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a b s t r a c t

In this paper, we consider the normwise, mixed and componentwise condition numbers
for a linear function Lx of the solution x to the linear least squares problem with equality
constraints (LSE). The explicit expressions of the normwise, mixed and componentwise
condition numbers are derived. Also, we revisit some previous results on the condition
numbers of linear least squares problem (LS) and LSE. It is shown that some previous
explicit condition number expressions on LS and LSE can be recovered from our new
derived condition numbers’ formulas. The sharp upper bounds for the derived normwise,
mixed and componentwise condition numbers are obtained, which can be estimated
efficiently by means of the classical Hager–Higham algorithm for estimating matrix one-
norm. Moreover, the proposed condition estimation methods can be incorporated into
the generalized QR factorization method for solving LSE. The numerical examples show
that when the coefficient matrices of LSE are sparse and badly-scaled, the mixed and
componentwise condition numbers can give sharp perturbation bounds, on the other
hand normwise condition numbers can severely overestimate the exact relative errors
because normwise condition numbers ignore the data sparsity and scaling. However, from
the numerical experiments for random LSE problems, if the data is not either sparse or
badly scaled, it is more suitable to adopt the normwise condition number to measure the
conditioning of LSE since the explicit formula of the normwise condition number is more
compact.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The least squares problem with equality constraints (LSE) has the following form:

LSE : min
x∈Rn

∥Ax − b∥2 subject to Cx = d, (1.1)

where A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm, d ∈ Rp and m + p ≥ n ≥ p. The rank conditions [1]

rank(C) = p and rank
([

A
C

])
= n (1.2)

guarantee the existence of the unique solution of LSE [1,2]

x = Kb + C†
Ad,
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where

K = (AP)†, P = In − C†C, C†
A = (In − KA) C†, (1.3)

and B† is the Moore–Penrose inverse of B [1]. Under the rank condition rank(C) = p the equality constraints Cx = d in (1.1)
are consistent, thus LSE (1.1) has solutions. The second rank condition of (1.2) guarantees the uniqueness of the solution to
(1.1). On the other hand, the augmented system also defines the unique solution x as follows:

Ax :=

⎡⎣ 0 0 C
0 Im A
C⊤ A⊤ 0

⎤⎦[λr
x

]
=

[d
b
0

]
:= b, (1.4)

where A⊤ is the transpose of A, Im denotes them×m identitymatrix, 0 is the zerosmatrix with conformal dimension, λ ∈ Rp

is a vector of Lagrange multipliers, and r is the residual vector r = b − Ax. As stated in [2,3], when the rank condition (1.2)
is satisfied, A is nonsingular and its inverse has the following expression:

A−1
=

⎡⎢⎣(AC†
A )

⊤AC†
A −(AC†

A )
⊤ (C†

A )
⊤

−AC†
A Im − (AP)K K⊤

C†
A K −

(
(AP)⊤(AP)

)†
⎤⎥⎦ . (1.5)

When C = 0 and d = 0, LSE is reduced to the classical linear least squares problem (LS) as follows

LS : min
x∈Rn

∥Ax − b∥2. (1.6)

In this case, we know that the rank condition (1.2) becomes rank(A) = n. Thus LS has the unique LS solution x = A†b =

(A⊤A)−1A⊤b.
The LSE problem has many applications such as in the analysis of large scale structures [4], and the solution of the

inequality constrained least square problem [5] etc. The algorithms and perturbation analysis of LSE can be found in several
papers [1–9] and references therein.

Perturbation theory is important in matrix computation, since they can give error bounds for the computed solution.
Especially, condition number measures the worst-case sensitivity of an input data with respect to small perturbations on
it; see the recent monograph [10] and references therein. Rice in [11] gave a general theory of condition numbers. Let
ψ : Rp

→ Rq be a mapping, where Rp and Rq are the usual p- and q-dimensional Euclidean spaces equipped with some
norms, respectively. If ψ is continuous and Fréchet differentiable in the neighborhood of u0 ∈ Rp then, according to [11],
the relative normwise condition number of ψ at u0 is given by

condψ (u0) := lim
ε→0

sup
∥∆u∥≤ε

(
∥ψ(u0 +∆u) − ψ(u0)∥

∥ψ(u0)∥
⧸

∥∆u∥
∥u0∥

)
=

∥dψ(u0)∥∥u0∥

∥ψ(u0)∥
, (1.7)

where dψ(u0) is the Fréchet derivative of ψ at u0. Condition number can tell us the loss of the precision in finite precision
computation of a problem.With the backward error of a problem, the relative error of the computed solution can be bounded
by the product of condition number and backward error.

When the data is sparse or badly-scaled, componentwise perturbation analysis [12,13] has been proposed to investigate
themixed condition numbers and componentwise condition numbers [14] of the problem inmatrix computation. Themixed
condition numbers use the componentwise error analysis for the input data,while the normwise error analysis for the output
data. On the other hand, the componentwise condition numbers use the componentwise error analysis for both input and
output data. Consequently, the perturbation bounds based on the mixed and componentwise condition numbers are more
effective and sharper than those based on the normwise condition number when the data is sparse or badly scaled because
the normwise condition number defined in (1.7) does not take account of the structure of both input and output data with
respect to scaling and/or sparsity.

In some situations, the conditionings of particular components of a solution are different. Thus it is suitable to consider
the condition numbers of a linear function of the solution. These type condition numbers had been studied for the LS
problem [15,16], the weighted LS problem [17], the total least squares problems [18,19], the indefinite LS problem [20]
and the LSE problem [21], etc. In this paper, we will investigate the sensitivity of a linear function Lx of the LSE solution x
with respect to perturbations on the data A, C , b and d. First, let us introduce the following mapping

Φ : Rmn
× Rpn

× Rm
× Rp

→ Rk (1.8)

Φ(vec(A), vec(C), b, d) := L
(
Kb + C†

Ad
)
,

where vec(A) is a vector obtained by stacking the columns of a matrix A one by one (see [22] for details), and L is an
k-by-n, k ≤ n, matrix introduced for the selection of the solution components. For example, when L = In (k = n), all
the n components of the solution x are equally selected. When L = e⊤

i (k = 1), the ith row of In, then only the ith component
of the solution is selected. The matrix L is not perturbed in the text.
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In this paper the explicit expressions for the normwise, mixed and componentwise condition numbers of the linear
function Lx of the solution x to LSE (1.1) are considered. We will adopt the definition of condition numbers to derive
condition numbers’ expressions. Moreover, sharp upper bounds also are deduced, which can be estimated efficiently via
the classical Hager–Higham algorithm [23–25]. When the generalized QR factorization (GQR) method [2,6,8] is adopted
for solving LSE, the computational complexity of the proposed condition estimations can be significantly reduced through
utilizing the already computed matrix decompositions. There have been lots references on the condition numbers analysis
for LS [15,16,26,27] and LSE [2,7,21]. We revisit some results on condition numbers for LS and LSE. Our new derived explicit
expressions can recover the former expressions under some assumptions. Numerical examples in Section 5 tell us, under
some particular situations, the mixed and componentwise condition numbers of the linear function for LSE can be much
smaller than the normwise condition numbers. However, when the data is neither sparse or badly scaled, there are little
differences between the normwise condition numbers and the mixed/componentwise condition numbers. Thus, it is more
suitable to use the normwise condition numbers as the measure for monitoring the conditioning of LSE since the explicit
formulas of normwise condition numbers are more compact.

The paper is organized as follows. In Section 2, the normwise, mixed and componentwise condition numbers for LSE
are investigated. Also their upper bounds are derived, which can be estimated by the Hager–Higham algorithm [23–25].
We revisit the previous results of the conditioning analysis for LSE and LS in Sections 3 and 4, respectively. We do some
numerical examples to test the effectiveness of the proposed condition numbers in Section 5. At end, in Section 6 concluding
remarks are drawn and the future research topics are pointed out.

2. Explicit expressions of condition numbers for LSE

In this section we will derive the explicit condition numbers expressions for a linear function of the solution of LSE.
Also sharp upper bounds for the normwise, mixed and componentwise condition numbers are obtained. By considering the
already computed decomposition of the GQR method [2,6,8] for solving LSE, we can estimate upper bounds efficiently via
the Hager–Higham algorithm [23–25].

In the following the normwise condition numbers for LSE are defined. First, we introduce the following product norm [27]
to measure the input data [E, f ]. Let α and β be two positive real numbers. For the data space Rp×q

×Rp, we use the product
norm defined by

∥(E, f )∥F =

√
α2∥E∥

2
F + β2∥f ∥2

2. (2.1)

The norm is very flexible since they allow to monitor the perturbations on E and f . For instance, large values of α (resp. β)
enable to obtain condition number problems where mainly f (resp. E) is perturbed.

The following lemma concerns with an equivalent expression for a general linear operator’s spectral norm, which will be
used to derive expressions for the normwise condition number of LSE.

