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Abstract

By using the continuation theorem base on Gaines and Mawhin’s coincidence degree, sufficient and realistic
conditions are obtained for the global existence of positive periodic solution for a delayed predator—prey system
with Michaelis—Menten type functional response. Indeed, our results are applicable to state-dependent delays.
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1. Introduction

Recently, Xu and Chaplain [11] considered the following delayed predator—prey model with
Michaelis—Menton type functional response:

dx; anxy(t)
& —xl(t)<a1 anxi(t — 1) @)

dx; anxi(t — t21) anxs(t)
=00 —a + — apxo(t — 1) — ——— ),
d 20 ( S 2t =) my + x,(1)

dx
d—: = x3(1) <—a3 +

azxy(t — 132)
my + xo(t — 132)

— az3xs(t — T33)) ) (1)
where a; and a;; (i,j=1,2,3) are positive constants, and t;; (i,j=1,2,3) are nonnegative constants.
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In [11], the authors proved that system (1) is uniformly persistent under appropriate conditions and
obtained sufficient conditions for global asymptotic stability ofthe positive equilibrium of system (1).

Since the variation of the environment plays an important role in many biological and ecological
systems. In particular, the effects of a periodically varying environment are important for evolutionary
theory as the selective forces on systems in a fluctuating environment differ from those in a stable
environment. Thus, the assumption of periodicity of the parameters in the way (in a way) incorporates
the periodicity of the environment (e.g., seasonal affects of weather, food supplies, mating habits,
etc.). In fact, it has been suggested in [8] that any periodic change of climate tends to impose its
period upon oscillations of internal origin or to cause such oscillations to have a harmonic relation to
periodic climatic changes. In view of this it is realistic to assume that the parameters in the models
are periodic functions of period w. Thus, the modification of (1) according to the environmental
variation is the nonautonomous delay differential system

ﬁ?:xmn<ma)—m¢gmu—r“y—:f?:g»,

dx; _ an()xi(f — 1) oy as()xs(1)

dt—xz('f)< ax)(t) + (= 1) an(t)xy(t — 122) m2+x2(t)> ,

dx; az(t) x2(t — 132)

a = x3(t) <—03(f) + 1o+l — 1) azs (1) x;3(t — T33)> , (2)

where a;(¢) and a;;(¢) (i,j=1,2,3) are continuous, bounded, and strictly positive functions on [0, c0),
and t;; (i,j = 1,2,3) are nonnegative constants.

A very basic and important ecological problem associated with the study of multispecies population
interaction in a periodic environment is the global existence of positive periodic solution which plays
the role played by the equilibrium of the autonomous models. The main purpose of this paper is to
derive easily verifiable sufficient conditions for the global existence of a positive periodic solution
of systems (2). The method used here will be the coincidence degree theory developed by Gaines
and Mawhin [2]. Such approach was adopted in [1,4,6,7].

Finally, we remark that in recent years periodic population dynamics has become a very popular
subject. In fact, several different periodic models have been studied in [5,9,10,12].

2. Main results

In order to obtain the existence of a positive periodic solution of system (2), we first make the
following preparations.
Let ¥ and Z be two Banach spaces. Consider an operator equation

Ly= /Ny, 2€(0,1),

where L : DomL NY — Z is a linear operator and 4 is a parameter. Let P and Q denote two
projectors such that

P:YNDomL — KerlL and O:Z — Z/ImL.
In the sequel, we will use the following result of Mawhin [2, p. 40].
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Lemma 2.1. Let Y and Z be two Banach spaces and L a Fredholm mapping of index zero. Assume
that N : Q — Z is L-compact on Q with Q open bounded in Y. Furthermore, assume:

(a) for each 21€(0,1), y €02 NDomlL,
(b) for each y e dQ NKerlk,

ONy #0

and
deg{JONy,Q2NKerL,0} # 0.

Then the equation Ly = Ny has at least one solution in QN L.

Recall that a linear mapping L : Dom LN y — Z with Ker L =L~'(0) and Im L = L(Dom L), will
be called a Fredholm mapping if the following two conditions hold:
(i) KerL has a finite dimension;

(ii) Im L is closed and has a finite codimension.

Recall also that the codimension of Im L is the dimension of Z/Im L, i.e., the dimension of the
cokernel coker L of L.

When L is a Fredholm mapping, its index is the integer Ind L = dim ker L — codim Im L.

