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Abstract 

Funaro, D., Approximation by the Legendre c zliocation method of a model problem in electrophysioiogy, 
Journa: of Computational and Applied Mathematics 43 (1992) 261-271. 

We examine the polynomial approximation of the solution of a nonlinear differential problem modelling the 
evolution of the potential inside an electrically stimulated neuron. The collocation methad at the Legendre 
Gauss-Lobatto nodes is used for the discretization with respect to the space variakk:. 
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1. Elementary exposition of the physiologica: environment 

The purpose of this paper is to numerically simulate the potential diffusion inside a neuron 
of a vertebrate central nervous system, under the action of suitable external stimulations. 
Information about the electric conduction properties of the neurons is provided in [8]. A 
relatively simplified structure is recognized in the cerebellar granule cells. Referring to Fig. 1.1, 
these are constituted by a central core (soma) emitting a mean of four conductive filaments 
( dendrites ). 

The current flow is activated by the so-called synapses, situated at the far end of each 
dendrite, establishing the connection with other neurons. In the electrophysiological experi- 
ments, the synapses receive an excitatory input originating from the next neurons and succes- 
sively transmitted to the soma. The activation of the synapses generally follows a nonlinear law 
when influencing the potential evolution in the cell. 

A differential model, where the dendrites are assumed to be one-dimensional, will be 
considered in the following sections. 
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2. The model equations 

A mathematical setting to describe the evolution of the potential inside a cerebellar cell can 
be introduced (see [5]). We denote by M > 1 the number of dendrites connected to the soma. 
The length of each dendrite is equal to I,, 1 G m < M. Thus, according to [8], the correspond- 
ing potential Um : [O, I,] x [0, T[ --) R, 1~ m S_ M, satisfies the linear parabolic equation 

au, a”u, 
-=&?I ax2 

at 
- - PnluM~ in 10, I,[ X10, T[, (2 1) . 

where sm, p-c,, 1~ m < M, are positive constants depending on the electrical properties of the 
dendritic fibers. For 1~ m < M, we provide the initial conditions 

QJx, 0) =f,( x), x El09 I,[ l (2 2) . 

The following conditions will be assumed at the end of the dendrites: 

v:([m. t)+g,(t)=O, t~]0,T[, l<m<M. 
e 

(2 3) . 

Here, g, : IO, T[ + R are given regular functions and u > 0. Later, in Section 6, we shall assume 
a nonlinear response of these boundary points due to the stimulated synapses. Finally, the 
different equations are coupled at the point x = 0 in view of the relations 

&,(O, t) = U&(0, t), t ~10, T[, 1< m, \< m2 \<M, (2 4) . 

N 

c wn 
u~~(“~t)+~(t)=O, tE]O,T[, l<m<M, 

m=l 
(2 5) . 

v,,,, l<m<M, b eing some given positive constants which have the physical dimension of a 
length divided by an impedance. The func?ion y : IO, T[ + IF&! is a suitable current excitement 
acting at the soma. 

By updating the values of the different parameters, it is not restrictive to assume that the 
dendrites are all of the same length. Therefore, henceforth we shall set I,,, = 2, 1 < m < M, 
where the unity of measure is expressed in 1Q x pm. 

Fig. 1.1. Structure of a cerebellar cell. 
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We examine in the coming sections the approximation of the equations presented above by 
algebraic polynomials, using the collocation method at the Legendre Gauss-Lobatto nodes. 

3. The numerical approach: preliminary considerations 

In the collocation method the solution of a boundary value problem is approximated by a 
polynomial of prescribed degree n satisfying the differential equation and the boundary 
conditions in a set of n + 1 nodes. To achieve high accuracy, these nodes are usually related to 
some Gaussian integration formula. The way to implement the collocation method is described, 
for instance, in [1,3]. IIere, in order to establish the notations, we recall some basic facts. 

For n 2 1, we use as collocation nodes the points $“), 0 <j < n, where 7’0”) = 0, $) = 2 and 
#“) - 1, 1 Q j < n - 1, are the zeros of Pi, 
choice leads to the integration formula 

P, being the Legendre polynomial of degree n. This 

(3 1) . 

which is true for any polynomial q of degree at most 2n - 1. It is well known that the weights 
@;“I, 0 <j < n, are positive. 