Lemma 1 ([28, Lemma 2.1]). Given matrices L ∈ Rk×q, V ∈ Rp×q, X ∈ Rq×p, Y ∈ Rq×q and vectors s ∈ Rq, t ∈ Rp, u ∈ Rp

with two positive real numbers α and β , for the linear operator l defined by

l(V , u) := L
(
−XVs + YV⊤t + Xu

)
,

its operator spectral norm can be characterized by

∥l∥2 = sup
V ̸=0,u̸=0

∥l(V , u)∥2

∥[V , u]∥F
=

L
[
−

1
β

∥s∥2X,
1
α

∥t∥2Y
]⎡⎣c1Im − c2

tt⊤

∥t∥2
2

β

α

ts⊤

∥t∥2∥s∥2
0 In

⎤⎦
2

,

where c1 =

√
β2

α2
+

1
∥s∥22

, c2 = c1 +
1

∥s∥2
. For the linear operator lM defined by

lM (V ) := L
(
−XVs + YV⊤t

)
,

its operator spectral norm can be characterized by

sup
V ̸=0

∥lM (V )∥2

∥V∥F
=

L [−∥s∥2X, ∥t∥2Y
]⎡⎣Im −

tt⊤

∥t∥2
2

ts⊤

∥t∥2∥s∥2
0 In

⎤⎦
2

. (2.2)

Moreover, we have

sup
V ̸=0

∥lM (V )∥2

∥V∥F
≤ sup

V ̸=0

∥lM (V )∥2

∥V∥2
≤

√
2 sup

V ̸=0

∥lM (V )∥2

∥V∥F
. (2.3)
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In the following the notation a
b means two vector componentwise division given by(a

b

)
i
=

{ai
bi
, if bi ̸= 0,

0, if bi = 0,
(2.4)

where a and b are two conformal dimensional vectors. We define the normwise, mixed and componentwise condition
numbers for LSE as follows:

κn := lim
ε→0

sup
([
∆A
∆C

]
,

[
∆b
∆d

])
F

≤ε

∥L∆x∥2

([AC
]
,

[
b
d

])
F

ε∥Lx∥2
, (2.5)

κ rel
∞

:= lim
ε→0

sup
|∆A|≤ε|A|, |∆C |≤ε|C |

|∆b|≤ε|b|, |∆d|≤ε|d|

∥L∆x∥∞

ε∥Lx∥∞

,

κc := lim
ε→0

sup
|∆A|≤ε|A|, |∆C |≤ε|C |

|∆b|≤ε|b|, |∆d|≤ε|d|

1
ε

L∆x
Lx


∞

,

where |A| = |aij|, |∆A| ≤ ε|A| should be understood componentwisely, ∥·∥F is the product norm defined by (2.1), and x+∆x
is the unique optimal solution to

min
x̃∈Rn

∥(A +∆A)x̃ − (b +∆b)∥2 subject to (C +∆C)x̃ = d +∆d. (2.6)

First, we prove the mapping Φ defined by (1.8) is Fréchet differentiable and its Fréchet derivative is obtained by means
of matrix differential calculus [29] in Lemma 3. Before that, we need the following lemma.

Lemma 2 ([29, Page 171, Theorem 3]). Let T be the set of non-singular real m × m matrices, and S be an open subset of Rn×q. If
the matrix function F : S → T is k times (continuously) differentiable on S, then so is the matrix function F−1

: S → T defined by
F−1(X) = (F (X))−1, and

dF−1
= −F−1(dF )F−1.

The Fréchet derivative of Φ involves Kronecker product. In the following, we review some basic results on Kronecker
product. If A ∈ Rm×n and B ∈ Rp×q, then the Kronecker product A ⊗ B ∈ Rmp×nq is defined by A ⊗ B =

[
aijB
]

∈ Rmp×nq [22].
The following results can be found in [22]

|A ⊗ B| = |A| ⊗ |B|, vec(AXB) = (B⊤
⊗ A)vec(X),

for any A ∈ Rm×n, Π (vec(A)) = vec(A⊤),

for any vector y and matrix Y ,
(
y⊤

⊗ Y
)
Π = Y ⊗ y⊤, (2.7)

whereΠ ∈ Rmn×mn is the vec-permutation matrix; see [22] for details.

Lemma 3. The function Φ is a continuous mapping on Rmn
× Rpn

× Rm
× Rp, where Φ is defined by (1.8). In addition, Φ is

Fréchet differentiable at (A, C, b, d) and its Fréchet derivative is given by

dΦ(vec(A), vec(C), b, d) = L
[
K(K⊤

⊗ r⊤
− x⊤

⊗ Im), −C†
A (x

⊤
⊗ Ip) − K[K⊤

⊗ (r⊤AC†
A )],

K, C†
A

]
.

Proof. From (1.4), we know that x = A−1b. Since A is invertible, the linear operator Φ defined in (1.8) is continuously
Fréchet differentiable in a neighborhood of the data (A, C, b, d) from the theory of the matrix differential calculus [29].
With Lemma 2, we can deduce that

dx = (dA−1)b + A−1db = −A−1(dA)x + A−1db.

Noting that

dx =

[
dλ
dr
dx

]
, db =

[
dd
db
0

]
, dA =

⎡⎣ 0 0 dC
0 0 dA

dC⊤ dA⊤ 0

⎤⎦ ,
recalling (1.5), and after some algebraic operations we deduce that

dx = Kdb + C†
Add − C†

AdCx − KdAx + ((AP)⊤(AP))†(dA)⊤r (2.8)

+ ((AP)⊤(AP))†(dC)⊤λ.
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Thus dΦ = Ldx since Φ is linear. From (1.4), it can be verified that C⊤λ + A⊤r = 0. Since C has full row rank (CC†
= Ip)

it is easy to see that λ = −(AC†)⊤r . Substituting the above expression in (2.8), using the equality (AC†)⊤r = (AC†
A )

⊤r from
Lemma 4.2 in [2], and noting ((AP)⊤(AP))† = KK⊤, we can derive that

dΦ(vec(A), vec(C), b, d) ·
[
vec(dA)⊤, vec(dC)⊤, db⊤, dd⊤

]⊤
= −LKdAx

+ LKK⊤(dA)⊤r − LC†
AdCx − LKK⊤(dC)⊤(AC†

A )
⊤r + LKdb + LC†

Add. (2.9)

Applying vec operator to both sides of the above equation and using Kronecker product properties (2.7), we can prove that

dΦ(vec(A), vec(C), b, d) ·
[
vec(dA)⊤, vec(dC)⊤, db⊤,∆d⊤

]⊤
= −x⊤

⊗ (LK)vec(dA)

+ r⊤
⊗ (LKK⊤)Π vec(dA) − x⊤

⊗ (LC†
A )vec(dC) − (r⊤AC†

A ) ⊗ (LKK⊤)Πvec(dC)

+ LKdb + LC†
Add

= −LK(x⊤
⊗ Im)vec(dA) + LK(K⊤

⊗ r⊤) vec(dA) − LC†
A (x

⊤
⊗ Ip)vec(dC)

− LK[K⊤
⊗ (r⊤AC†

A )]vec(dC) + LKdb + LC†
Add.

From the above deductions, we complete the proof of this lemma. □

In the following theorem, we will give the explicit expressions for normwise, mixed and componentwise condition
numbers of LSE. First, recall the notation a

b is defined by (2.4), where a and b are two conformal dimensional vectors.

Theorem 1. Let A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm and d ∈ Rp, the rank conditions (1.2) be satisfied, and x = Kb + C†
Ad be the

solution of LSE (1.1), for normwise, mixed and componentwise condition numbers defined by (2.5), we have

κn =

([AC
]
,

[
b
d

])
F

· ∥LN∥2

∥Lx∥2
,

κ rel
∞

=

|LM| vec(|A|) + |LJ | vec(|C |) + |LK| |b| + |LC†
A | |d|


∞

∥Lx∥∞

,

κc =

 |LM| vec(|A|) + |LJ | vec(|C |) + |LK| |b| + |LC†
A | |d|

Lx


∞

,

where

M = K(K⊤
⊗ r⊤

− x⊤
⊗ Im), J = C†

A (x
⊤

⊗ Ip) + K[K⊤
⊗ (r⊤AC†

A )],

N =

[
−

1
β

∥x∥2K −
1
β

∥x∥2C
†
A

1
α

∥t∥2KK⊤

]⎡⎣c1Im+p − c2
tt⊤

∥t∥2
2

β

α

tx⊤

∥x∥2∥t∥2
0 In

⎤⎦ , (2.10)

and t =

[
r

−(AC†
A )

⊤r

]
, c1 =

√
β2

α2
+

1
∥x∥22

and c2 = c1 +
1

∥x∥2
.