We shall say that a mapping N is L-compact on Q if the mapping ON : Q — Z is continuous,
ON(Q) is bounded, and K oL —O)N : Q — Y is compact, i.e., it is continuous and K,(I — Q)N (Q)
is relatively compact, where K, : ImL — Dom L N Ker P is a inverse of the restriction L, of L to
Dom L NKer P, so that LK, :1 and K,L=1-P.

For convenience, we shall introduce the notation:

1 w
U= — / u(t)dt,
@ Jo

where u is a periodic continuous function with period w.

In system (2), we always assume the following:

(Hy) ai(t) and a;;(¢) (i,j=1,2,3) are continuous, bounded, and strictly positive periodic functions
with @ > 0.

Now we state our first theorem for the existence of a positive w-periodic solution of system (2).

Theorem 2.1. In addition to (H,), assume further that system (2) satisfies
(Hz)

min{ agz(al_/al_z)exp{Zaz_w} , as } > ds;
my + (a1/an) exp{2a,w} my + 1

(H3)

ar) > ay;
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(Hy) The system of the equations

- - apnt;
a, —ap vy — =0,
m; + vy
_ a1 vy - ar3v3
—ap + — anly — =0,
mp -+ %] ny + (%)
_ Aty _
—das + — az3l3 = 0 (3)
my + Uy

has a unique positive solution (vy,vs,v3) € R>. Then system (2) has at least one positive w-periodic
solution.

Proof. Since

x1(6) = x1(0) exp {/0 [m(s) —an(s)xi(s — ) — M]ds} ,

72t =x(0) exp /t <_a2(s) + ent Z o) an(s)xy(s — 1) — "23(S)x3(s)>d&
0

my +x1(s — 121) my + x,(s)

x3(t) = x3(0) exp {/t [—a3(s) + a3(s) X2(s — T52) — azz(s)x3(s — 133)] ds}
0

my + x2(s — 132)

the solution of system (2) remains positive for ¢ > 0, we can let

B =exp(nO) wO=epln0h w0 =exp(r0) @
and derive that
=~ el - n) - SO,
o R e A
= a4 EOSPIEI g explrar - ) )

In order to use Lemma 2.1 to system (2), we take

Y =Z={y(t)= (00, »2(1), y3(1))" € C(R,R’) : y(t + ») = y(1)}

and denote
1] = 1(1(0), 2(8), 3| = max |yi(6)] + max |y>(£)] + max |ys(t)].
t€[0,0] 1€[0,00] t€[0,0]

Then Y and Z are Banach spaces when they are endowed with the norms || - ||.
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Set
[~ an(@exp{n(r - r)) - 22OXPL! _
= | )~ Ot~} O
0 ] Pt~ ) |
and
Ly=y/, Py:% /Ow y(t)dt, yey, Qz:é /Ow z(t)dt, z€Z

Evidently, KerL={y|y€Y,y=R’}, InL={z|z€Z, ;" z(1)dt =0} is closed in Z and dim Ker L=
codim Im L=3. Hence, L is a Fredholm mapping of index zero. Furthermore, the generalized inverse
(to L) K, : ImL — Ker PN dom L has the form

Kp(z):/ot z(s)ds—;/ow /Ot z(s) ds dt.

Thus,
A a(t) exp{y2(t)} i
p /o [m(t) —an(t)exp{yi(t — 1)} — my + exp{ (1)} ] d
1 [® an (t) exp{yi(t — t21)}
o - /o [—az(t) + i+ explni(t— o)} an(t)exp{ya(t — 12)}
- ax(t) exp{yg(t)}] d
my + exp{ya(t)}
1 [® asn(t)exp{y(t — 13)}
B /o [—m(t) + 1>+ eXpLyaf — t)} az;(t) exp{ys(t — T33)}] dt_
and
K,(I — Q)Ny

-/t [al(s) —an(s)exp{yi(s — )} — an(S)eXp{yZ(S)}} ds
0

mi + exp{yi(s)}
T az(s)exp{yi(s — 1)}
/0 [ e my + exp{yi(s — 121)}

_ax(s) exp{y3(s)}
my + exp{ya(s)}

! az(s)exp{ya(s — 132)}
/0 [—ag(s) + R Sy p— — as3(s) exp{ys(s — 133)}} ds

— an(s)exp{y:(s — 12)}
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(1 e ! apa(s)exp{y(s)}
a)/o /0 |:a1(s)_all(s)eXp{J’l(S_Tll)}_ ml—i-exp{yl(s)}]det

