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Abstract 

Using the iteration formulas of the third order for solving the single equation f(z) = 0 and a procedure for the 
acceleration of convergence, three new methods of the fourth order are derived. The comparison with other methods is 
given. 
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1. Acceleration of iteration methods 

Let us consider one-point i teration process 

Z . + a = h ( z . )  (n = O, 1,. . .) ,  (1) 

which converges to the zero r of the single equat ion f ( z )  = 0 with the order  of convergence k, k >~ 2. 
Then, as it is known from the theory of iteration processes, the modified iteration me thod  

z .+l  = h(z,) + ~ h'(z,)[h(z,)  - z,] (n = O, 1 . . . .  ) (2) 

has the order  of convergence k + 1 (see, e.g., l-3]). This means that  the method  (2) accelerates the 
convergence of the basic me thod  (1) from k to k + 1 (k >f 2). Most  frequently, the iteration method  
(1) has the form z ,+l  = h(z.):= z , -  6(z,), where z v--} 6(z) is a correction function. Then the 
iteration method  (2) can be written in the following equivalent form: 

E1 1 Z . + l = Z . - - 6 ( z , )  l + - ~ h ' ( z , )  ( n = O ,  1,. . .) .  (3) 
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2. N e w  methods of  the fourth order 

First we give a list of the known iteration third-order methods (k = 3) of the form (1) for finding 
a zero of the single equation f ( z )  = 0 in the case with requiring the knowledge of multiplicity m: 

1 f ( z . )  1 f ' ( z . )  
z,+ 1 = z.  - ~ m(m + 1) ~ 7 , ,  + ~ (m - 1) z f " ( z . )  [4], (4) 

1 
z,+ i = z. -- [2], (5) 

m + 1 f ' ( z . )  i f ( z , )  

2m f ( z . )  2f '(z.)  

z .+l  = z . - - m ~  ( 3 - - m ) + m  ~ ] [5, p. 139]. (6) 

The application of the accelerating procedure (2) (or (3)) to the cubically convergent methods (4), 
(5) and (6) produces the three new methods of the fourth order. 

2.1. First method based on Osada's formula 

First, we consider the iteration method (4). Following the above notations, we have 

1 . ,  f ( z )  1 (m - 1) 2 f ' (z)  
6,(z) = -~ m(m + iI f - ~ )  2 f"(z)  

and (starting from hi(z) = z - 61(z)) 

h'x(z) - 3(1 - m) 1 f ( z ) f " ( z )  1 (m - 1) 2 f ' ( z ) f ' " ( z )  
2 + ~ m(m + 1) f ,(z)2 2 f"(z) 2 

Then, in view of (3), the new iteration method of the fourth order reads 

z , + l = z . - 6 1 ( z , )  l + - ~ h i ( z . )  (n--O, 1,...), 

where the functions 61 and h'l are given by (7) and (8), respectively. 

2.2. Second method based on Farmer-Loizou's  formula 

From the iteration formula (4) we find 

2 2 
6 2 ( z )  - 

m + 1 f ' ( z )  f"(z)  v(z) 

m f ( z )  f ' ( z )  

Now we find 

d 2v'(z) 
h'z(z) = -~z (z - 62(0) = 1 + v(z)--------T, 

m + l f ' ( z )  f"(z) 
with v ( z ) - - -  

m f ( z )  f ' ( z )"  

(7) 

(8) 

(9) 
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where 

v,(z) m + 1 [f"(z) (f '(z)'~ z ]  f ' "(z) ( f " (z) ' ]  z 
f (z)  t f ( z ) . ]  J--f'(z----) + \ f ' (z ) , ]  " 

Using the expressions for the functions v(z) and v'(z), according to (3) we obtain the new iteration 
method of the fourth order in the form 

8 4v'(z.) 
z.+ 1 = z. 3v(z.) 3v(z.) 3 (n = 0, 1 . . . .  ). (10) 

2.3. Third method based on Traub's formula 

Let u(z) =f ( z ) / f ' ( z )  and Ak(z) =f~k)(z)/(k!f'(z)). From (6) we have 

63(z) m(3 - m)u(z) = 2 + m2A2(z)u(z) 2 (11) 

and 

d 
= Tzz ( z  - 6 3 ( z )  ) - 

(m -- 1)(m - 2) 

2 
- 3m(m -- 1)u(z)A2(z) + 3m2u(z)2(2A2(z) 2 - A3(z)). 

(12) 

Then, by (3), the new iteration method of the fourth order has the form 

[ 1 Z . + x = Z , - - 6 3 ( z . )  1 + ~ h;(z.)  (n = O, 1, . . .) ,  (13) 

where 63 and h~ are given by (11) and (12). 

3. Numerical results 

The newly established methods (9), (10) and (13) of the fourth order were tested in the examples of 
algebraic and transcendental equations having a multiple zero of the known multiplicity. All three 
methods have shown very fast convergence even in the case of relatively rough starting approxima- 
tions. Beside the new methods we implemented Farmer-Loizou 's  method [1] 

mu(z,)[(m + 1)/2 - mA2(z,)u(z,)] 
z.+t  = z. -- (m + 1)(2m + 1)/6 -- m(m + 1)A2(zn)u(7,n) -k- m2A3(zn)u(zn) 2 (14) 

and Traub's method [5] 

[ m 2 - 6 m + l l  1 z.+x = z,, - mu(z.) 6 + m(2 - m)A2(z.)u(z,,) + m2(2A2(z.) 2 -- A3(z.))u(z.) 2 . 

(15) 

Both of these methods are of the fourth order of convergence. 
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Table 1 

Method 3 4 5 6 7 8 9 10 11-15 16-20 >20 a.n.i. CPU time (~ts) 

(9) 15 35 10 3 3 4 5 4 13 7 1 7.10 218 
(10) 12 53 7 6 3 2 6 1 8 2 0 5.52 235 
(13) 28 33 3 5 3 3 2 2 8 5 8 7.81 220 
(14) 7 13 23 27 4 3 2 1 8 11 1 7.45 217 
(15) 24 38 4 3 3 4 2 3 8 5 6 7.32 215 

We have tested 20 algebraic polynomials with the degree N in the range [6, 20] and 5 various 
rather crude initial values. The stopping criterion has been given by I PN(z.)I ~< 10-15. Numerical  
computat ions have been performed using M S - F O R T R A N  Version 5.1 in double precision. 

The number  C([n l ,  n2], (M)) (nl ~< n2) which denotes that the method (M) has satisfied this 
criterion by n e [nl,  n2] iteration steps is given in Table 1 for all tested methods and 100 
experiments. The number  (or range) of iterations is displayed in the first horizontal line, while the 
average number of iterations (a.n.i.) considering all 100 experiments and the total number  of 
iterations is given in the column a.n.i. Although this feature is not a genuine measure of conver- 
gence, it offers a close look at the efficiency of methods belonging to the same class. F rom this 
column we see that the new method (10) is the fastest, while the convergence rate of the remaining 
four methods (9), (13), (14) and (15) is almost the same. From Table 1 we also can see that all 
methods converges very fast, mainly in less than 6 steps. For  few number of particular examples 
only the new method (13) and Traub's  method (15) required a great number  of iterations. The 
number of numerical operations is almost the same for all five methods which has been confirmed 
by measuring the C P U  time on PC 486DX2/66 (the last column, the average times are displayed). 
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