Proof. In view of (1.7) and Lemma 3, for the normwise condition number κn, the following equality

κn = sup
dA̸=0, db̸=0
dC ̸=0, dd̸=0

dΦ (vec(A), vec(C), b, d) ·
[
vec(dA)⊤, vec(dC)⊤, db⊤, dd⊤

]⊤
2([dAdC

]
,

[
db
dd

])
F

·

([AC
]
,

[
b
d

])
F

∥Lx∥2

holds. From (2.9) we can deduce the following relationships

dΦ(vec(A), vec(C), b, d) ·
[
vec(dA)⊤, vec(dC)⊤, db⊤, dd⊤

]⊤
= L

{
−
[
K C†

A

] [dA
dC

]
x + KK⊤

[
dA
dC

]⊤ [ r
−(AC†

A )
⊤r

]
+
[
K C†

A

] [db
dd

]}
.
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Thus, identifying X =
[
K C†

A

]
, Y = KK⊤, V =

[
K C†

A

]
, u =

[
db
dd

]
, s = x and t =

[
r

−(AC†
A )

⊤r

]
in Lemma 1, we can derive

that

sup
dA̸=0, db̸=0
dC ̸=0, dd̸=0

∥dΦ (vec(A), vec(C), b, d) · (dA, dC, db, dd)∥2([dAdC
]
,

[
db
dd

])
F

=

L
[
−

1
β

∥x∥2K −
1
β

∥x∥2C
†
A

1
α

∥t∥2KK⊤

]⎡⎣c1Im+p − c2
tt⊤

∥t∥2
2

β

α

tx⊤

∥x∥2∥t∥2
0 In

⎤⎦
2

,

then the explicit expression of κn has been derived.
For the second part, recalling∆x defined by (2.5), from the definition of Fréchet derivative, we know that

L∆x = dΦ (vec(A), vec(C), b, d)
(
vec(∆A)⊤, vec(∆C)⊤,∆b⊤,∆d⊤

)⊤
+ O(ε2).

Hence, because |∆A| ≤ ε|A|, |∆C | ≤ ε|C |, |∆b| ≤ ε|b|, |∆d| ≤ ε|d|, we can use the monotonicity of infinity norm together
with the definition of κ rel

∞
to obtain that

κ rel
∞

≤

|dΦ (vec(A), vec(C), b, d)| (vec(|A|)⊤, vec(|C |)⊤, |b|⊤, |d|⊤
)⊤

∞

∥Lx∥∞

. (2.11)

For the numerator of the right hand side of the above equation, it is not difficult to see that there exists an index i0 satisfying
that |dΦ (vec(A), vec(C), b, d)| (vec(|A|)⊤, vec(|C |)⊤, |b|⊤, |d|⊤

)⊤
∞

=

e⊤

i0
|dΦ (vec(A), vec(C), b, d)|

(
vec(|A|)⊤, vec(|C |)⊤, |b|⊤, |d|⊤

)⊤
∞

,

where ei0 is i0th column of the identity matrix. Let Φij be the (ij)th entry of the matrix dΦ (vec(A), vec(C), b, d) ∈

Rk×(mn+pn+m+p). From the definition of κ rel
∞

, it can be verified that the upper bound in (2.11) is attainable at

∆Aiaja = ε sign(Φi0((ia−1)m+ja))|aiaja |, ∆Cic jc = ε sign(Φi0(mn+(ic−1)p+jc ))|cic jc |,
∆bkb = ε sign(Φi0(mn+pn+kb))|bkb |, ∆dkd = ε sign(Φi0(mn+pn+m+kd))|bkd |,

where the notation sign is the sign function. Therefore, we prove the expression of κ rel
∞

. The proof of the third part is similar
to the second part, thus it is omitted. □

As investigated in [7, Section 6], the spectral normwise condition number of LSE when there are no perturbations on b
and d can be defined as below:

κ
(2)
(A,C) := lim

ε→0
sup

[
∆A
∆C

]
2

≤ε

∥L∆x∥2

[AC
]

2

ε∥Lx∥2
,

where x +∆x the unique solution to the following perturbed LSE:

min
x+∆x∈Rn

∥(A +∆A)(x +∆x) − b∥2 subject to (C +∆C)(x +∆x) = d.

However a computable formula for κ (2)
(A,C) does not exist. On the other hand, the following normwise condition number

κF
(A,C) := lim

ε→0
sup

[
∆A
∆C

]
F

≤ε

∥L∆x∥2

[AC
]

2

ε∥Lx∥2

can be used to approximate κ2
(A,C) as done in [7]. From (2.3), it can be verified that

κF
(A,C) ≤ κ

(2)
(A,C) ≤

√
2κF

(A,C).

Applying (2.2), we can obtain that

κF
(A,C) =

[AC
]

2

L
[
−K −C†

A
∥t∥2

∥x∥2
KK⊤

]⎡⎣Im+p −
tt⊤

∥t∥2
2

tx⊤

∥t∥2∥x∥2
0 In

⎤⎦
2

. (2.12)
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It was show in the last equation of [7, Page 1196] that

κ
F ,1
(A,C)↦→x := lim

ε→0
sup

[
∆A
∆C

]
F

≤ε

∥∆x∥2 /∥x∥2[∆A
∆C

]
F
/

[AC
]

2

=

[AC
]

2


[
−K −C†

A
∥y∥2

∥x∥2
KK⊤

]⎡⎣Im+p −
yy⊤

∥y∥2
2

yx⊤

∥y∥2∥x∥2
0 In

⎤⎦
2

, y =

[
r

−(AC†)⊤r

]
. (2.13)

Recalling (AC†)⊤r = (AC†
A )

⊤r from Lemma 4.2 in [2], it yields

y =

[
r

−(AC†
A )

⊤r

]
= t,

where t is defined in (2.10). Thus when L = In, the formula (2.13) of κF ,1
(A,C)↦→x is identical to the one (2.12) of κF

(A,C).
In the reminder of this section, we will derive the upper bounds for κn, κ rel

∞
and κc , which can be estimated efficiently by

the Hager–Higham algorithm [23–25]whenwe adopt the GQRmethod [2,6,8,30] to solve LSE, because the already computed
decompositions can be used to reduce the computational cost of the proposed condition estimation method.

The GQR [2,6,8,30] is an efficient and stablemethod to solve LSE.We first reviewGQRmethod. Let A ∈ Rm×n and C ∈ Rp×n

with m + p ≥ n ≥ p. The generalized QR factorization was introduced by Hammarling [6] and Paige [8], which further was
analyzed by Anderson et al. [30]. There are orthogonal matrices Q ∈ Rn×n and U ∈ Rm×m such that

U⊤AQ =

( p n − p
m − n + p L11 0
n − p L21 L22

)
, CQ =

( p n − p
S 0

)
, (2.14)

where L11 ∈ R(m−n+p)×p, L21 ∈ R(n−p)×p, L22 ∈ R(n−p)×(n−p) and S ∈ Rp×p. Moreover, L22 ∈ R(n−p)×(n−p) and S ∈ Rp×p are
lower triangular. If rank condition (1.2) holds, then L22, S are nonsingular [2, Theorem 2.1]. The generalized QR factorization
method for solving LSE can be summarized as follows. Let y1 ∈ Rp be the solution of the triangular system Sy1 = d and y2
be the solution to the triangular system L22y2 = v2 − L21y1,where

v = U⊤b =

(
m − n + p v1
n − p v2

)
,

where v1 ∈ Rm−n+p and v2 ∈ Rn−p. Then the solution x to LSE can be computed by x = Qy, where y = [y⊤

1 , y
⊤

2 ]
⊤. Thus when

implementing the GQR method, the decomposition (2.14) has already been computed, which can be utilized to devise the
method based on the Hager–Higham algorithm to estimate the upper bounds for κn, κ rel

∞
and κc . Thus the computational cost

of condition estimation methods can be reduced.
In the following, we will give upper bounds for κn, κ rel

∞
and κc , which can be estimated efficiently by the Hager–Higham

algorithm [23–25]. The proposed condition estimation method can be incorporated into the GQR method for solving LSE.

