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Abstract

With the evolution of High Performance Computing, multi-core and many-core
systems are a common feature of new hardware architectures. The required pro-
gramming efforts induced by the introduction of these architectures are chal-
lenging due to the increasing number of cores. Parallel programming models
based on the data flow model and the task programming paradigm intend to
fix this issue. Iterative linear solvers are a key part of petroleum reservoir
simulation as they can represent up to 80% of the total computing time. In
these algorithms, the standard preconditioning methods for large, sparse and
unstructured matrices – such as Incomplete LU Factorization (ILU) or Alge-
braic Multigrid (AMG) – fail to scale on shared-memory architectures with
large number of cores. Multi-level domain decomposition (DDML) precondi-
tioners recently introduced seem to be both numerically robust and scalable on
emerging architectures because of their parallel nature. This paper proposes a
parallel implementation of these preconditioners using the task programming
paradigm with a data flow model. This approach is validated on linear systems
extracted from realistic petroleum reservoir simulations. This shows that, given
an appropriate coarse operator in such preconditioners, the method has good
convergence rates while our implementation ensures interesting scalability on
multi-core architectures.

Keywords: Domain decomposition methods; Linear algebra; Parallel
computing; Runtime systems; Multi-core architecture; Reservoir simulation

1. Introduction

In basin modeling or reservoir simulations, multiphase porous media flow
models lead to solve complex non-linear Partial Differential Equations (PDE)
systems. These PDEs are discretized following a Finite Volume (FV) scheme
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which leads to a non-linear system solved with an iterative Newton solver. At
each Newton step, the system is linearized and then solved with an iterative
methods such as Biconjugate Gradient Stabilized (BiCGStab) [1] or General-
ized Minimal RESidual (GMRES) [2] algorithms, well suited for large sparse
and unstructured systems. Since this resolution part representing 60% up to
80% of the global simulation time, then the efficiency of linear solvers has a
straightforward effect on the simulators performance. The choice of a robust
preconditioner is therefore important to reduce the number of iterations required
to converge and to optimize in that way the cost of such iterative methods.

Nowadays, modern hardware architectures with an increasing number of
computational nodes, and with possibly several multi-core processors require
an important programming effort. To be efficient on such architectures, several
levels of parallelism need to be handled. The coarse grain-size level enables to
handle parallelism at the node cluster level and to manage distributed memory.
The finer grain-size levels deal with intra-node parallelism and local memory
management. Task programming paradigm is now a common way to manage
all these levels of parallelism. Task based runtime systems provide tools to
guarantee a good load balancing while taking care of data management.

The need of multi-level parallelims also induces difficulties from the algo-
rithmic point of view. To reduce the number of iterations, preconditioners must
not only be numerically robust regarding to reservoir simulation’s cases but also
scalable on multi-core systems. Incomplete LU Factorization (ILU) precondi-
tioner – described in [3] – is widespread, but the method is not scalable on recent
architectures. The Algebraic Multigrid (AMG) [4] is well-known in the reser-
voir simulation domain for its numerical performances with large, sparse and
unstructured matrices. However, it has be shown that the parallel method has
difficulties to take advantage of modern multi-core architectures [5, 6]. Recently,
Multi-Level Domain Decomposition (DDML) [7] preconditioner has been intro-
duced and seems to be efficient on recent architectures. Such a preconditioner
can also be tuned by choosing an appropriate coarse space correction such as
the one presented in [8] which guarantees numerical robustness on heterogeneous
coefficient problems.

The main contributions presented in this paper are :

• a way to parallelize preconditioning algorithms on multi-core machines by
using task programming model using HARTS [9] runtime system.

• a Finite Volume adaptation of the GenEO method presented in [8] to
handle linear systems coming from application based on Finite Volume
discretization.

• an efficient parallel implementation of this method in the DDML precon-
ditioner, using coarse and fine grain parallelism.

• a study of the numerical robustness and scalability performances of the
preconditioner of linear systems coming from reservoir simulations.
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This work is organized as follows: after introducing in section 2 the compu-
tational architecture trends that motivates our work, section 3 presents a way
to implement algorithms taking advantage of different levels of parallelism and
memory. Section 4 consists of an overview of common preconditioners used in
the reservoir simulation domain. The DDML preconditioner with an adapta-
tion of the GenEO method to handle linear systems coming from Finite Volume
application is detailed in section 5. Our parallel implementation and various
performance issues on many-core systems are discussed in section 6. Our work
is compared with related work in section 7 before concluding in section 8.

2. Computer architecture and Parallel programming model

Conceiving parallel algorithms is getting all the more challenging since new
computer architectures are getting more and more complex. Nowadays, multi-
cores chips invade large scale architectures, while the number of cores per node
continues to increase. Taking advantage of multi-levels of parallelism is the key
point to reach high performances. Moreover, applications benefit from several
levels of memory. For this reason, data exchange optimization is now unavoid-
able. This section relies first on computer architecture trends. We then review
some emerging tools that help to efficiently program parallel applications.

2.1. Computational Trend

Nowadays, massively parallel systems based on multi-core architecture in-
crease the complexity of programming. The rise of the number of cores imposes
to extract even more parallelism from algorithms. As applications may benefit
from a coarse-grain parallelism at node level and a fine-grain parallelism among
available processors in a node, load balancing is therefore important among com-
puting units to gain in efficiency. Memory hierarchy and data transfers between
local memories has to be also considered. Communication optimization at any
parallelism level is required to avoid memory contention and data latency.

2.2. Parallel Programming Model

Programming efficient programs for these multi-core architectures is chal-
lenging. Emerging runtime systems are based on parallel programming models.
Task-based runtime systems enable to split computations in smaller pieces of
work (i.e., a task), which are scheduled to favor efficient load balancing. Tasks
are organized in a Direct Acyclic Graph (DAG), according to data flow compu-
tations. A task is moved on a computational unit then executed when it is in
ready state – i.e., when there is no more dependencies on it.

