷︷ ︸
nV

, 1 . . . 1︸ ︷︷ ︸
nL

, 0 . . . 0︸ ︷︷ ︸
nη−1

],
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according to the block structure of (40). The resulting Σ-Jacobian is given by

J =




C 0 −I 0 0 0 0

0 −G 0 I 0 0 0

0 0 0 0 0 0 ATC

0 −I 0 0 0 0 ATR

0 0 0 0 0 0 ATV

0 0 0 0 0 L −ATL
0 0 −AC −AR −AV 0 0




.

Under the d-index-1 conditions for the pHC-equations (39) this matrix is non-645

singular (see also the proof of Theorem 10) and the Σ-method succeeds with

νS = 1 = νd.

Remark 23. If the circuit contains LI -cutsets or C V -loops, i.e., the pHC

equations (39) are of d-index νd = 2, then the Σ-method for the pHC equations650

(39) might still work successfully in many cases. However, in this case the results

(and the success) can depend on the selection of the reference node as can be

seen in Example 8. If we assume that the branches are ordered in such a way

that A is split into

A =
[
AC1

AL1
AR 1

AV AC2
AL2

AR 2
AI

]
=:
[
AT AcoT

]
,

where AT contains the twigs that belong to a normal tree and AcoT contains655

the links of the corresponding cotree, then due to Lemma 28 we know that AT

is regular and w.l.o.g we can assume that the nodes are ordered such that

[
AT AcoT

]
=




AC11
AL11

AR 11
AV 1

AC21
AL21

AR 21
AI 1

AC12
AL12

AR 12
AV 2

AC22
AL22

AR 22
AI 2

AC13
AL13

AR 13
AV 3

AC23
AL23

AR 23
AI 3

AC14
AL14

AR 14
AV 4

AC24
AL24

AR 24
AI 4




with regular blocks AC11
, AL12

, AR 13
, and AV 4

. In this case, we can show that

the Σ-method succeeds with structural index νS = νd = 2 if AC12
= 0, AR 12

= 0,

56



AV 2
= 0, AR 22

= 0 and AC2
= [] is an empty matrix, i.e., there are no link660

capacitors. In particular, this means that we have to demand that nodes that

are connected to twig inductors have no connections to tree capacitors, resistors

or voltage sources, and that there are no CV-loops. Thus, in general we can

say that the Σ-method might fail if there exist nodes in the circuit graph that

are incident to a twig inductor as well as to a link capacitor for an (arbitrarily665

chosen) normal tree. If such a node exists it should be chosen as reference node

in order to prevent the failure of the Σ-method.

Example 8. Consider the circuit given in Figure 10 containing a C V -loop and,

thus, having d-index νd = 2. The graph corresponding to the circuit is given in

G1 Vs

C1

C2G2G3

G4

4

1

2

3

Figure 10: RCV-circuit

1

2

3

4 Vs

C1

G2 C2

G1

G3

G4

Figure 11: Graph for the RCV-circuit

Figure 11. If we select node 4 as reference node, then the Σ-method fails due to670

a singular Σ-Jacobian. Note that node 4 is the only node that is not adjacent to

a (link) capacitor. If we select node 1, 2 or 3 as reference node, the Σ-method

succeeds with nonsingular Σ-Jacobian and νS = 2. /

5. Conclusion

The structural analysis is a commonly used and powerful tool in the automatized675

numerical treatment of DAEs. In this paper we have used the Σ-method for

the structural analysis of DAEs that arise in the modeling and simulation of
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electrical circuits. The presented examples show that success or failure of the Σ-

method for the commonly used MNA equations (6) can depend on the topology

of the circuit. In the case of failure of the Σ-method the computed offset vectors680

will not give the required information on the index and on the system structure

that can otherwise be used for the regularization of the system (as proposed

e.g. in [24]). As a consequence, a robust and stable numerical integration cannot