Corollary 1. With the notations before, denoting

κU
n =

(
∥x∥2
β

∥K∥2 +
∥x∥2
β

C†
A


2
∥A∥F +

∥r∥2
(
1+
AC†

A


2

)
α

∥K∥
2
2

)
∥Lx∥2

× ∥L∥2

([AC
]
,

[
b
d

])
F

√
max

{
1,
β2

α2 +
1

∥x∥2
2

}
+

2β
α
,

κU
∞

=

LKD|A| |x|


∞
+
LKK⊤D|A⊤| |r|


∞

+

LC†
AD|C | |x|


∞

∥Lx∥∞

+

LKK⊤D
|C⊤| |(AC†

A )
⊤r|


∞

+ ∥LKDb∥∞ +

LC†
ADd


∞

∥Lx∥∞

,

κU
c =

D−1
Lx LKD|A| |x|


∞

+
D−1

Lx LKK⊤D|A⊤| |r|


∞

+

D−1
Lx LC

†
AD|C | |x|


∞

+

D−1
Lx LKK⊤D

|C⊤| |(AC†
A )

⊤r|


∞

+
D−1

Lx LKDb


∞
+

D−1
Lx LC

†
ADd


∞

,

where Dv = diag(v) is a diagonal matrix with the ith diagonal element being vi, we have

κn ≤ κU
n , κ rel

∞
≤ κU

∞
, κc ≤ κU

c .
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Proof. Recalling the expression of κn given by Theorem 1, which involves the spectral norm of LN andN is defined in (2.10),
it can be deduced that⎡⎣c1Im+p − c2

tt⊤

∥t∥2
2

β

α

tx⊤

∥x∥2∥t∥2
0 In

⎤⎦ ·

⎡⎢⎢⎣c1Im+p − c2
tt⊤

∥t∥2
2

0

β

α

xt⊤

∥x∥2∥t∥2
In

⎤⎥⎥⎦ =

⎡⎢⎢⎣(
β2

α2 +
1

∥x∥2
2
)Im+p

β

α

tx⊤

∥t∥2∥x∥2
β

α

xt⊤

∥t∥2∥x∥2
In

⎤⎥⎥⎦

=

⎡⎣(
β2

α2 +
1

∥x∥2
2
)Im+p 0

0 In

⎤⎦+
β

α

⎡⎢⎢⎣ 0
tx⊤

∥t∥2∥x∥2
xt⊤

∥t∥2∥x∥2
0

⎤⎥⎥⎦ := A1 +
β

α

(
ab⊤

+ ba⊤
)
, (2.15)

where a = [t⊤/∥t∥2 0]⊤ and b = [0 x⊤/∥x∥2]
⊤, thus fromWeyl theorem [31], we have

⎡⎣c1Im+p − c2
tt⊤

∥t∥2
2

β

α

tx⊤

∥x∥2∥t∥2
0 In

⎤⎦
2

≤

√
λmax(A1) +

β

α
λmax

(
ab⊤ + ba⊤

)
≤

√
max

{
1,
β2

α2 +
1

∥x∥2
2

}
+

2β
α
, (2.16)

where λmax(B) is the maximum eigenvalue of a semi-definite matrix B. Combining (2.16) with the following fact[− 1
β

∥x∥2K −
1
β

∥x∥2C
†
A

1
α

∥t∥2KK⊤

]
2

≤
∥x∥2

β
∥K∥2 +

∥x∥2

β

C†
A


2
∥A∥F +

∥t∥2

α
∥K∥

2
2 .

we can prove the first statement of this corollary.
Noting that for any matrix B ∈ Rp×q and diagonal matrix Dv ∈ Rq×q, we have

∥BDv∥∞ = ∥ |BDv| ∥∞ = ∥ |B| |Dv| ∥∞ = ∥ |B| |Dv|e ∥∞ = ∥ |B| |v|∥∞ . (2.17)

where e = [1, . . . , 1]⊤ ∈ Rq. Using the Kronecker product property (2.7) and triangle inequality, we have|LM| vec(|A|) + |LJ | vec(|C |) + |LK| |b| + |LC†
A | |d|


∞

≤ ∥|LM| vec(|A|)∥∞ + ∥|LJ | vec(|C |)∥∞ + ∥|LK| |b|∥∞ +

|LC†
A | |d|


∞

≤
|LK(K⊤

⊗ r⊤)|vec(|A|)


∞
+
|LK(x⊤

⊗ Im)|vec(|A|)


∞

+

⏐⏐⏐LK[K⊤
⊗ (r⊤AC†

A )]
⏐⏐⏐ vec(|C |)


∞

+

⏐⏐⏐LC†
A (x

⊤
⊗ Ip)

⏐⏐⏐ vec(|C |)


∞

+ ∥|LK| |b|∥∞ +

|LC†
A | |d|


∞

≤
|LKK⊤

|(|r⊤
| ⊗ In)Πvec(|A|)


∞

+
|LK|(|x⊤

| ⊗ Im)vec(|A|)


∞

+

⏐⏐LKK⊤
⏐⏐ [|(r⊤AC†

A )| ⊗ In]Πvec(|C |)


∞

+

⏐⏐⏐LC†
A

⏐⏐⏐ (|x⊤
| ⊗ Ip)vec(|C |)


∞

+ ∥|LK| |b|∥∞ +

|LC†
A | |d|


∞

= ∥|LK| |A| |x|∥∞ +
|LKK⊤

| |A⊤
| |r|


∞

+

|LC†
A | |C | |x|


∞

+

|LKK⊤
| |C⊤

| |(AC†
A )

⊤r|


∞

+ ∥|LK| |b|∥∞ +

|LC†
A | |d|


∞

=
LKD|A| |x|


∞

+
LKK⊤D|A⊤| |r|


∞

+

LC†
AD|C | |x|


∞

+

LKK⊤D
|C⊤| |(AC†

A )
⊤r|


∞

+ ∥LKDb∥∞ +

LC†
ADd


∞

,

where in the last equality we use (2.17). Thus we can prove the upper bound for κ rel
∞

based the above inductions. Similarly,
we can derive the upper bound for κc . □

Remark 1. From some examples in Section 5, the upper bounds κU
∞

and κU
c are attainable, thus they are sharp. On the other

hand, when α = β = 1 and L = In, the upper bound for κn can be simplified to

κU
n =

⎛⎝∥K∥2 +

C†
A


2
∥A∥F +

∥r∥2

(
1 +

AC†
A


2

)
∥x∥2

∥K∥
2
2

⎞⎠×

([AC
]
,

[
b
d

])
F

√
3 +

1
∥x∥2

2
.
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Then the above bound indicates that if the residual r is small or zero, the sensitivity is governed by ∥K∥2 and
C†

A


2
, otherwise

by ∥K∥
2
2 .

If the factorization (2.14) is computed, the following expressions can be verified:

K = Q
[
0 0
0 L−1

22

]
U⊤, KK⊤

= Q
[
0 0
0 L−1

22 L
−⊤

22

]
Q⊤,

C†
A = Q

[
Ip

−L−1
22 L21

]
S−1, (AC†

A )
⊤r = S−⊤L⊤

11(v1 − L11y1),

r = U
[
v1 − L11y1

0

]
, Kr = 0. (2.18)

Thus, for the each term in κU
n , κ

U
∞

and κU
c , we can use the classical condition estimation method [23–25] to estimate them.

This method is an efficient method for estimating one-norm of a matrix B, which involves a sequence of matrix–vector
multiplications Bv and B⊤v. By taking account of the decompositions (2.18), the matrix–vector multiplications during
estimating each term of κU

n , κ
U
∞

and κU
c can be computed through solving some triangular linear system with different

right hands. Thus the computational complexity of the algorithms to estimate κU
n , κ

U
∞

and κU
c can be reduced significantly

compared with the GQR method. The detailed descriptions of the Hager–Higham algorithm [23–25] to estimate κU
n , κ

U
∞

and
κU
c are omitted.

3. Revisiting previous results on normwise condition numbers for LSE

The normwise condition number for LSE has been investigated in [2,21], respectively. In this section, we will prove that
κn in Theorem 1 is identical to κ2 given by (3.2) [21] under some reasonable assumptions. Also the relationship between κ1
of [2] and κ2 is investigated.

Cox and Higham [2] defined the relative normwise condition number for LSE as follows

cond(A, C, b, d) := lim
ϵ1→0

sup
∥∆x∥2

ϵ1 ∥x∥2
,

where x + ∆x is the unique solution to the perturbed LSE (2.6), ϵ1 = min{ϵ : ∥∆A∥F ⩽ ϵ∥A∥F , ∥∆b∥2 ⩽ ϵ∥b∥2, ∥∆C∥F ⩽
ϵ∥C∥F , ∥∆d∥2 ⩽ ϵ∥d∥2} and proved that

∥∆x∥2

∥x∥2
≤ κ1ϵ1 + O(ϵ21 ),

where

κ1 =

(
∥C†

A∥2∥d∥2 + ∥K∥2∥b∥2 +

x⊤
⊗ C†

A +

[
(r⊤AC†

A ) ⊗
(
KK⊤

)]
Π


2
∥C∥F−x⊤

⊗ K +
[
r⊤

⊗ (KK⊤)
]
Π

2 ∥A∥F

)
/∥x∥2, (3.1)

and the following relationship holds

cond(A, C, b, d) ≤ κ1 ≤ 4 cond(A, C, b, d).