Our work is based on the HARTS [9] runtime system which relies on abstract
concepts to manage the layer between application and hardware. It therefore
helps to distribute work between computation units and the associated data
movements between the different memories. The library is based on a hardware
model, a task model, a data model and an executing model. Its hardware
model is based on the Hardware Locality software Hwloc [10] and enables to
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Algorithm 1: BiCGStab Algorithm

Matrix A;
Vector b, p, pp, r, v;
Scalar a;
do

pp = inv(P).p;
v = A.p;
r += v;
a = dot(p,r);
if(a==0) break;
...;

while (|r| < tol ∗ |b|);

describe various heterogeneous architectures with different kinds of computer
units, different levels of memories and different kind of connections between
each units. Its task model enables to create and manage tasks objects with
multiple representations for the target devices on which they may be executed.
Task creation can be dynamic at runtime. All tasks are managed in a central
task pool which can be operated by all the working threads. An algorithm is
described as a DAG with tasks and their associated dependencies. At runtime,
a task can be replayed several times because of the persistence in memory of the
DAGs of tasks. The Data model enables to encapsulate the data manipulated
by task objects in DataHandler objects, managed and organized in a centralized
data manager. It also provides data partitioning tools and partial views of each
sub part of the data. Finally the Executing model provides concepts to describe
how tasks can be executed on each specific devices with the better performance.

3. A task-based linear algebra framework for multi-level parallelism

To handle the complexity of programming efficient linear algebra algorithms
on new parallel architectures, a specific API dedicated to the linear algebra
domain has been developed. It is aimed at expressing at a high level linear
algebraic algorithms with an implicit parallelism which hides the complexity of
managing multi level parallelism, the various memory configurations and low
level optimisations.

3.1. Abstract Linear Algebra API

Linear solver algorithms, in particular Krylov methods, can be viewed as
sequences of successive linear algebra operations which are executed iteratively
until reaching the convergence criteria. These operations are mostly level 1
or level 2 BLAS (Basic Linear Algebra Subprograms) vector operations, some
sparse matrix-vector products or some specific sparse matrix preconditioning
operations. We can consider for example a part of the BiCGStab [1] algorithm,
described in Algorithm 1.

These steps are implemented with our abstract algebraic API hiding the
parallelism and the underlying technical implementation details. That helps to
take advantage of complex architectures with a high level syntax as illustrated

4
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Listing 1: BiCGStab sequence

Part i t ionerType p a r t i t i o n e r ;
AlgebraKernelType a lg ( p a r t i t i o n e r ) ;
Matrix A; Vector p , pp , r , v ;
double alpha ;
SequenceType seq = a lg . newSequence ( ) ;
a l g . exec ( precond , p , pp , seq ) ;
a l g . mult (A, pp , v , seq ) ;
a l g . axpy ( 1 . , r , v , seq ) ;
a l g . dot (p , r , alpha , seq ) ;
a l g . a s s e r tNu l l ( alpha , seq ) ;
whi l e ( ! i t e r . stop ( ) )
{

a lg . p roce s s ( seq ) ;
}

in Listing 1 for the BiCGStab algorithm. The API provides data allocators,
most of the levels 1 to 2 BLAS functionalities and some specific preconditioning
operations.

At the API level, parallelism is implicit and semantic is sequential. Each
API’s function calls sets of tasks according to the data partition and the algo-
rithm.

A Partitioner object computes a data distribution according to the number
of desired partitions. This object also provides data views and range iterators
at execution time to operate task’s data. Data flow dependencies are explicitly
expressed. Tasks are then organized in a Direct Acyclic Graph (DAG). One of
the main features of the API is to deal with iteration. A Sequence object is a
sub-set of tasks that can be replayed several times to enable loop algorithms
execution as in Listing 1.

3.2. Multi level parallelism

A Task decomposition is created from data structure partitioning. Sparse
matrices are stored in Compressed Sparse Row (CSR) format. The paralleliza-
tion of linear algebra algorithms is based on matrix dual graph partition tech-
niques well described in [11]. The dual graph GA(V,E) of a matrix A = (ai,j)
is a set V of vertices vi representing the rows i of A, and a set E of edges
ei,j between vertices vi and vj representing non zero entries ai,j 6= 0. Graph
partitioners aim to split the matrix dual graph in sub-domains, while balanc-
ing the non-zero entries of the matrix and limiting the communication with the
neighborhood. Associated to renumbering techniques, algebraic data are split
regarding the graph partition, then gathered contiguously in memory for mem-
ory locality reasons. The graph partition is computed once and then handled by
the API. The Partitioner object returns a set of range of matrix row indexes.
They are associated with contiguous memory range. Algorithms are then split
in tasks processing each of these ranges of memory.

5
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Figure 1: Multi level domain partition

Hierarchical partitioning algorithms enable to handle the distributed mem-
ory system and several levels of parallelism. The first level of partition aims at
distributing data between MPI processes, at separating interface data that re-
quire synchronizations with MPI communication, and at handling coarse grain
size parallelism. The other levels of partition aim at managing data locality and
fine grain parallelism levels. Figure 1 illustrates a two-level partition leading to
2 coarse domains (MPI D0 and MPI D1) processed by 2 MPI processes and
8 finer domains (SD0,0,. . . ,SD0,3 for MPI D0 and SD1,0,. . . ,SD1,3 for MPI
D1) processed by 8 threads (4 by MPI processes) to handle MPI communica-
tions and fine level parallelism. In this figure, it is noticeable that the boundary
between the two coarse domains is only shared by the two subdomains SD0,3

and SD1,3. Thus the subdomains SD0,0, SD0,1 and SD0,2 of MPI D0 are not
connected to any subdomain of MPI D1. In the same way the subdomains
SD1,0, SD1,1 and SD1,2 of MPI D1 are not connected to any subdomain of
MPI D0. With such kind of partition, one can easily understand that only
tasks related to SD0,3 and SD1,3 depend on MPI communications. The other
tasks related to one MPI process can be executed independently of the tasks
related to the other processes.