The kernel in the implementation of the collocation method Is the construction of an 
(n + 1) X (n + 1) matrix representing the derivative operator in the space zP~ of polynomials of 
degree at most n, with respect to the set of nodes. This matrix is given by @‘I = 
{d!!‘} rj OGi<n,OGjGn r= ~(d/dx)~n’(771”‘)},~i~~o~j~~~ where $“I, 0 <j < n, are the Lagrange poly- 
nomials of degree n relative to the points rli ‘@I, 0 < i < n. The computation of the entries of @) 
is easy and cheap by using basic properties of the Legendre polynomials. According to [3], we 
have 

( - $z(n + l), i=j=(), 

I P,(171n)) ’ . - 
&!’ = 

1J 
p,( $1) 771”) - 7;“) ’ ’ #” (3 2) . 

I 0, l<i=j<n-1, 

(+(n + l), i=j=n. 

The second-order derivative operator @‘I = { @, G i G n,O G j < n is obtained by squaring @“* 
Finally, we recall that, for any q ES$, the following inequality holds: 

/*q2 dx < i q2($‘)iG;“’ < 3/*q2 dx. 
0 j=O 0 

(3 3) . 

4. Numerical approximation of the differential problem 

In order to approximate the solution of the problem of Section 2, we use the Legendre 
collocation method to deal with the variable X, and a standard implicit finite-difference scheme 
to advance in time. 
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For K 2 I, let h = T/K denote the time step. For any 1 < m d M, we construct a sequence 
of polynomials pm tk) ~9 n ’ 0 < k < K. In particular, (2.1) is discretized as follows: 

l<i<n-I, 

with the initial guess 

pg)( 111”)) = f&j”)), 0 < i < n. 

The boundary conditions at the endpoints of the dendrites will be 

(4 1) . 

(4 2) . 

d* 
-pg’(qy)] = ~m-&+l+$)) -cL,P:f+lyTr)) 

d 1 
- %Ll zPE+ “( r7Y’) + -g,(h(k + 1)) 9 1 Y (4 3) l 

where the positive constant O, will be specified later. Equation (4.3) is a linear combination of 
the differential equation at the boundary and the boundary condition itself. As we shall see, it 
is suggested by a variational formulation of the discrete problem. In addition, the use of (4.3), 
instead of imposing the exact boundary condition (d/dx)p~+%$)) + v-lg,(h(k + 1)) = 0, 
generally provides better numerical results. 

In the same way, we can deal with the conditions at the soma. Namely, we require that 

P 2,’ i+$)) =p$+ l)( qg)), 0 < m, \< m2 < M, (4 4) . 

* 21 

m=l fi[ PE”‘(4-y -P!=??(+?)] c 
m 
M 

= c 
m=l 

+%Y(w + I))* (4 5) . 
The set of equations proposed here is equivalent to a linear system of dimension mbz + 1) in 
the unknowns pm w+- ‘)( $)), 0 <j s n, 1 G m < M. One can verify that the corresponding matrix 
is positive definite. At the end of computation we expect pm (k+l), 1 <k <K- 1, 1 <m GM, to 
be a suitable approximation of the function U,C - , h( k + 1)). 

An analysis of convergence of the algorithm can be developed. The starting point is the 
possibility of writing the discrete problem in a variational way. To this end, we define the 
parameter o, as the inverse of the weights in (3.1) relative to the endpoints, i.e., o, = [C$)]-’ 
= [@W]- 1 = $n(n + 1). 

Fo; 1 < m < M,, let 4, ~9~ denote M test functions satisfying 4,1($)) = 4,2($)), 1 < m, 
< m, < M. Then, a linear combination of (4.1), (4.3) and (4.5) yields 

) - p2’( $))I +,,( qjn))lzy 
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1 M 
-- c %,&,(h(k + 1M?l(77!?) + - 

u 1 m= 

(4 6) ‘ 

The last inequality has been obtained thanks to formula (3.1) and integration by parts. 
Stability and convergence of the scheme are recovered with arguments similar to those used 

in [23. The error estimates show a spectral type convergence behavior for the approximation 
with respect to the variable x (i.e., the error decays with a rate depending on the regularity of 
the exact solution and it is exponential for analytic solutions), and convergence of order one 
with respect to the variable t, with no restrictions on the time step. The proof is quite technical, 
thus we describe the fundamental steps. We start by defining the spaces 

4, being the restriction of 4 to the mth dendrite 
> 

, 

Xn=(6#hX)(bm es-‘,,, 1 <m -<n/i). 

We note that a weak formulation of probiem (2.1)-(2.5) is 

t E]O, T[, vc#J EX. 