Li andWang [21] defined the absolute normwise condition number for a linear function of the solution x to LSE as follows:

κabs
2 := lim

ϵ2→0
sup

∥L∆x∥2

ϵ2
= ∥M1∥2 = ∥K∥

1/2
2 ,

where x +∆x is the unique solution to the perturbed LSE (2.6),

ϵ2 :=

√
α2
A∥∆A∥

2
F + α2

C∥∆C∥
2
F + α2

b∥∆b∥2
2 + α2

d∥∆d∥2
2

with αA > 0, αC > 0, αb > 0 and αd > 0, and

M1 =

[[
r⊤

⊗ (LKK⊤)
]
Π − x⊤

⊗ (LK)
αA

−

x⊤
⊗ C†

A +

[
(r⊤AC†

A ) ⊗
(
KK⊤

)]
Π

αB

LK
αb

LC†
A

αd

]
,

K =

(
∥r∥2

2

α2
A

+
∥r⊤AC†

A∥
2
2

α2
C

)
L
((

(AP)⊤AP
)†)2 L⊤

+

(
∥x∥2

2

α2
C

+
1
α2
d

)
LC†

A (C
†
A )

⊤L⊤
+

1
α2
C
L
(
(AP)⊤AP

)†
xr⊤AC†

A (C
†
A )

⊤L⊤

+
1
α2
C
LC†

A (C
†
A )

⊤A⊤rx⊤
(
(AP)⊤AP

)† L⊤
+

(
∥x∥2

2

α2
A

+
1
α2
b

)
L
((

(AP)⊤AP
)†) L⊤.
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So the explicit expression for the relative normwise condition number for a linear function of the solution x to LSE was given
by

κ2 := lim
ϵ2→0

sup
∥L∆x∥2

ϵ2 ∥Lx∥2
·

√
α2
A∥A∥

2
F + α2

C∥C∥
2
F + α2

b∥b∥
2
2 + α2

d∥d∥
2
2

=
∥K∥

1/2
2

∥Lx∥2
·

√
α2
A∥A∥

2
F + α2

C∥C∥
2
F + α2

b∥b∥
2
2 + α2

d∥d∥
2
2. (3.2)

Noting that
(
(AP)⊤AP

)†
= KK⊤, the matrix K can be rewritten as

K =

(
∥r∥2

2

α2
A

+
∥r⊤AC†

A∥
2
2

α2
C

)
L
(
KK⊤

)2L⊤
+

(
∥x∥2

2

α2
A

+
1
α2
b

)
LKK⊤L⊤

+

(
∥x∥2

2

α2
C

+
1
α2
d

)
LC†

A (C
†
A )

⊤L⊤
+

1
α2
C
LKK⊤xr⊤AC†

A (C
†
A )

⊤L⊤

+
1
α2
C
LC†

A (C
†
A )

⊤A⊤rx⊤KK⊤L⊤. (3.3)

In view of the definitions of κn given by (2.5) and k2 given by (3.2), if we choose αA = αC = α and αb = αd = β , it is not
difficult to see that the definition of κn is equivalent to the definition of κ2. In the proposition below, we will prove that they
are identical from their expressions.

Proposition 1. Let the expressions of κn and κ2 be given by Theorem 1 and (3.2), respectively, then when αA = αC = α and
αb = αd = β hold, we have κn = κ2.

Proof. From (2.15), and recalling that N is given by (2.10), it can be verified that

NN⊤
=
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] [ r
−(AC†

A )
⊤r

]
x⊤KK⊤

−
1
α2KK⊤x

[
r⊤

−r⊤AC†
A

] [ K⊤

(C†
A )

⊤

]
=

(
1
β2 +

∥x∥2
2

α2

)(
KK⊤

+ C†
A (C

†
A )

⊤

)
+

∥r∥2
2 + ∥r⊤AC†

A∥
2
2

α2

(
KK⊤

)2
+

1
α2 C

†
A (AC

†
A )

⊤rx⊤KK⊤
+

1
α2KK⊤xr⊤AC†

A (C
†
A )

⊤, (3.4)

where in the last equality we use the fact Kr = 0 from (2.18). Thus comparing (3.4) with (3.3), we can prove that

LNN⊤L⊤
= K

whenever αA = αC = α and αb = αd = β . Using the fact that ∥K∥2 = ∥LN∥
2
2 and considering the expressions of κn and κ2,

we complete the proof. □

Li and Wang in [21, Remark 2.1] derived that

∥M1∥2 ≤ γup ≤ 4 ∥M1∥2,

where

γup = ∥C†
A∥2 + ∥K∥2 +

x⊤
⊗ C†

A +

[
(r⊤AC†

A ) ⊗
(
KK⊤

)]
Π


2

+
[r⊤

⊗ (KK⊤)
]
Π − x⊤

⊗ K

2 ,

which is related to κ1 given by (3.1). However, the relationship between relative normwise condition numbers κ1 and κ2
is not investigated. In Proposition 2, we will prove that there are no big differences between κ1 and κ2 from their explicit
expressions (3.1) and (3.2) for the common choices L = In, and αA = αC = αb = αd = 1 of κ2.
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Proposition 2. With the notations above, when L = In, and αA = αC = αb = αd = 1, we have

κ1 ≤ 2 κ2 ≤ 4 κ1.

Proof. Using Cauchy–Schwarz inequality and ∥B∥2 ≤ ∥A∥2 where B is a submatrix of A, we have

∥C†
A∥2∥d∥2 + ∥K∥2∥b∥2 +

x⊤
⊗ C†

A +

[
(r⊤AC†

A ) ⊗
(
KK⊤

)]
Π


2
∥C∥F

+
−x⊤

⊗ K +
[
r⊤

⊗ (KK⊤)
]
Π

2 ∥A∥F

≤

√
∥C†

A∥
2
2 + ∥K∥

2
2 +

x⊤ ⊗ C†
A +

[
(r⊤AC†

A ) ⊗
(
KK⊤

)]
Π

2
2
+
[r⊤ ⊗ (KK⊤)

]
Π − x⊤ ⊗ K

2
2

·

√
∥d∥2

2 + ∥b∥2
2 + ∥C∥

2
F + ∥A∥

2
F

≤ 2 ∥M1∥2 ·

√
∥d∥2

2 + ∥b∥2
2 + ∥C∥

2
F + ∥A∥

2
F

whenever L = In, and αA = αC = αb = αd = 1. Thus from the expression of κ1 and κ2, we prove that κ1 ≤ 2 κ2.
On the other hand, for a given matrix A which is partitioned as A =

[
A1 A2 A3 A4

]
, using the fact ∥A∥2 ≤∑4

i=1∥Ai∥2, it is not difficult to prove that

∥K∥
1/2
2 = ∥M1∥2 ≤ ∥C†

A∥2 + ∥K∥2 +

x⊤
⊗ C†

A +

[
(r⊤AC†

A ) ⊗
(
KK⊤

)]
Π


2

+
[r⊤

⊗ (KK⊤)
]
Π − x⊤

⊗ K

2

= ∥C†
A∥2∥d∥2

1
∥d∥2

+

x⊤
⊗ C†

A +

[
(r⊤AC†

A ) ⊗
(
KK⊤

)]
Π


2
∥C∥F

1
∥C∥F

+ ∥K∥2∥b∥2
1

∥b∥2
+
[r⊤

⊗ (KK⊤)
]
Π − x⊤

⊗ K

2 ∥A∥F

1
∥d∥F

≤

(
∥C†

A∥2∥d∥2 + ∥K∥2∥b∥2 +

x⊤
⊗ C†

A +

[
(r⊤AC†

A ) ⊗
(
KK⊤

)]
Π


2
∥C∥F−x⊤

⊗ K +
[
r⊤

⊗ (KK⊤)
]
Π

2 ∥A∥F

)
max

{
1

∥A∥F
,

1
∥C∥F

,
1

∥b∥2
,

1
∥d∥2

}
.

From the above inequality, and the expressions of κ1 and κ2, we finish the proof. □

4. Revisiting previous results on condition numbers for LS

In this section, wewill give the explicit expressions ofmixed and componentwise condition numbers for a linear function
of the solution to LS in Proposition 3, which can recover the corresponding ones given in [26] when L = In and is identical to
the counterparts of [16]. We will derive the former explicit formulas of the normwise condition numbers of LS [27] and [15]
from the explicit expression of κn when C = 0 and d = 0.

Gratton [27] introduced and derived the normwise absolute condition number for LS as follows:

κG
LS := lim

ε→0
sup

∥(∆A,∆b)∥F≤ε

∥∆x∥2

ε
= ∥A†

∥2

√
1
β2 +

∥x∥2
2 + ∥r∥2

2

A†
2
2

α2 , (4.1)

where x +∆x is the unique solution to the perturbed LS:

min
x+∆x

∥(A +∆A)(x +∆x) − (b +∆b)∥2 .