At the coarser level of parallelism, each MPI process manages algorithms
related to level 0 coarse subdomains. These algorithms are then organized
in smaller tasks related to level 1 finer subdomains. MPI communications are
encapsulated in tasks related to level 1 subdomains connected to the boundaries
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between level 0 MPI subdomains. The parallelism between tasks of a same
MPI processes relies on data dependencies and is managed by HARTS runtime
system. These tasks may have access to data related to other subdomains of a
same MPI process. Reducing the size of boundaries between level 1 subdomains
aims to reinforce data locality and tp prevent access to data that may be far in
memory.

4. Preconditioning methods overview

Preconditioners aim to improve the convergence rates of iterative linear
solver algorithms. The Incomplete Factorization preconditioner (ILU) [3], the
Algebraic MultiGrid (AMG) preconditioner [4] are the most common methods
used in reservoir simulation. The Multi-Level Domain Decomposition (DDML)
methods have gained in popularity with the last developments proposed in recent
research works that improve their convergence rates on heterogeneous problems.
In this section, these preconditioning techniques and their parallel implementa-
tion with a task programming model are reviewed. First, ILU preconditioner is
detailed, then AMG and finally DDML are considered.

4.1. Incomplete LU Factorization (ILU)

Given a factorization of a large sparse matrix A such that

A = LU, (1)

where L is a lower triangular matrix, and U an upper triangular matrix. It is
well known that usually in the factorization procedure, the matrices L and U
have more non zero entries than A. These extra entries are called fill-in entries.
The incomplete LU factorization (ILU) [11] consists in dropping some of these
elements. In the zero degree incomplete version, ILU(0), all these entries are
dropped. The preconditioning operation, not naturally parallel, solves LUx = y
with a backward substitution followed by a forward substitution.

This preconditioner, efficient for standard cases (i.e., not ill-conditioned and
moderate problem size), is not naturally parallel, since its algorithm is recur-
sive. This algorithm may be parallelized at a coarse grain size as presented in
[12, 13]. In that case, task programming associated with domain decomposi-
tion and renumbering techniques enables to extract different hidden levels of
parallelism. Figure 2 illustrates the DAG of the BiCGStab sequence written
in Listing 1 with the ILU0 preconditioner and the partition of Figure 1. The
partitioner splits the global domain into 6 not connected interior domains and
2 interface domains connecting the previous ones. The chosen partitioner al-
gorithm aims to maximize the size of the independent interior domains and to
minimize the size of interface domains creating dependencies between all the do-
mains. Thus, tasks associated with interior domains can be executed in parallel,
while the runtime system scheduler extracts automatically a two levels paral-
lelism between tasks associated with interface domains. We have implemented
the ILU0, ILU0−MPI and ILU0−MPIX variant of the ILU0 preconditioner
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Figure 2: ILU0 BicgStab sequence DAG

with respectively thread parallelism, MPI parallelism and with a hybrid MPI
and thread parallelism.

In [14] a variant of the ILU0 algorithm is proposed. This variant is well
adapted for fine grained parallelization. It consists in replacing the factoriza-
tion, the backward and forward substitution by several steps of SpMV oper-
ations. That enables SIMD optimisations combined with task programming
parallelization. This method denoted ILU0F avoids in one hand renumbering
techniques which may have a negative impact on the matrix condition number.
It depends in the other hand of two parameters niterF and niterS , the number
of steps to perform respectivelly the factorization and the resolution phase of
the preconditioner. These parameters have an impact on the robustness of the
method regarding the standard coarse grained parallelized algorithm ILU0. In-
deed even if the parallelization of ILU0F may be more efficient, more iterations
are often required nevertheless to converge with this preconditioner than with
ILU0.

4.2. Algebraic Multigrid Methods (AMG)

Algebraic MultiGrid (AMG) [4] is a complex algorithm widely spread in
domains dealing with diffusive problems because of its robustness properties on
large sparse and unstructured systems. The setup phase is non-negligible in
the total solving time because of the cost at each level of the construction of
the coarse grid, the interpolation and the restriction operators. The setup time
may be longer than the solving time when the solver requires few iterations to
converge. The solving phase is composed of two complementary operations, the
smoothing and the coarse grid correction steps. The first one attempts to reduce
high-frequency error by the application of a smoother, also called the relaxation
method. The coarse grid correction eliminates low-frequency error. It performs
a transfer of information to a coarser grid (also called the restriction operator), a
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coarse-grid system is then solved and finally during the interpolation operation,
the solution is send back to the fine grid. AMG is an O(n) method where the
cost on each level is of the order of the number of degrees of freedom of the
level. This algorithm is well known for its extensibility as its convergence rate
is usually independent of system sizes for diffusive problems which is the case
of reservoir simulation.

This preconditioner is provided by the Hypre [15] library under the name
of BoomerAMG as a black box with both an OpenMP-based [16] and a MPI-
based implementation. As in our current version, we cannot manage in a same
run concurrent pool of threads, for instance the one provided by the OpenMP
runtime system of the Hypre library and the one provided by HARTS, we focus
only on the MPI-based implementation of BoomerAMG. We have integrated
it in our task-based API using a coarse grained MPI parallelism paradigm.
Following this formalism, the setup phase and the solving phase of AMG have
been split in two different tasks which have been inserted in the DAG. In such
MPI version, when we use only one thread by MPI processes, tasks are executed
sequentially on each of them.