l w t B azl(s)eXp{yl(s — ‘521)} _ B
o /0 /0 [ ar(s) + 1+ exp{n(s — 1)) an(s)exp{y(s — )}
_023(S)6Xp{y3(6‘)}]ds ”

my + exp{ y2(s)}

L ) explyals — 7))
o b [_WH s + exXp{ (s — )} ‘“33(S)exp{y3(s—rzs)}] dsdi

) [al(t)—all(f)eXP{J’l(t_Tll)}_

1 w
- /0

1 @ ay (t)exp{yi(t — t21)}
a 2) /0 [_aZ(Z) - my + exp{y1(t — 121)}

alz(t)exp{yz(t)}]dt ]
my +exp{yi(t)}

SHR

—an(t)exp{ y2(t — 122)}

SHR

_azs(f)exp{ys(f)}] dr
my + exp{y2(t)}

t 1 @ azn(t)exp{y(t — 132)}
i (co - 2) /0 {_QS(Z) T+ explyali— )} @l expioslt = 133)}] ¢

Clearly, ON and K,(/ — Q)N are continuous and, moreover, ON (Q),Kp(] — Q)N(Q) are relatively
compact for any open bounded set Q C X. Hence, N is L-compact on Q, here Q is any open
bounded set in X.

Now, we reach the position to search for an appropriate open bounded subset (2 for the application
of Lemma 2.1. Corresponding to equation Ly = ANy, A€(0,1), we have

d

= (a0 - anm el - ny - 22O,

dy, ar () exp{y1(t — 121)} ax(t) exp{ys3(t)}
a7 (_az(t) T+ exp{yi(t — t21)} an(t) explya(f —m)} - m; + exp{y2(1)} ) ’

dys . (—a3(t) . axn(t)exp{y(t — 132)}

my + exp{m(t — t2)} as3(¢) exp{ ys(t — 133)}> : (6)

Suppose that y(¢)=(y1, 2, ¥3) € Y is a solution of system (6) for a certain 4 € (0,1). By integrating
(6) over the interval [0, w], we obtain

/w -a1(t) —an(t)exp{yi(t— 1)} — am(l)eXp{n(t)}] dt =0,
0 L

my + exp{y1(¢)}

“ __ ax (t)exp{yi(t — t21)}
/0 L @t my + exp{yi1(t — 121)}

1 azn(t)exp{y(t — 132)}
/0 L as(t) + my + exp{ y2(t — 132)}

~ an(t)exp{pa(t — 1)) — 2D OPLY 3(’)}} dr =0,

my + exp{12(t)}

— as;(t) exp{yg(t - ’C33)}i| dt=0.
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Hence,

/ ay(t)exp{yi(t — 1)} +

0

alz(t)exp{h(f)}} e
my + exp{» (1)} dr=ae.

/“’ [ax(t) exp{y1(t — 121)}
o Lmi+exp{yi(t— 1)}

— an(t) exp{ya(t — 1)} — a”(t)exp{%(t)}]dt =4

=arw
my 4 exp{y2(1)} ?

and

/w [as(t) exp{y:(t — 132)}
0o LM + exp{yz(t — ‘532)}
From (6)—(9), we obtain

/ Vi ()| dt < /w [an(t)exp{yl(t— - alz(t)exp{h(t)}]dt

— (133(t) exp{y3(t — ‘C33)}:| dt = 530).

my + exp{y1(t)}
+ / |611(Z)’dt:25160,
0

/w |y5(0)| dt < 28,0
0
and
/w |V5(0)] dt < 2a30.
0
Note that (y1(2), y2(t), y3(¢)) € Y, then there exists &;,n; € [0,w], i =1,2,3 such that
yi(&i) = Ig%g’ful)] yi(t), yi(n:) = tfel%glz] yi(t), =123
By (7) and (13), we have

ayw = anowexp{yi (&1)}.
That is

yi(ér) < {lel}~

Then
yl(t)<y1(fl)+/ |y1(t)]dl<ln{ }—i—Zalw
0 ap

By virtue of (7), (13) and (14), we also have

exp{12(&)} . exp{ (&)}

aw=a > a0 —— — .
! my + exp{y1(¢)} 12 my + (ai/ap ) exp{2a,w}

So

(&) < In {51(’"1 + (51/511)exp{251w})} |

an

459

(7)

(8)

)

(10)

(1)

(12)

(13)