Later, Arioli et al. [15] defined the partial normwise absolute condition number for LS as follows:

κLS,L := lim
ε→0

sup
∥(∆A,∆b)∥F≤ε

∥L∆x∥2

ε
=
SV⊤L⊤


2 , (4.2)

where A = UΣV⊤ is the thin SVD of A,Σ = diag(σi) with σ1 ≥ σ2 ≥ · · · σn > 0, and

S = diag

⎛⎝σ−1
i

√
σ−2
i ∥r∥2

2 + ∥x∥2
2

α2 +
1
β2

⎞⎠ .
Cucker et al. [26] studied the mixed and componentwise condition numbers for LS as below:

m(A, b) := lim
ε→0

sup
|∆A|≤ε|A|,
|∆b|≤ε|b|

∥∆x∥∞

ε∥x∥∞

=

⏐⏐((A⊤A)−1
⊗ r⊤

− x⊤
⊗ A†

)⏐⏐ vec(|A|) + |A†
| |b|


∞

∥x∥∞

,
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c(A, b) := lim
ε→0

sup
|∆A|≤ε|A|

|∆b|≤ε|b|

1
ε

∆x
x


∞

=


⏐⏐((A⊤A)−1

⊗ r⊤
− x⊤

⊗ A†
)⏐⏐ vec(|A|) + |A†

| |b|
x


∞

. (4.3)

In [16], Baboulin and Gratton considered the mixed and componentwise condition numbers for a linear function of the
solution to LS and their explicit expressions were given in [16, Equations (3.3) and (3.7)] as below

κabs
LS,∞ = lim

ε→0
sup

|∆A|≤ε|A|,
|∆b|≤ε|b|

∥L∆x∥∞

ε
=
⏐⏐((L(A⊤A)−1) ⊗ r⊤

− x⊤
⊗ (LA†)

)⏐⏐ vec(|A|) + |LA†
| |b|


∞
,

κG
LS,c = lim

ε→0
sup

|∆A|≤ε|A|

|∆b|≤ε|b|

1
ε

L∆x
Lx


∞

=


⏐⏐((L(A⊤A)−1) ⊗ r⊤

− x⊤
⊗ (LA†)

)⏐⏐ vec(|A|) + |LA†
| |b|

Lx


∞

,

When C = 0 and d = 0, LSE (1.1) is reduced to LS (1.6). Since the rank condition (1.2) guarantees rank(A) = n, it is easy
to verify that

P = In, K = A†, C†
A = 0, (4.4)

where P andK are defined in (1.3). With the property A†(A†)⊤ = (A⊤A)−1 for the full column rank matrix A, the matricesM
and J given by (2.10) are simplified to

M = A†((A†)⊤ ⊗ r⊤
− x⊤

⊗ Im) = (A⊤A)−1
⊗ r⊤

− x⊤
⊗ A†, J = 0.

Thus from Theorem 1, we have the following proposition.

Proposition 3. The mixed and componentwise condition numbers for a linear function of the solution to LS can be defined and
characterized by

κ rel
LS,∞ = lim

ε→0
sup

|∆A|≤ε|A|,
|∆b|≤ε|b|

∥L∆x∥∞

ε∥Lx∥∞

=

⏐⏐L ((A⊤A)−1
⊗ r⊤

− x⊤
⊗ A†

)⏐⏐ vec(|A|) + |LA†
| |b|


∞

∥Lx∥∞

,

κLS,c = lim
ε→0

sup
|∆A|≤ε|A|

|∆b|≤ε|b|

1
ε

L∆x
Lx


∞

=


⏐⏐L ((A⊤A)−1

⊗ r⊤
− x⊤

⊗ A†
)⏐⏐ vec(|A|) + |LA†

| |b|
Lx


∞

,

which can recover the corresponding ones given by (4.3) when we take L = In.

Remark 2. From the Kronecker product property (2.7), it is easy to see that κ rel
LS,∞ = κabs

LS,∞/∥Lx∥∞ and κLS,c = κG
LS,c . Here

we use a different methodology to deduce the expressions of κ rel
LS,∞ and κLS,c while Baboulin and Gratton [16] adopted the

dual techniques to derive the corresponding expressions of κabs
LS,∞ and κG

LS,c .

In Proposition 4, wewill derive the explicit formulas (4.1) and (4.2) of κG
LS and κLS,L directly from the explicit expression κn

givenbyTheorem1whenwe letC = 0 andd = 0.We should remark that the followingproof of deriving the explicit formulas
(4.1) and (4.2) is different and simpler compared with the former deductions for κG

LS and κLS,L in [15,27], respectively.

Proposition 4. The expressions of κG
LS and κLS,L , which are given by (4.1) and (4.2) respectively, can be derived from the expression

of κn given by Theorem 1.

Proof. Plugging (4.4), C = 0 and d = 0 into (3.4), we have

NN⊤
=

(
1
β2 +

∥x∥2
2

α2

)
A†(A†)⊤ +

∥r∥2
2

α2

(
A†(A†)⊤

)2
, (4.5)

Thus it can be check that

(σ1(N ))2 =

(
1
β2 +

∥x∥2
2

α2

)
(σ1(A†))2 +

∥r∥2
2

α2 (σ1(A†))4, (4.6)

where σi(A) is the ith largest singular values of a matrix A. Comparing the definitions of κn given by (2.5) and κG
LS given by

(4.1), from Theorem 1 and (4.6), it is easy to see that

κG
LS =

∥Lx∥2([AC
]
,

[
b
d

])
F

κn = ∥LN∥2 =

√(
1
β2 +

∥x∥2
2

α2

)
(σ1(A†))2 +

∥r∥2
2

α2 (σ1(A†))4

= ∥A†
∥2

√
1
β2 +

∥x∥2
2 + ∥r∥2

2

A†
2
2

α2
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whenever L = In, C = 0 and d = 0. Using the thin SVD of A, from (4.5), we have

LNN⊤L⊤
= LV

((
1
β2 +

∥x∥2
2

α2

)
Σ−2

+
∥r∥2

2

α2 Σ−4
)
V⊤L⊤

= LVS2V⊤L⊤.

Thus we know that ∥LN∥2 =
SV⊤L⊤


2, and in view of the definitions of κn given by (2.5) and κLS,L given by (4.2), we can

prove that

κLS,L =
∥Lx∥2([AC
]
,

[
b
d

])
F

κn = ∥LN∥2 =
SV⊤L⊤


2 ,

which completes the proof of this proposition. □

5. Numerical examples

In this section we will do some numerical examples. In order to check the effectiveness of proposed condition numbers,
we will compare the exact relative errors of the solution with the linear asymptotic perturbation bounds based on the
product of condition numbers and the pre-generated perturbation magnitude. Thus in the following, we will first construct
the data for the LSE problem, then generate perturbations on the data, and finally compute the unperturbed and perturbed
solutions corresponding to the unperturbed and perturbed data, respectively. Since the GQR method [2,6,8,30] is proved to
be numerically stable [2], in this section we adopt the GQR method to compute the solutions to LSE. All the computations
are carried out usingMatlab 8.1 with the machine precision µ = 2.2 × 10−16.

Example 1. Let v be a 4 × 1 vector with v4 = 1/η where η is a small positive number, and other components are set to 1.
We construct the data A, C, b and d as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 δ 0
0 0 0 0
0 0 0 δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R9×4, C =

[
0 1 0 0
1 0 0 0

]
∈ R2×4, b = A · v + 10−5

· b2, d =

[
1
1

]
,

where b2 is a unitary vector satisfying A⊤b2 = 0 and δ is a small positive number. Obviously, the matrix A has many zero
components and is bad scaled because of the appearance of δ. Thus, it is reasonable to measure the error on the input data
by using componentwise perturbation analysis instead of the normwise perturbation analysis. Also it can be verified that
the rank conditions (1.2) are satisfied. For the perturbations, we generate them as

∆A = 10−ℓ
·∆A1 ⊙ A, ∆C = 10−ℓ

·∆C1 ⊙ C, (5.1)

∆b = 10−ℓ
·∆b1 ⊙ b, ∆d = 10−ℓ

·∆d1 ⊙ d,

where ℓ ∈ N describes the perturbation magnitude, each component of ∆A1 ∈ Rm×n, ∆C1 ∈ Rp×n, ∆b1 ∈ Rm and
∆d1 ∈ Rp withm = 9, n = 4 and p = 2 is uniformly distributed in the interval (−1, 1), and ⊙ denotes the componentwise
multiplication of two conformal dimensional matrices. When the perturbations are small enough, we denote the unique
solution by x̃ of the perturbed LSE problem (2.6). We use the GQR method [2] to compute the solution x and the perturbed
solution x̃ separately. Usually the solution x has badly scaled components, for example, the last component of x is of order
1/η while other components of x are of O(1).

For the L matrix in our condition numbers, we choose

L0 = I4, L1 =

[1 0 0 0
0 1 0 0
0 0 0 1

]
∈ R3×4, L2 =

[
0 0 0 1

]
∈ R1×4.

Thus, corresponding to the above threematrices, the whole x, the subvector [x1, x2, x3]⊤, and the component x4 are selected
respectively.