5. A parallel implementation of the DDML method for FV scheme

5.1. Multi-Level Domain Decomposition Method

Multi-Level Domain Decomposition preconditioners are based on the classi-
cal Additive Schwarz method (ASM) [17] introducing a coarse grid correction
in order to have a scalable method. The original ASM method is well known
to be fully parallel however it suffers of slow convergence in iterative algorithms
especially for large number of domains due to the lack of global information
transfer on the all domain. This issue has been fixed by introducing a coarse
space correction built on top of two main ingredients: a matrix Z ∈ Rn×m

where n is the dimension of the linear system, m � n and a coarse correc-
tion consisting in solving a coarse grid problem of size m×m. The spirit of the
method is to use a deflation technique by defining a coarse space spanned by the
columns of the matrix Z representing the vectors responsible of the stagnation
of the convergence of the ASM method. The variants of Multi-level Domain De-
composition (DDML) methods [7] differ from each other by the chosen coarse
operator. From a linear algebra point of view, the stagnation of the conver-
gence rate corresponds to a few very low eigenvalues in the spectrum of the
preconditioned system.

Our work is focused on the Generalized Eigenvalue in the Overlap method
(GenEO) [8], which incorporates the low frequency modes in the coarse grid
construction. This method is interesting as it enables to achieve scalability
on highly heterogeneous problem. The coarse operator is originally designed
for finite element discretizations. It requires to build and then to solve inde-
pendent generalized eigenvalue problems on each sub-domain. In the standard
method this is realized using the basis function structures of the FE discretiza-
tion method. This is not possible in the context of Finite Volume discretizations
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as such structures are not available. To build equivalent generalized eigenvalue
problems, at a algebraic level, we have introduced some algebraic sub-matrices
extraction procedure with modifications that mimic the behaviour of FV bound-
ary conditions on sub-domains boundaries.

To better explain the introduced extraction procedure, we consider for in-
stance the following PDE representing an elliptic model diffusion problem 5.1:

We denote Ω ⊂ Rd with d ∈ {1, 2, 3}, ΓD ∪ ΓN = ∂Ω
The problem reads:
find u : Ω→ R verifying :





∇ · (−κ∇u) = 0 in Ω,

u = g on ΓD,

∂nu = f on ΓN .

We suppose that in the discretization of our PDE on Th, a simplicial tri-
angulation of Ω, we need to solve the linear system Ax = b with x,b ∈ Rn.
The vector x represents the values of the discrete solution uh on the degrees of
freedom.

Domain decomposition methods consist in introducing a domain partition
Ω = ∪iΩi with p sub-domains without overlap. Sub-domains completed with
an overlap are denoted Ωδi . We introduce p sub-meshes T ih with Th = ∪iT ih.
At the continuous level, p independent sub-problems Pi are defined and their
discretization leads to p independent linear systems Aix = bi.

To ensure the extensibility, DDML methods introduce a coarse grid correc-
tion with the form I − ZE−1ZT where E = ZTAZ is the matrix of the coarse
problem. The GenEO method consists in defining Z with the lowest eigenvectors
of several independent generalised eigenvalue problems built by discretizing the
Dirichlet-to-Neumann (DtN) map on each sub-domain, defined in the following
way:

For any function uΓi : Γi → R
uΓi → DtNΩi(uΓi) = ∂v

∂ni
|Γi where v satifies :





∇ · (−κ∇v) = 0 in Ωi,

v = uΓi on Γi,

v = 0 on ∂Ωi ∩ ∂Ω.

The idea is to incorporate the smallest eigenvalues, responsible of the con-
vergence stagnation.
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We define the deflation matrix Z as :

Z =




W1 0 . . . 0

0 W2

...

...
. . . 0

0 . . . 0 Wp




(2)

where Wk = [DkXk1, . . . , DkXkνk ] are defined with νk eigenvectors kXki

corresponding to the νk smallest eigenvalues λki of the following generalized
eigenproblems Gk: DtNΩk(u) = λu.

The variational formulation reads : Find (v, λ) such that

∀w,
∫

Ωk

κ∇v · ∇w = λ

∫

∂Ωk

κvw

At a algebraic level, this formulation can be written as follows:

ÃkXk = λkDkÃ
0
kDkXk

where :

• Ãk is restriction on Ωδk.

• Ã0
k represents restriction on overlap.

• Dk stands for the Unity partition as defined in [7].

This defines p generalized eigenvalue problems Pk : Akx = λBkx of size nk
dimension of Ωδk. The matrices Ak and Bk come from the discretization of the
continuous generalized eigenvalue problems with the discretization scheme used
to discretized the main PDE problem.

Let Th = ∪kτi where τi denotes the cells of the mesh. Let ∂τi = ∪jσj where
(σj) denotes the faces of the cells τi.

In the original context of Finite Element or Discontinuous Galerkin, it is
generally possible to have access to the local matrices representing the local
contribution of basis function to the global linear system. We denote φk the basis
function of the FE discretization method. The matrix Ãk is built considering
only the internal basis functions of Ωδk, the basis functions related to the internal
cells:

(Ãk)i,j =
∑

τ∈Ωδk

aτ (φj , φi)

That only requires to know Aτ = (aτ (φk, φl))k,l.
In the context of Finite Volume schemes, we have introduced an extraction

procedure to build in an algebraic way the matrices Ai and Bi. This consists
in extracting the two matrices from the assembled global matrix A, with some
local transformations designed on each boundary Γi to mimic the behaviour
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Figure 3: FV discretization on the overlap

of partial assembly of basis function contribution. In Finite Volume methods
based on flux formulation, the discretization procedure consists in integrating
the strong formulation of the PDE on each cell τk :

eqk :

∫

τk

∇ · κ∇u

.
In our system Ax = b, the vector solution x = (xi) represents usually the

discrete values of the piecewise constant function uh on the degrees of freedom.
The lines k of the matrix A related to the equation eqk may be written for our
model problem as follows : ∑

σ∈∂τk
Fσ(x) = 0

. where σ are the faces of τk and Fσ(x) =
∑
j∈Jσ T

σ
j xj represents the linear

discretisation of the flux across the face σ.
For τk ∈ Ωδk, considering the discrete flux Fσ(x) =

∑
j∈Jσ T

σ
j xj , we can

partition Jσ = Jint ∪ Jext into Jint related to indices of degrees of freedom in
Ωδk and Jext related to indices of degrees of freedom external to the domain.
For instance, let us consider a two-point flux approximation. In figure 3, the
equation related to the cell τi reads : ai,ixi+ai,j1xj1 +ai,j2xj2 +ai,j3xj3 = 0 with
ai,i = Tj1 +Tj2 +Tj3 , ai,j1 = Tj1 , ai,j2 = Tj2 and ai,j3 = Tj3 . The discretization
of fluxes on the faces of τi involve the indices of J = {j1, j2, j3}. We have then
Jint = {j1, j2} and Jext = {j3}.