Then, we define the projection operator 17n : X + Xn by 

(4 7) . 

(4 8) . 

for any C#I EX,. 
Now, we introduce the errors ~l;r)(Xj =p$‘(x) - I&&,Cx, MI, x E 10, 21,O < k <K, 1 G m G 

M. Thanks to (3.11, (4.6)-(4.8) we have for $, = E$+ ‘), 1 < m < M: 

Mw n c m x [EI;rf1y77y) _E~)(771”))]E~+l)(rlIn))~I”) 

m=l lmh i=O 



where 
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p+ I) = 
n c n,U,( qtn), h( k + I))E~+ “( rljn))Gjn) 

-(lI,,U,(x, h(k + l))eg+“(x) dx 1 
MlJ n 

+c”c 
m=l cm i=O 

M urn n +c,c 
i m=l m i=O 

~,(qi~), h(k + 1)) - U,(qi”), h’) 
h 

Wm 
_ - (,#n), h( k + 

at 
1)) 

1 

E:+ “( q~“))~$~) 

aum 
- ($1, h( k + l))eg+ “( $))ii$“) 
at 

x, hjk + l))~g+“(x) dx 1 
Mv n -c -!f- x [ um( $1, h( k + 1)) - n,U,( $I, h( k + I))] E:+ “( qjn))G:n) 

m=l Cmh i=O 

+f vm m=l Sh $ [Urn($), hk) -n,Um(q;n’, 12k)]E~+*)(rljn))~~n)~ 
m i-0 

By virtue of (3.3) and the Schwarz inequality, (4.9) implies 

‘& E[[EE+1)]2 dx)‘/llE;k+l’l. (4.10) 

An estimate of the terms I] E:+‘) ]I L2(0,2), 1 < m < M, 0 G k < K - 1, is then obtained by the 
discrete counterpart of the Gronwall Pzmma and by showing that the second term on the 
right-hand side of (4.10) tends to zero for n --) + 00 and h + 0 with a rate depending on the 
smoothness of Urn, i < m < M (see [3] for the details concerning the treatment of the projection 
operator). The final error estimate is recovered by the triangle inequality 

II p$fl)_ 
um(. 3 h(k + I)) IIL’~Oz) 

G II ‘m 
(&cl) 

II L2(0.2) + II (um - nnUm)(. 9 h(k + 1)) II ~2(0,2), 1 G m g M* (4.11) 

Again, the last term in (4.11) tends to zero for n + -I- 00. Convergence in the norm of 
L2(H’(0, 2)) is also obtained by (4.9). 
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5. Implementation of the scheme 

A practical approach to solve the system correspondin; to equations !4.1)-(4.5) is to evaluate 
the contribution of the potential independently in each dendrite, and accordingly update the 
common value at the soma. This can be done in the following way. At each step, for any 
1 < m < M, we define two auxiliary problems. In the first one, we seek rz’ ‘) ~9’~ satisfying 

1 
_++I) qp = 
h In ( ) I 5 1 ,<i<n - 1, 

with the boundary constraints 
r(k+l)(qSn)) = 1, 

I?1 

(5 1) . 

(5 2) . 

1 d* d 
_#k+ 1) ,+n) = 6 - 
h 

I?1 ( ) n m d,zr~k+‘+7p’) -Pmrl;k+‘)(rljln)) -wnlm-&rm (k+y?p). (5.3j 

In the second one, we seek s$+ ‘) ~9~ satisfying 

l<i.<n-1, 

with the boundary conditions 

( 4) c 
Y. 

(5 5) . 

(5 6) l 

It is not difficult to realize that both (5.1)-(5.3) and (5.4)-(5.6) admit a unique polynomial 
solution, since they are related to some coercive bilinear form. The entries of the mat$ces_of 
the corresponding systems are easily obtained with the help of the coefficients dif’, @ 
introduced in Section 3. 

Now we note that 

~~+l’=cYk+lr~+l’+~!~+l’, where q!yk+l =pg”)(qr)). (5.7j 

Finally, the value of ak+ 1 is obtained by substituting (5.7) in (4.5). Recalling (5.2j and (5.5), we 

where, at the beginning of the process, we set a, = M- 'c:= 1 f,nb$'b. 
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Tht: procedure described here allows the recovering of the approximated potential at the 
step It: + 1 by solving in parallel a set of 2M linear systems of order (n + 1) X (n + 1). 