be guaranteed. Moreover, the result of the Σ-method for the MNA equations

(6) can also depend on the choice of the reference node. This choice does not685

influence the analytical properties of the system (as e.g. the index) and typically

a node that has a large number of adjacent edges is chosen as reference. Our

investigations suggest that a node that is adjacent to a capacitance or, if no

capacitances are present, adjacent to a resistance should be chosen as reference

node. However, this is no guarantee for the success of the Σ-method for the690

MNA equations (6) as Example 2 shows. Similar observations can be made if

the Σ-method is applied to the MLA equations (7). We have also seen that the

Σ-method can give different results for the MNA and MLA equations depending

on the topology of the circuit. The main consequence of the results obtained

in Section 4.2 and 4.3 is that Signature Method cannot be guaranteed to work695

successfully for circuit equations of index ≥ 1 if they are modeled using the

MNA or MLA equations. In contrast, for the branch-oriented model equations

(10) we have shown in Theorem 19 that the Σ-method always succeeds with a

structural index that corresponds to the d-index of the system.

The MNA equations are widely used in circuit simulation because of their com-700

pact form and structural properties (e.g. symmetries) that allow for an efficient

regularization and numerical integration. However, we see that from the view

point of structural analysis the MNA equations are not well-suited and more

sparser representations as the branch-oriented model equations are beneficial for

a structural analysis. This knowledge is of particular importance if one is not705

only interested in circuit simulation (for which sophisticated simulation pack-

ages exists), but rather looks at a circuit as a component of a multi-physical

applications in the context of automatized modeling and simulation.
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We have also considered a port-Hamiltonian formulation of the circuit equa-

tions. In this case, the Σ-method applied to the pHC equations (39) will always710

succeed if the circuit contains neither LI -cutsets nor C V -loops (including pure

C -loops). If the circuit contains LI -cutsets or C V -loops, i.e., the pHC equa-

tions (39) are of d-index νd = 2, the Σ-method might still work successfully in

many cases, but the results (and the success) can depend on the selection of the

reference node as examples show. In particular, the Σ-method can fail for the715

pHC equations (39) if there exists nodes in the circuit graph that are incident

to a twig inductor as well as to a link capacitor for an arbitrarily chosen normal

tree. If this is the case, such a node should be chosen as reference node in order

to prevent the failure of the Σ-method in the pHC approach. However, still

the Σ-method cannot be guaranteed to work successfully for circuit equations720

of index 2 if they are modeled using the pHC approach.
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[4] L. Scholz, A. Steinbrecher, DAEs in applications, in: Numerical Alge-730

bra, Matrix Theory, Differential-Algebraic Equations and Control Theory:

Festschrift in Honor of Volker Mehrmann, Springer International Publish-

ing, Cham, 2015, pp. 463–501. doi:10.1007/978-3-319-15260-8_17.

[5] C. C. Pantelides, The consistent initialization of differential-algebraic sys-

tems, SIAM J. Sci. Statist. Comput. 9 (1988) 213–231. doi:10.1137/735

0909014.

59



[6] J. Pryce, A simple structural analysis method for DAEs, BIT Numerical

Mathematics 41 (2001) 364–394. doi:10.1023/A:1021998624799.
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Appendix A. Graph theoretical results

The following graph theoretical results can be found e.g. in [11, 12].

Theorem 24. Let G be a directed graph consisting of nη nodes, nb branches and795

containing n` loops and nq cutsets. Moreover, let A0 ∈ Rnη,nb be the all-node

incidence matrix, B0 ∈ Rn`,nb the loop matrix and Q0 ∈ Rnq,nb the cutset matrix

with columns arranged according to the same order of branches. Furthermore,

let k be the number of connected components of G. Then

(i) rankA0 = nη − k,800

(ii) rankB0 = nb − nη + k,

(iii) rankQ0 = nη − k,

(iv) imBT0 = kerA0 = kerQ0,

(v) A0B
T
0 = 0 and B0Q

T
0 = 0,

(vi) G is a tree if and only if A0 ∈ Rnη,nη−1 and kerA0 = {0}.805

Under the reasonable assumption that the electrical circuit graph is connected

we can always select nη−1 linearly independent rows of A0 to obtain the reduced

matrix A, and nb−nη+1 linearly independent rows of B0 to obtain the reduced

matrix B.