At an algebraic level, considering only the global matrix, we cannot han-
dle local matrices or partial assembly based on basis function. In order to
mimic the discretization of the Neumann boundary condition with a Two-Point
Flux Approximation, we introduce extra equations between external unknowns
(xi)i∈Jext and internal ones (xi)i∈Jint . With these extra equations, external
matrix entries can then be eliminated with a kind of Schur procedure that leads
to modify the internal matrix entries. For instance, in the case of 3, with a
two-point approximation of the Neunmann boundary condition, we introduce
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the equation xi = xj3. We eliminate the extra diagonal entry Ti,j3 and modify
the diagonal entry as follows ai,i = ai,i + ai,j3 .

(Ãk)i,j =
∑

j∈Vi∩Ωδk

Tij(ui − uj)

Ãk =

(
AII AIO

AOI ÃOO

)
(3)

The new restricted equation is written : ãi,ixi + ai,j1xj1 + ai,j2xj2 = 0 with a
TPFA diagonal correction : ˜ai,j = ai,j − ai,j3

To summarize, our method consists in building each generalized eigenvalue
problem for each sub-domain Ωδi by extracting the matrices Ai and Bi from
the global matrix A : only the lines related to the equations linked to the cells
τk ∈ Ωδi are considered; the external entries of these lines are dropped, some
corrections are realized to mimic the discretization of a Neumann boundary
condition.

5.2. Elements on the DDML preconditioner extensibility and robustness theo-
retical analysis

The GenEO preconditioner has been originally developed in the context of
the Finite Element and Galerkin methods. A theoretical analysis of its extensi-
bility and its robustness for diffusive problems is realized in [8].

The variational formulation of the diffusive problem 5.1 reads:
Find u ∈ H1

0 (Ω) such that ∀v ∈ H1
0 (Ω),

∫
Ω
κ∇u · ∇v =

∫
Ω
fv.

For any domain D ⊂ Ω we use the norme ‖.‖L2(D) and seminorm |.|H1
D

The discretization of 5.2 on a mesh Th with a P1 Finite Element method
leads to solve a linear system Ax = b.

We denote λmin ≤ . . . ≤ λm ≤ . . . ≤ λmax the eigenvalues of the pre-
conditioned system M−1

GenEOA, where M−1
GenEO represents the GenEO precon-

ditioner. We consider a domain partition Ω = ∪iΩi with p non overlapping
sub-domains and Ωδi the sub-domains completed with their overlap. We denote
{Ei}1≤i≤p and {Ri}1≤i≤p, a partition of unity related to {Ωi}1≤i≤p and its ma-
trix representation.

The analysis detailed in [8] proves that the bound of the condition number:

cond(M−1
GenEOA) =

λmax
λmin

depends neither on the number of sub-domains p nor on the variation of the
values of the tensor κ. Here are the key elements of this analysis.
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Definition 1. Let be k0 = maxτ∈Th(#{Ωj : 1 ≤ j ≤ p, τ ∈ Ωj), the maximum
number of sub-domains sharing one grid cell τ ∈ Th.

Lemma 1. λmax(M−1
GenEOA) ≤ k0 + 1

Definition 2. Given a coarse space VH ⊂ Vh, some local sub-spaces {Vh,0(Ωj)}1≤j≤p
and a constant C0, a C0-stable decomposition of v ∈ Vh is a family of functions
{zj}0≤j≤p that satisfies :

• v = Σpj=0R
T
j zj , with z0 ∈ VH , zj ∈ Vh,0(Ωj) for j ≥ 1

• and ‖z0‖2 + Σpj=1‖zj‖2 ≤ C2
0‖v‖2.

Theorem 2. If every v ∈ Vh admit a C0-stable decomposition (with uniform
C0) then λmin(M−1

GenEOA)) ≥ C−2
0 .

Corrolary 1. cond(M−1
GenEOA) ≤ C2

0 (k0 + 1).

Lemma 3. The GenEO method consists in building a C0-stable decomposition
with C2

0 = 2 + k0(2k0 + 1)max1≤j≤p(1 + 1

λjmj+1

).

Consdering the p generalized eigenproblems Gj defined in the previous section,
a number of mj of eigenvectors corresponding to the lowest eigenvalues of each
Gj are selected to build a coarse space VH and a family of projectors {Πj}1≤j≤p
to build the local sub-spaces {Vh,0(Ωj)}1≤j≤p of the C0-stable decomposition.

Remark 1. For any 1 ≤ j ≤ p, let mj := min{m : λjm+1 >
δj
Hj

where δj is a

measure of the width of the overlap of Ωδj and Hj = diam(Ωj), then

cond(M−1
GenEOA) ≤ 2 + k0(2k0 + 1)max1≤j≤N (1 +

Hj

δj
)

which proves the extensibility of the method regarding the number of sub-
domains p and its robustness regarding the values of the tensor κ.

The DDML method aims to extend the GenEO method to linear systems
coming from problems discretized with Finite Volume methods.

Using TPFA (Two-Point Flux Approximation) methods, the discretization
of diffusive problems on Cartesian or K-orthogonal meshes leads to linear sys-
tems with properties equivalent to the ones obtained using P1 FE methods. It
is then reasonable to extend the analysis realized for the GenEO method to this
case.