6. INO case 

Generally9 when the synapses are activated, the potential interacts nonlineariy with the 
rent at the free ends of the dendrites. This phenomenon has been studied, for instance, in 
In this case, relation (2.31 takes the form 

(6 1) . 

are given functions. The behavior of the current g, (the dimensionai 
length over an impedance) is recovered by fitting the results of neurophysio- 

logical experiments. A typical shape of g, is provided in Fig. 6.1, where the zero potential is 
assumed on the dendritic membrane. 

n 
of existence and uniqueness in the nonlinear case is given in 141. Concerning the 
roach, we simply modify relation (4.3) in the following way: 

The nonlinear part is treated explicitly in order to allow the implementation of the scheme as 
CeFtibed in Section 5. In this case, th-:: tcl-m F- 1 g,( &)(qr))) replaces the term v- lg,( h( k + 
l)i in {5.6X 

7 

451 
10 20 30 40 so 60 70 80 90 100 110 mV 

Fig. 6.1. Voltage-currmt relationship at the synapse. 
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A proof of convergence in the nonlinear case is obtained by adding to the right-hand side of 
(4.9) the term 

t;rUc+ 1) 1 M 
-n = ; c z$Jg&f'(2))-g,(U,(2, h(k+ W)l4f'"(2) 

In=1 

1 M 
= y C V,[g,(&‘(2)) -g~(nnum(2~ hk))]ei.t+1’(2) 

m=l 

1 M 
+ i C Vm[g,(Hnum(2Y hk)) -g,(“m(2y hk))]Edk+1’(2) 

m= 1 

1 M 
+ ; C v,[g,(U,(2, hk)) -g,(&J2, h(k + l)))j6+“(2). 

m=l 

Recalling that for any polynomial q EP~, one has 

l q(2) I \< 2n II 4 II L2(0,2)9 (6 3) . 

and assuming that g,, 1 < m < M, are Lipschitz functions (which seems to be a reasonable 
restriction in view of practical applications), it is easy to estimate I ZAk+ ‘) I. In particular, one 
has 

1 M 
; c v*[ g&!?!‘(2)) -g,(n,u,(2~ hk))l&:+l) 

()I 
2 

m=l 

CM 
< y c v,leg’(2)Eg+1’(2)( 

m=l 

(6 4) . 

Taking into account this contribution, we can still apply the Gronwall lemma as done for (4.101, 
provided the stability condition hn2 < C* is satisfied for some C* > 0. The two remaining 
terms tend to zero according to the regularity of Urn, 1 < m < M. 

7. Numerical experiments 

We report in this section the results of the numerical tests. We start by examining the linear 
case (g, = 0, 1 < m g M). Initially, the cell is assumed to be at potential zero. Then, a squared 
current pulse (corresponding to the function y in (2.5)) of width 50 ysec and amplitude 40 pA 
is applied to the soma. We take M = 4, T = 200 psec, p, = 0.04 [msec]-*, v,,, = 1 pm/G& 
1. <m GM. The constants &,, 1~ m < M, vary in the range 200 + 4000 [u,m]2/msec. The 
polynomials degree is n = 10. 

In Figs. 7.1 and 7.2 we plot the potential at the soma’ and at the end of the first dendrite 
(ID), i.e., J$%$,?). In the first case all the f;n’s are equal. In the second case we have 
& > l2 = & = la, giving an higher conductivity in the first dendrite. Therefore, a faster potential 
grow is followed by the decay due to the discharge on the other dendrites. 
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I 
t 

Fig. 7.1. Pott;atial evolution for j, = &Yz = lj = &. Fig. 7.2. Potmtia! cvoiutlon for c1 > & = c3 = c4. 

In tbe nonlinear case, the g,‘s coincide with the function displayed in Fig. 6.1. For M = 4, 
the poien:isl at the soma (S) and at the end of the first dendrite (D) are shown in Fig. 7.3, 
when one ( g2 = g, = g, = Oi, txv~ ! gJ = g; = O), three (g4 = 01, and four synapses are activated 

Fig. 7.3. Potential evolution following the activation of different synapses. 
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respectively. In this experiment we have j;,, = 35000 [km]*/msec, p,,, = 8 [msec]- ‘, 1 < m < M. 
The initiai potential is 55 mV. The other data are the same as those of the previous test. We 
note that, to better emphasize the behavior at the soma, these data have been chosen in order 
to have a dispersicn of charge, due to the permeability of the dendritic membrane, higher than 
the standard value. 
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