(14)
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Then
@ aij(my + (a1/a;;) exp{2a,w _
0 <@+ [ iolar < { AONEEOERDERERODE g, (1)
0 12
By (8) and (13), we have
azlweXp{yl(Yll)} > do. (16)
my +exp{yi(n)}
So
arm
yl(m)>1n{- =L }
az —ap
Then
oy arm -
»n(@) = yi(m) — |yi(H)]dt = 1In < < — ¢ —240. (17)
0 a —ap
It follows from (9) and (13) that
asoexp{y2(n2)} > Gy, (18)
my + exp{ y2(n2)}
So
azm
yz(nz>>1n{- 2 }
daszp —as
Then
@ azm -
ya(t) = ya(2) — / yh(0)] dt > ln{ 2 } — 2a0. (19)
0 asy — as
Hence, (14), (15), (17) and (19) imply that
max_|y(¢)] < max{ In {fll} +2a 0|, 1n{ _azml_ } — Zdlw’} =B (20)
t€[0,m] ap ar —a
and
max |y(¢)| < maX{ ln{ (dl <m1 + 4 exp{Zdlw}>>/d12} + 280/,
tel0,m] an
‘m{ @3 } - 252@‘}
asy — as
= B,. 21)

By (9), (13) and (15), we also obtain

as(a/a) exp{2a,w}

my + (a1/an) exp{2a,w} — ayzexp{y3(&)} = as.
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Thus

(&) <ln{< an(a/a)exp{2aw} _&3>/d33}'

my + (ﬁ]/(ilz) exp{Zdzw}

Then
@ ax(a/an) exp{2aw} - - -
t) < Lo)de <1 Stk — — — 2a30. (22
»3(t) y3(£3)+/0 |353(0)] n{ <m2 (@) exp {20} as | / ax ¢ +2a0. (22)
Furthermore, in view of (9) and (13), we obtain

a _ -
o :2_ 1= asy exp{y3(n3)} < as.
That is
an/(my+1)]—a
y3(n3)>ln{[ 32/( 2 )] 3}‘
ass
Then
w - 1 —
202 ()= [ iolarz n {120 EDZE0A o, (23)
0

(22) and (23) imply that

b

ln{ < ax(ay/an)exp{2aw} 53>/533} + 2a 0

my + (51/6712)6)(]){25260} B
‘1 {[532/(m2+1)]—d3} - }
n — 2430

ass
— B, (24)

Clearly, B;, i = 1,2,3 are independent of A, Under the assumption in Theorem 2.1, it is easy to
show that the system of algebraic equations (3) has a unique solution (v},v},v3)!T €intR3 with
vf > 0,i=1,2,3. Denote B =B + B, + Bs + B4, where B, > 0 is taken sufficiently large such that
|(In{v} }, In{v3 }, In{v; })|| = [In{v} }| + [In{v3} + In{v}}| < B4, and define

Q={y)eY |y <B}
It is clear that Q satisfies condition (@) of the Lemma 2.1. When y = (y1, y2, ¥3 Y eoQnKerl =
0QN R, y is a constant vector in R* with ||y|| = M. Then
i apexp{y}
my +exp{yi}
ars exp{ys} £0
my + exp{ ).} '

max )| < max
max (o) < max {

Fi —apn exp{y} —

_ a exp{yi} _
Ny = | — et liie 4 T4 P NN —
ONx 7+ m + exp (1] anexp{y}

-, anexp{y}
L 3t my + exp{ ).} a3 exp{ys} J

Furthermore, in view of assumption in Theorem 2.1, it can easily be seen that

deg{JONx, Q NKer L,0} # 0.
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By now we know that Q verifies all the requirements of Lemma 2.1 and then system (5) has at
least one w-periodic solution. By the medium of (4), we derive that (2) has at least one positive
w-periodic solution. The proof is complete. [

Remark 2.1. From [11] we know that, under certain conditions, system (2) is uniformly persistent,
then system (2) must have a positive equilibrium [3], which also implies that system (3) has a
positive solution.

Next, we consider the following predator—prey systems with state dependent delays:

T =00 (@0 = @ = @), SO0
= (e )

= (Ot — Tt (1), 320, %5(1)) — m> ,
=m0 (a0 B D)

—a33(t)x3(t — 133(8,x1(2), x2(2), x3(2))). (25)

Theorem 2.2. If the assumptions of Theorem 2.1 hold, then the system (25) has at least one
positive w-periodic solution.

Proof. The proof is similar to that of Theorem 2.1 and hence is omitted here. [
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