For the large family of MPFA (Multi-Point Flux Approximation) [18], VAG
(Vertex Approximation Gradient)[19], DDFV (Discrete Dual Finite Volume)[20]
and Hybrid Mimetic Mixed (HMM)[21] methods, the Gradient Dicretization
(GD) formalism presented in [22] gives an abstract unified framework providing
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tools for functional analysis. Such framework including conforming and non
conforming FE methods like the Pk, the RTk methods gives a unified perspec-
tive enabling to extend the analysis of GenEO method. Considering then the
extra stability terms, usually required to guaranty numerical properties such
as coercivity, symetry and positiveness of matrices, . . . of these methods, this
perspective may enable to extend the DDML method to linear systems coming
from the discretization of diffusive problem using more these large family of FV
methods.

5.3. A task based parallel implementation with HARTS

Considering Z the deflation matrix, E the coarse matrix E = ZTAZ, M
the block diagonal matrix representing the ASM preconditioner, the DDML
preconditioner algorithm consists in computing :

um+1 = um + P−1(b−Aum)

as follows:

• Compute residual : rm = b−Aum

• Compute restriction : rc = ZT rm

• Solve coarse problem : Evm = rc

• Compute interpolation : em = Zvm

• Compute residual : rm+1 = b−A(um + em)

• Solve local problem : Mem+1 = rm+1

• Update iterate : um+1 = um + em+1

This can be written algebraically as follows :

um+1 = um + ZE−1ZT (b−Aum) +M−1(b−A(um + ZE−1ZT (b−Aum)))

= um +
[
M−1(In −AZE−1ZT ) + ZE−1ZT

]
(b−Aum).

Introducing the following operators :

• Comp Res. Op : y = b−Ax

• Interp. Op : y = Zx

• Restric. Op : y = ZTx

• Coarse Op : y = E−1x

• Local Solv. Op y = M−1x
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we have implemented our DDML method with the task programming framework
based on HARTS described in section 3.1. The algorithm is composed of several
parallel operations (Comp Res. Op, Interp. Op, Restric. Op and Local Solv.
Op) that can be applied independently to each partition domain. There is also
Coarse Op the coarse operation applied to solve a global coarse system. All these
operations are implemented within tasks organized in a DAG as illustrated in
Figure 4.

Figure 4: Multi-Level Domain Decomposition meth. DAG

The two most consuming phases are the resolution of the local problems im-
plemented by the Local Solv tasks and the resolution of the coarse problem im-
plemented the Coarse Op task. To solve the local problems we use either direct
LU solvers or iterative methods (such as BiCGStab or ILU(0)-preconditioned
BiCGStab method . The coarse problems with generally small sizes are solved
with a direct sparse LU solver. Linear solver algorithms are implemented with
structures of the Eigen [23] library. We use also implementations with our own
data structures and algorithms with specific optimizations like SIMD instruc-
tions. BLAS operations (AXPY tasks), the deflation operations (Interp. Op,
Restric. Op) are implemented using the MKL library.

5.4. Parallelization issues on shared and distributed memory architecture

To build algebraically the independent general eigenvalues problems with
only the global assembled matrix, various parallel issues have to be handled.
The parallelization of the method is based on a multi level partition of the
mesh Th on which the PDE problem has been discretized. The first level aims
to manage coarse grain parallelism with MPI, while the other levels aim to
manage fine grain parallelism. Figure 5 illustrates a two level mesh partition
with two MPI domains P0 and P1. Each of the MPI domains is partitioned at
a second level in two other sub-domains. P0 is divided in the two sub-domains
sD0P0 and sD1P0. For each sub-domain Ωk, the overlap is divided in two
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parts, the first one related to the intersection between sub-domains of the same
MPI domain (for instance SD0P0 and sD1P0), and a second one related to the
intersection of sub-domains of different MPI domains (for instance sD0PO and
sub-domains of the MPI domain P1).

Figure 5: Two level partition for Hybrid MPI-X parallelism

Data related to overlaps shared between sub-domains are duplicated. Some
synchronizations are required then to ensure the coherency of these duplicated
data. Within a same MPI domain, these synchronizations are realized with
simple data copy operations thanks to the shared memory. The overhead due
to the cost of such operations is related to the performance of the memory
bandwidth. For the overlaps between sub-domains that do not belong to the
same MPI domain, some MPI communications are required. The overhead
due to the cost of these communications is related to the performance of the
interconnect network.

In the building phase of the generalized eigenvalue problem Aix = λBix on
each sub-domain Ωδi , the extraction of the matrices Ai and Bi requires matrix
manipulations on the entries related to the intersection of Ωδi with the other
sub-domains Ωj . When the two sub-domains belongs to the same MPI domain,
these manipulations are simple as all equations entries are available in mem-
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ory. This is not the case when they belong to two different MPI domains. The
matrix entries of the external part of the matrix are not available and some
MPI communications are required. The restricted equation extraction has to
be realized on the processor where the whole equation is available in memory,
then a communication is required to send the results to the processor on which
the eigenvalue problem is built. For instance on sub-domain sD0P0 the ma-
nipulations related to the overlap shared with the MPI domain P1 have to be
computed on the MPI process managing domain P1. The results have then to
be communicated to the processor managing domain P0 where the generalized
eigenproblem of sub-domain sD0P0 is built and solved.

5.5. Parallel performance analysis

In this section we analyze the influence of the sizing parameters of the DDML
algorithm on the performance of the method. We denote nt the global size of
the linear system, np the number of sub-domain of the mesh partition and nev
the number of eigenvalues used to build the coarse system. We denote nl the
average size of the local problem on each sub-domains and nc the size of the
coarse system. We have then nl = nt

np
and nc = np ∗ nev. To ensure the

extensibility of the methods nev could be automatically determined with the
formula given by [8]. In practice, nev is increased manually according to np.

In Table 1 we gather the sizes of the main algebraic operators involved in the
algorithm and their evolution with respect to np the number of sub-domains.