We measure the normwise, mixed and componentwise relative errors in Lx defined by

r rel2 =
∥Lx̃ − Lx∥2

∥Lx∥2
, r rel

∞
=

∥Lx̃ − Lx∥∞

∥Lx∥∞

, r relc =

Lx̃ − Lx
Lx


∞

.
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Table 1
Comparison of condition numbers with the corresponding relative errors for Example 1.

L r rel2 κ1 κn κU
n r rel

∞
κ rel

∞
κU

∞
r relc κc κU

c

ℓ = 6, η = 10−3 , δ = 10−3

I4 7.91e−07 1.42e+03 3.00e+03 5.20e+03 7.91e−07 2.00e+00 2.00e+00 7.91e−07 2.00e+00 4.00e+00
L1 1.79e−07 1.73e+06 3.00e+06 2.97e−07 2.00e+00 4.00e+00 2.97e−07 2.00e+00 4.00e+00
L2 7.91e−07 3.00e+03 5.20e+03 7.91e−07 2.00e+00 2.00e+00 7.91e−07 2.00e+00 2.00e+00

ℓ = 6, η = 10−3 , δ = 10−6

I4 6.18e−07 1.42e+06 2.83e+06 5.00e+06 6.18e−07 2.00e+00 2.00e+00 6.18e−07 2.00e+00 4.00e+00
L1 4.57e−08 1.63e+09 2.89e+09 6.48e−08 2.00e+00 4.00e+00 6.48e−08 2.00e+00 4.00e+00
L2 6.18e−07 2.83e+06 5.00e+06 6.18e−07 2.00e+00 2.00e+00 6.18e−07 2.00e+00 2.00e+00

ℓ = 12, η = 10−3 , δ = 10−3

I4 1.46e−13 1.42e+03 3.00e+03 5.20e+03 1.46e−13 2.00e+00 2.00e+00 7.54e−13 2.00e+00 4.00e+00
L1 4.44e−13 1.73e+06 3.00e+06 7.54e−13 2.00e+00 4.00e+00 7.54e−13 2.00e+00 4.00e+00
L2 1.46e−13 3.00e+03 5.20e+03 1.46e−13 2.00e+00 2.00e+00 1.46e−13 2.00e+00 2.00e+00

ℓ = 12, η = 10−3 , δ = 10−6

I4 3.78e−13 1.42e+06 2.83e+06 5.00e+06 3.78e−13 2.00e+00 2.00e+00 8.66e−13 2.00e+00 4.00e+00
L1 6.98e−13 1.63e+09 2.89e+09 8.66e−13 2.00e+00 4.00e+00 8.66e−13 2.00e+00 4.00e+00
L2 3.78e−13 2.83e+06 5.00e+06 3.78e−13 2.00e+00 2.00e+00 3.78e−13 2.00e+00 2.00e+00

And in the rest of this section we always consider the case α = β = 1 for the normwise condition number κn. From the
definition of condition numbers, the following quantities

10−ℓ
· κ1, and 10−ℓ

· κn (5.2)

are the linear normwise asymptotic perturbation bounds. On the other hand,

10−ℓ
· κ rel

∞
, and 10−ℓ

· κc, (5.3)

are the linear mixed and componentwise asymptotic perturbation bounds, respectively.
In Table 1, we do numerical experiments for different choices of ℓ, η and δ. It can be observed that when δ varies

from 10−3 to 10−6, LSE tends to be more ill-conditioned with respect to the decreasing of δ in the sense of normwise
perturbation analysis, while themixed and componentwise condition numbers are alwaysO(1). Thus for these particular LSE
problems, they are less sensitive to the componentwise perturbations. When the perturbation magnitudes 10−ℓ decrease,
the corresponding relative errors also decrease as shown in the first column of Table 1. The linear normwise, mixed and
componentwise asymptotic perturbation bounds defined by (5.2) and (5.3) can always bound the exact relative errors, and
we should point out the linear normwise asymptotic perturbation bounds are pessimistic since the normwise condition
numbers ignore the scaling and sparsity structure of the data. On the other hand, linear mixed and componentwise
asymptotic perturbation bounds 10−ℓ

· κ rel
∞

and 10−ℓ
· κc are greater than the exact relative errors r rel

∞
and r relc at most of one

hundredfold, respectively. Most of them are only tenfold of the corresponding relative errors. The derived upper bounds κU
∞

and κU
c can be equal to the exact mixed and componentwise condition numbers for some cases, for example when L = L2.

Thus the proposed upper bounds κU
∞

and κU
c are sharp. The normwise upper bounds κU

n always have the same order of
the corresponding κn, which means that κU

n is also effective. Also we should point out that when L = L1, κn can be much
larger than κ1. The reason of the above phenomenon is that only the last component of x has the order of 1/η while other
components are O(1). From our experiments, when L = L1, the values of the numerator of κn are approximately equal to
values of the numerator of κ1 for all cases. On the other hand, the denominator of κn is about O(1) and the denominator of
κn is about O(1/η) because L1x does not select the last component of x, thus the ratios of κ1 and κn are about O(1/η) when
L = L1. For other choices of L, the values of κn have the same order of the values of κ1 and κn > κ1 always holds which
coincide with Proposition 2.

Example 2. In this example, we test random LSE problems and always choose L = In. Let the matrix A, given κA, be
generated as A = QDU , where D ∈ Rm×n is a diagonal matrix with decreasing diagonal values geometrically distributed
between 1 and κA, and Q ∈ Rm×m and U ∈ Rn×n are random orthogonal matrices generated by theMatlab built-in function
gallery(‘qumlt’, n). Furthermore, A is normalized such that ∥A∥2 = 1. The matrix B ∈ Rp×n, given its condition number
κB, is formed by using Matlab routine B = gallery(‘randsvd’, [p, n], κB) with ∥B∥2 = 1 and its singular values are
geometrically distributed between1 and1/κB.We construct the randomvectors b and dwhich are satisfiedwith the standard
Gaussian distribution for LSE. For all the experiments, we choose m = 50, n = 20 and p = 15. The perturbations on the
data are generated by (5.1). For each generated data and corresponding perturbed data, we compute the solutions via the
GQR method.

Table 2 indicates that the conditioning of LSE is more dominated by the quantity κB for these constructed examples.
When κB increase from 102 to 108, the values of log(κ1), log(κn), log(κ rel

∞
) and log(κc) also increase. Meanwhile, the relative
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Table 2
Comparison of condition numbers with the corresponding relative errors for Example 2.

κA r rel2 κ1 κn κU
n r rel

∞
κ rel

∞
κU

∞
r relc κc κU

c

ℓ = 6, κB = 102

10 2.58e−06 1.80e+02 4.18e+02 3.19e+03 2.71e−06 1.17e+02 1.85e+02 3.72e−05 1.42e+03 2.08e+03
103 3.28e−06 2.91e+02 5.17e+02 2.36e+03 3.98e−06 1.10e+02 1.76e+02 3.62e−05 1.65e+03 2.53e+03
105 6.10e−06 2.79e+02 4.41e+02 3.02e+03 5.71e−06 1.26e+02 2.76e+02 3.53e−05 6.43e+03 8.31e+03
107 6.92e−06 1.55e+03 2.44e+03 8.34e+03 8.83e−06 1.00e+03 1.31e+03 3.32e−05 3.04e+04 3.93e+04

ℓ = 6, κB = 104

10 2.39e−04 1.19e+04 3.39e+04 2.25e+05 1.83e−04 6.07e+03 8.83e+03 9.57e−03 4.78e+05 5.45e+05
103 4.92e−04 2.13e+04 4.82e+04 2.34e+05 5.43e−04 1.29e+04 1.70e+04 9.70e−03 4.51e+05 5.70e+05
105 4.08e−04 1.55e+04 3.24e+04 1.37e+05 3.85e−04 7.81e+03 1.22e+04 3.89e−03 5.28e+04 8.45e+04
107 7.63e−04 2.60e+04 5.11e+04 1.86e+05 6.00e−04 1.12e+04 1.75e+04 1.24e−02 2.26e+05 3.36e+05

ℓ = 6, κB = 106

10 2.28e−02 1.55e+06 4.79e+06 2.96e+07 2.69e−02 6.10e+05 1.24e+06 8.07e−02 5.41e+06 8.65e+06
103 1.94e−02 1.92e+06 4.63e+06 2.11e+07 2.12e−02 9.92e+05 1.82e+06 3.32e−01 3.38e+07 4.20e+07
105 1.93e−02 1.53e+06 3.38e+06 1.36e+07 2.76e−02 8.72e+05 1.38e+06 2.49e−01 1.17e+07 1.72e+07
107 2.03e−02 6.49e+06 1.37e+07 3.46e+07 1.46e−02 2.07e+06 2.55e+06 8.95e−01 1.15e+08 1.36e+08