Remark 25. The all-node incidence matrix A0 is a submatrix of the cutset810

matrix Q0 since for each node of the graph the set of all branches incident to

this node forms a cutset of the graph.

A subgraph K = (V ′, B′,Ψ|B′) of a connected graph G with V ′ = V , B′ ⊂ B is

called a spanning subgraph. For a spanning subgraph K of a directed graph G let

AK (AG−K) denote the submatrix of the incidence matrix A that is formed by815

the columns corresponding to branches in K (respectively the complementary
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graph G−K). Analogously, let BK and BG−K denote the corresponding loop

matrices. By suitable reordering we can always get A = [AK AG−K ] and

B = [BK BG−K ].

Lemma 26. Let G be a connected directed graph with reduced incidence and820

loop matrices A ∈ Rnη−1,nb and B ∈ Rnb−nη+1,nb . Furthermore, let K be a

spanning subgraph of G and assume that the branches of G are sorted such that

A = [AK AG−K ], B = [BK BG−K ].

1. The following assertions are equivalent:

• G does not contain K-cutsets;

• kerATG−K = {0}, i.e., AG−K has full row rank;825

• kerBK = {0}, i.e., BK has full column rank.

2. The following assertions are equivalent:

• G does not contain K-loops;

• kerAK = {0}, i.e., AK has full column rank;

• kerBTG−K = {0}, i.e., BG−K has full row rank.830

From Lemma 26 we get that an electrical circuit contains no C V -loops if and

only if the matrix [AC AV ] has full column rank. Similar the circuit contains

no LI -cutsets if and only if the matrix [AR AC AV ] has full row rank.

Lemma 27. Let G = (V,B) be a connected graph and let J,K be disjoint

subsets of B. Then there exist a tree which contains all branches from J and no835

branches from K if and only if J has no loops and K has no cutsets.

Lemma 28. Let K be a set of nη − 1 branches of a connected directed graph.

Then AK is nonsingular if and only if K defines a tree. In this case det(AK) =

±1.

Thus, if we partition A as A = [AT , AcoT ] where the columns of AT corresponds840

to the twigs of a tree, then AT is regular.
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Let T be a tree of the connected and directed graph G, and let L be the set of

all branches that do not belong to the tree (i.e., the set of all links). Then, for

every z ∈ L, the set T ∪ {z} forms a loop. These are the so-called fundamental

loops with orientations defined as the orientation of the corresponding link z.845

Since each tree contains nη − 1 twigs there are exactly nb−nη + 1 fundamental

loops. The fundamental loop matrix that only contains the fundamental loops

has full row rank and by a suitable ordering of the branches takes the form

B =
[
I BT

]
,

where the columns of BT corresponds to the twigs of the tree T .

On the other hand, let b ∈ T be a twig of the tree. If we remove the branch b,850

then T decomposes into two separated but connected subtrees T1 and T2. If we

denote the set of all nodes in Ti as Ni, for i = 1, 2, then the set of all branches

of G that connect nodes from N1 with nodes from N2 forms a cutset of G. This

cutset can be uniquely identified with the corresponding twig b of T . These

cutsets are the so-called fundamental cutsets with orientations defined as the855

orientation of the corresponding twig b. Since the tree T contains nη − 1 twigs

there are nη− 1 fundamental cutsets. The fundamental cutset matrix that only

contains the fundamental cutsets can be represented by a suitable ordering of

the branches as

Q =
[
QL I

]
,

where the branches corresponding to the last nη − 1 columns belong to the tree860

T .
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