Task Op Size S(np)
LocalSolv. Op nl ∗ nl ↘
(Rest./Inter.)Op nl ∗ nev ↘
(Blas,Res)Op nl ↘
Coarse Op nc ∗ nc ↗

Table 1: Number of iterations

Analysing the Table 1, we can notice that the cost of the parallel operators
Local Solv. Op, (Rest./Inter.) Op, (Blas,Res) Op decreases when np increases.
As these problems are independent and can be solved in parallel, increasing
the number of domains reduces the global cost of theses local operators. The
cost of the coarse operator is proportional to the number of partitions times
the number of eigenvalues to incorporate. The performance of this sequential
part increases then with the number of sub-domains. Thus a compromise has
to be done to optimize the performance of the parallel region while limiting
the cost of coarse operator. The associated task of this last operator is indeed
a synchronization point for all the threads. To reduce the complexity of the
global algorithm, we chose a number of partitions that enables to reduce the
cost of each local resolution and to fit local memory caches while preserving a
size of the coarse problem that limits the penalty of this synchronization part
preventing it to become a real bottleneck.
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We can analyze also the impact of the sizing parameters on the choice of
data structures and solver algorithms. In Table 2 we gather the various available
matrix formats and solver algorithms. We indicate their impact on memory and
eventually their optimization features.

Matrix Format Algo Mem Optim
CSR SparseLU low seq
Dense DenseLU high seq
Bande SIMDBDLU medium simd
BlockTile ParLU high par

Table 2: Available Data structures and direct solver algorithms

Analysing this table, we can understand that the choice of the matrix format
and the solver algorithms deeply depends on the sizing parameters (nt, np and
nev). Regarding the target hardware architecture, the algorithm to choose the
best matrix format and algorithms for LocalSolv. Op and the CoarseOp may
be complex and require expertise.

6. Experiments

6.1. Experimental Protocol

The experiments have been run on a node of a linux machine1 with a Knights
Landing processor which handles 32 bi-cores processors, 16GB of MCDRAM
high bandwidth memory and 64GB of DRAM standard memory. The KNL
processor cores topology was configured with the Quadrant mode. The MC-
DRAM memory was configured as a cache for DRAM.

The library has been compiled with the Intel 2018 compiler with GCC 7.3
compatibility, activating AVX512 vector instructions. Data structures are split
via a graph partitioner based on the Metis library. All the BLAS kernels are
performed with the MKL library with MKL NUM THREADS = 1 to desac-
tivate the internal library multi-threading feature. The coarse systems of the
DDML preconditioners are solved with the SuperLU algorithm provided by the
Eigen 3.4 library. For the local systems on each subdomains, either a AVX512
optimised LU algorithm with matrices with a Band Structure format is used,
or the SuperLU algorithm of Eigen 3.4 library with matrices with the CSR
format.

The linear systems used for the experiments were extracted either from sim-
ple 2D Laplacian problems on a unit square discretized with grids of size Nx×Nx
leading to systems of size Nrows = Nx ∗ Nx, or from the simulation of the
well known realistic reservoir study case SPE10 [24] leading to systems of size
Nrows = 106.

1Linux machine of LIP at ENS Lyon
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6.2. Sizing parameters influence performance analysis

In this section, we analyze the influence on the performance of the solver
of the sizing parameters Nrows the linear system global size, np the number of
subdomains used in the DDML method and nev the number of eigenvalues used
to build the coarse system. We solve linear systems with Laplacian matrices of
sizes Nrows = 2.5 ∗ 104 and Nrows = 106. We evaluate the performance using
np = 64 and np = 128 and with values of nev in {4, 8, 16, 24, 32}.

The benchmark is realized with two configurations of the solver, the first
one Cth with a thread based parallelization and a second one Cmpi with an MPI
based parallelization.

In figure 6 and 7 we plot in function of the number of cores nc, the inverse
1
Tnc

of the execution time Tnc of the resolution with configuration Cth, for

Nrows = 2.5 ∗ 104 and Nrows = 106, respectively.
In figure 8 and 9, we plot as well the same results with configuration Cmpi,

for Nrows = 2.5 ∗ 104 and Nrows = 106, respectively.
Analyzing these figures, we can see the effects of both np and nev on the

performances of the solver. Considering the smaller case, Nrows = 2.5 ∗ 104 the
best performances are obtained for np = 64 while for the larger case, Nrows =
106, the best performances are obtained for np = 128. We observe the influence
of nev on the performances depending on bothNrows and the number of cores nc.
We obtain the best performance with nc = 32 and nev = 24 for Nrows = 2.5∗104,
and with nc = 32 and nev = 32 for Nrows = 106. The runs on 64 cores suffer
from the fact that the resolution of the coarse problem is not parallelized, and
this effect is all the more important since nev or np is high. All these observations
are coherent with the fact that the size of the coarse system is equal to nev ∗np.
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Figure 6: Configuration Cth, Laplacian matrices : Nrows = 2.5104

6.2.1. Preconditioners benchmark on SPE10 study case

We tested different configurations of the preconditioners on a linear system
extracted from a simulation of the SPE10 reservoir study case. This study case is
well known for its highly heterogeneous data leading to ill conditioned linear sys-
tems. For the ILU(0) preconditioner, we test the ILU0, ILU064 and ILU0mpi
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Figure 7: Configuration Cth, Laplacian matrices : Nrows = 106
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Figure 8: Configuration Cmpi, Laplacian matrices : Nrows = 2.5104

configurations corresponding respectively to the multi-thread version using a
number of partitions equal to the number of cores and to the multi-thread ver-
sion using 64 partitions and to the MPI version. For the DDML preconditioner,
we have tested the DDML4, DDML8,DDML16 and DDML32 configurations
corresponding to a number of eigenvalues nev equal to respectively 4, 8, 16 and
32, and a number of partitions equal to 256. We have also tested the AMG pre-
conditioner using the MPI version of the Hypre library without multi-threading.
The option parameters of the AMG algorithm have been tuned for linear sys-
tems extracted from realistic reservoir simulation. The strong threshold is set
to 0.15, the coarsening option to PMIS with the extended interpolation option.
The other parameters are set to the default settings of the version 2.10 of the
library.