ℓ = 6, κB = 108

10 7.91e−01 1.86e+08 5.60e+08 2.61e+09 6.25e−01 1.12e+08 1.46e+08 3.72e+00 9.75e+08 1.14e+09
103 9.95e−01 1.41e+08 3.62e+08 1.77e+09 8.35e−01 6.10e+07 1.18e+08 4.48e+00 1.68e+09 2.09e+09
105 8.68e−01 2.37e+08 5.36e+08 1.73e+09 8.64e−01 1.16e+08 1.37e+08 3.06e+00 7.15e+08 8.67e+08
107 8.53e−01 2.55e+08 5.51e+08 1.62e+09 9.09e−01 7.26e+07 1.10e+08 3.19e+00 8.41e+08 1.07e+09

normwise, mixed and componentwise errors r rel2 , r rel
∞

and r relc increase. Even for κB = 108, the small componentwise
perturbation magnitude 10−6 on the input data can result in O(10−1) perturbations for normwise/mixed relative errors (
r reln and r rel

∞
) andO(1) for componentwise relative errors r relc . Thus under this case, LSE problem is very ill-conditioned, which

is justified by the condition number numerical values from the last four rows of Table 2. However, it can been seen that
the exact relative errors are always smaller than the corresponding linear normwise, mixed and componentwise asymptotic
perturbation bounds (5.2) and (5.3), which means that the condition numbers are effective. The upper bounds κU

n , κ
U
∞

and
κU
c are always greater than the corresponding normwise, mixed and componentwise condition numbers. Moreover, the

upper bounds of condition numbers are at most tenfold of the corresponding exact condition numbers. Also, the normwise
condition numbers κ1 and κn are greater than the mixed condition numbers κ rel

∞
for all cases, while the differences between

them are marginal. At last, we should conclude that when the data is not either sparse or badly scaled, it is more suitable
to adopt the normwise condition numbers κ1 and κn to measure the conditioning of LSE since they have more compact
formulas.

In the rest of this section,we do somenumerical experiments for LSE frompiecewise-polynomial data fitting problem [32,
Chapter 16].

Example 3. GivenN points (xi, yi) in the plane, we are seeking to find a piecewise-polynomial function f̂ (x) fitting the above
set of the points, where

f̂ (x) =

{
f1(x), x ≤ a,
f2(x), x > a

with a given, and f1(x) and f2(x) polynomials of degree three or less,

f1(x) = x1 + x2x + x3x2 + x4x3, f2(x) = x5 + x6x + x7x2 + x8x3.

The conditions that f1(a) = f2(a) and f
′

1(a) = f ′

2(a) are imposed, so that f̂ (x) is continuous and has a continuous first derivative
at x = a. Suppose the N data (xi, yi) are numbered so that x1, . . . , xM ≤ a and xM+1, . . . , xN > a. The sum of squares of the
prediction errors is

M∑
i=1

(
x1 + x2xi + x3x2i + x4x3i − yi

)2
+

N∑
i=M+1

(
x5 + x6xi + x7x2i + x8x3i − yi

)2
.

The conditions f1(a) − f2(a) = 0 and f
′

1(a) − f ′

2(a) = 0 are two linear equations

x1 + x2a + x3a2 + x4a3 − (x5 + x6a + x7a2 + x8a3) = 0,

x2 + 2x3a + 3x4a2 − (x6 + 2x7a + 3x8a2) = 0.
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Table 3
Comparison of condition numbers with the corresponding relative errors for Example 3.

a r rel2 κ1 κn κU
n r rel

∞
κ rel

∞
κU

∞
r relc κc κU

c

ℓ = 6 M = 100 N = 200

0.1 8.21e−05 5.56e+05 1.22e+06 3.09e+06 8.45e−05 1.35e+03 1.41e+03 8.67e−05 1.35e+03 1.41e+03
0.3 7.96e−06 6.68e+03 1.01e+04 8.05e+04 1.09e−05 6.93e+02 8.19e+02 1.83e−05 1.32e+03 1.50e+03
0.5 1.44e−05 1.75e+03 2.16e+03 8.74e+04 1.40e−05 8.53e+02 1.09e+03 1.77e−04 9.33e+03 1.07e+04
0.7 2.35e−04 1.04e+04 1.91e+04 4.02e+05 2.35e−04 5.62e+03 6.54e+03 2.61e−04 5.88e+03 7.42e+03
0.9 5.23e−01 7.22e+07 1.24e+08 2.90e+08 5.43e−01 1.77e+07 1.78e+07 1.35e+00 4.40e+07 4.43e+07

ℓ = 6 M = 200 N = 400

0.1 2.44e−04 2.43e+06 9.71e+06 2.23e+07 2.89e−04 4.33e+03 4.49e+03 2.89e−04 4.33e+03 4.49e+03
0.3 1.32e−05 6.80e+03 2.74e+04 2.25e+05 1.42e−05 4.96e+02 5.70e+02 5.28e−05 1.35e+03 1.47e+03
0.5 1.73e−05 2.07e+03 2.34e+03 1.69e+05 1.87e−05 8.85e+02 1.26e+03 8.05e−05 5.48e+03 6.74e+03
0.7 2.30e−05 2.46e+04 8.18e+04 8.43e+05 2.38e−05 5.82e+03 9.20e+03 2.44e−05 6.45e+03 1.01e+04
0.9 4.45e−03 3.10e+06 9.80e+06 2.46e+07 4.58e−03 5.84e+05 7.95e+05 4.99e−03 6.37e+05 8.67e+05

ℓ = 6 M = 300 N = 600

0.1 1.43e−05 8.56e+05 3.38e+06 8.43e+06 1.52e−05 1.48e+03 1.56e+03 1.52e−05 1.48e+03 1.56e+03
0.3 2.52e−06 4.85e+03 1.10e+04 1.98e+05 1.91e−06 4.19e+02 5.01e+02 6.68e−06 5.85e+02 7.12e+02
0.5 1.55e−05 2.59e+03 5.81e+03 3.64e+05 1.92e−05 9.88e+02 1.42e+03 2.27e−05 1.09e+03 1.56e+03
0.7 2.27e−04 1.85e+04 4.82e+04 9.24e+05 2.39e−04 5.16e+03 7.99e+03 2.69e−04 5.67e+03 8.71e+03
0.9 8.05e−02 4.60e+06 1.98e+07 4.62e+07 7.87e−02 1.14e+06 1.16e+06 8.76e−02 1.27e+06 1.29e+06

The coefficients x = [x1, . . . , x8]⊤ that minimize the sum of squares of the prediction errors, subject to the continuity
constraints, can be determined by solving LSE (1.1), where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 x21 x31 0 0 0 0
1 x2 x22 x32 0 0 0 0
...

...
...

...
...

...
...

...

1 xM x2M x3M 0 0 0 0
0 0 0 0 1 xM+1 x2M+1 x3M+1

0 0 0 0 1 xM+2 x2M+2 x3M+2
...

...
...

...
...

...
...

...

0 0 0 0 1 xN x2N x3N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
...

yM+1
...

yN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

C =

[
1 a a2 a3 −1 −a −a2 −a3

0 1 2a 3a2 0 −1 −2a −3a2

]
, d =

[
0
0

]
.

We randomly sample xi ∈ [0, 1]. For a randomly generated piecewise-polynomial function f̂ (x) with a predetermined a, we
compute the corresponding function value yi = f̂ (xi). As in the previous examples, we add randomperturbations on the data
via (5.1). The exact and perturbed solutions x and x +∆x are computed by the GQR method [2]. In the following numerical
experiments, we always choose L = In and compute the exact relative errors with the corresponding condition numbers for
different choices of a,M and N . The numerical results are displayed in Table 3.

FromTable 3, we observe thatwhen a = 0.1 and a = 0.9, the corresponding LSE problems have large normwise condition
numbers while the mixed and componentwise condition numbers only are large for a = 0.9. There are big differences
between normwise condition numbers and the counter parts of mixed/componentwise condition number when a = 0.1 for
different choices ofM and N . In Table 3, all of mixed/componentwise condition numbers are smaller than the corresponding
normwise condition numbers for different cases of a,M andN . Also it can be seen that when a = 0.9 the exact relative errors
are large which are consistent with the corresponding bounds given by condition numbers. Moreover, the upper bounds of
condition numbers can bound the related exact condition numbers. The numerical results show that our proposed condition
numbers and their corresponding upper bounds are effective.

6. Concluding remarks

In this paper we studied the perturbation analysis for the least squares problem with equality constraints. Condition
number expressions for the linear function of the LSE solution were derived. Moreover, sharp upper bounds for normwise,
mixed and componentwise condition numbers could be estimated efficiently by the Hager–Higham algorithm [23–25] via
taking account of the already computed decompositions ofmatriceswhen the generalizedQR factorizationmethod [2,6,8,30]
is adopted to solve LSE. On the other hand, some previous explicit condition number expressions on LS and LSE could
be recovered from our new derived condition numbers’ formulas. Numerical examples validated the effectiveness of the
proposed condition numbers.
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