In figure 10 we plot the residual of the linear solver in function of the number
of iterations.

The analysis of the figure shows that the convergence behaviour of the DDML
method is close to the behaviour of the AMG preconditioner, the state of art
preconditioner in reservoir simulation.
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Figure 9: Configuration Cmpi, Laplacian matrices : Nrows = 106
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Figure 10: Comparison of the residual of preconditioned BiCGStab of SPE10 matrix system
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ILU0 ILU064 ILU0mpi AMG
370 382 370 3

DDML4 DDML8 DDML16 DDML32

33 15 9 6

Table 3: Number of iterations

In Table 3 we gather the number of iterations Niter required to converge for
a tolerance value of 10−4.

We plot in Figure 11 a) the execution time in function of the number of cores
nc. In 11 b) we plot the parallel speed-up S = T1

Tnc
where T1 and Tnc are the

execution time on 1 and nc cores, respectively.
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Figure 11: KNL Single node performance results

For the preconditioner DDML, we can see in Table 3 that when the number
of eigenvalues nev grows, Niter decreases. The best performances are obtained
for nev = 16. The DDML preconditioner has a very good parallel efficiency up
to the 32 cores. Beyond 32 cores, its efficiency decreases. This is due to the fact
that the coarse solver, not yet parallelized, becomes a bottleneck all the more
since its cost grows with nev as for instance nev = 32. The ILU0 preconditioner
is the less efficient preconditioner. The required number of iterations Niter is
much greater than for the two previous preconditioners. The parallel efficiency
of ILU0 decreases quickly with the number of cores nc.

7. Related Works

Our work has been motivated by the works described in the reference pu-
plication [7] in which multi level decomposition domain methods are studied
on a large range of diffusive problems, among them Darcy problems, elasticity
problems, Helmholtz problems . . . . Most of these works refer to Finite Element
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discretization methods. In [25] the authors realize a performance study on a
large scale multi-node cluster with MPI parallelization. In [26], an overview of
Two-Level methods is realized and the DDML method is compared to other
similar multi level methods. The AMG remains a state of art method in Reser-
voir simulation and its MPI version is very efficient. In [16], some improvements
of AMG for shared memory machines are presented. These improvements rely
mainly on the OpenMP paradigm. Other Multi level methods are available in
package like Trilinos (the ML method) [27] and Dune-ISTL [28].

The API of our framework is very similar to those provided by popular
frameworks like PETSc [29], Hypre [15], Trilinos [30] : it exposes at a high level
linear algebra functions while hiding the low level complexity of parallelism
thanks to a Partitioner object aimed at splitting matrices and vectors into con-
tinuous and coherent sub vectors and sub matrices. Definitely the originality of
our approach is to clearly separate the definition in a declarative way of algo-
rithms by sequences of function objects, from the execution of these sequences
that can be performed several times within iterative loops. That enables cross
optimizations between different linear operators within each sequence, but also
at the iterative level for multiple executions of a same sequence. Such optimiza-
tions are more difficult to realize in frameworks where operations are provided
as black boxes. Recently, developers of PETSc introduce the GPU implemen-
tation of the library [31]. However, it shows that moving from one architecture
to another is not easy and requires a huge programming effort. In our work, we
can show how such integration like for instance the introduction of new kernel
implementations with SIMD optimizations, is easier in our framework designed
on top of a runtime system. Contrary to PETSc for the GPU implementation,
we do not have to take care about data allocation and movement between the
CPU and the GPU as it is managed through the runtime system.

Approaches based on runtime systems for sparse linear algebra with large
unstructured matrices is only tackled in few research works like in the GHOST
framework [32]. In fact, runtime systems like Cilk [33] do not manage data de-
pendencies while the well known ones like Ompss [34], StarPU [35] have proved
their efficiency for coarse grained parallelism, but not really for very fine grained
parallelism. This issue, all the more important for sparse linear algebra since
many-core processors or GP-GPU become a common feature in hardware archi-
tectures, is discussed on the other hand in [36] with Xkaapi runtime.

8. Conclusion and Future Work

This paper demonstrates the interest of using an abstract linear algebraic
API aiming at implementing parallel algorithms. The API has been developed
on top of HARTS, a task-based runtime system which manages complex parallel
architectures. It provides common sparse linear algebra kernels. A distributed
task queue is set up to enhance load balancing and a scheduling policy is pro-
vided to enforce data locality.

Furthermore an adaptation of the GenEO method presented in [8] has been
proposed to handle at an algebraic level linear systems coming from the Finite

24

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Volume discretization of diffusive problem. Some details on the implementation
of the proposed variant of the GenEO method in the DDML preconditioner with
our task based linear framework have been given.

This new approach has been benchmarked with large sparse linear systems
coming from reservoir simulation, showing the ability of the API to provide ef-
ficient preconditioners on KNL architectures with both thread based and MPI
based parallelism. It also confirms that DDML preconditioner is able to scale
very well on this architectures, meanwhile some optimizations are still required
on the local and coarse solvers. In reservoir simulation, with highly heteroge-
neous data that lead to ill conditioned linear system, AMG remains a state of
art preconditioner.

As a perspective, to become really competitive regarding the AMG precondi-
tioner, we still need to improve the numerical behaviour of the DDML method
to be able to reduce the number of iterations as much as AMG. Concerning
our implementation, we will introduce parallel direct solver to solve the coarse
system for large number of domains and eigenvectors. We are working on a
hybrid version DDML-MPIX of our DDML preconditioner which can perform
on several nodes with KNL processors or standard multi-core processors like
our ILU0-MPIX preconditoner . Even if the KNL micro architecture will not be
anymore supported by Intel, our methodology remains interesting for the recent
architectures like the Skylake, KabyLake that integrate AVX512 instructions,
large number of cores, right now up to 28 per processor, up to 56 within one
dual socket node.
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