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A convergence analysis of a fourth-order method for computing all zeros of a
polynomial simultaneously

Slav I. Cholakov, Maria T. Vasileva

Faculty of Mathematics and Informatics, University of Plovdiv, Plovdiv 4000, Bulgaria

Abstract

In 2011, Petković, Rančić and Milošević [6] introduced and studied a new fourth-order iterative method for finding
all zeros of a polynomial simultaneously. They obtained a semilocal convergence theorem for their method with
computationally verifiable initial conditions, which is of practical importance. In this paper, we provide new local as
well as semilocal convergence results for this method over an algebraically closed normed field. Our semilocal results
improve and complement the result of Petković, Rančić and Milošević in several directions. The main advantage of
the new semilocal results are: weaker sufficient convergence conditions, computationally verifiable a posteriori error
estimates, and computationally verifiable sufficient conditions for all zeros of a polynomial to be simple. Furthermore,
several numerical examples are provided to show some practical applications of our semilocal results.

Keywords: Simultaneous methods, Polynomial zeros, Local convergence, Semilocal convergence, Error estimates,
Cone metric space
2000 MSC: 65H04, 12Y05

1. Introduction

Throughout this paper (K, | · |) denotes an algebraically closed normed field and K[z] denotes the ring of polyno-

mials over K. Let the vector space Kn be endowed with the p-norm ‖ · ‖p : Kn → R defined by ‖x‖p =
(∑n

i=1 |xi|p
)1/p

for some 1 ≤ p ≤ ∞.
The function d : Kn → Rn is defined by d(x) = (d1(x), . . . , dn(x)), where

di(x) = min
j,i
|xi − x j| (i = 1, . . . , n),

and the function δ : Kn → R+ is defined by
δ(x) = min

i, j
|xi − x j|.

In the sequel, for two vectors x ∈ Kn and y ∈ Rn we denote by
x
y

the vector in Rn defined by

x
y

=

( |x1|
y1
, · · · , |xn|

yn

)

provided that y has only nonzero components. Throughout the paper, D denotes the set of all vectors in Kn with
pairwise distinct components, i.e.

D = {x ∈ Kn : δ(x) > 0}.
Let f ∈ K[z] be a polynomial of degree n ≥ 2. A vector ξ ∈ Kn is called a root vector of polynomial f if

f (z) = a0
∏n

i=1(z − ξi) for all z ∈ K, where a0 ∈ K. The first iterative method for simultaneous computation of all

Email addresses: cholakovs@uni-plovdiv.bg (Slav I. Cholakov), mariavasileva@uni-plovdiv.bg (Maria T. Vasileva)

Preprint submitted to Journal of computational and applied mathematics December 19, 2016

Manuscript
Click here to view linked References



zeros of f was presented by Weierstrass [22] in 1891. The Weierstrass method has second order of convergence and
is defined in Kn by the following iteration:

xk+1 = xk −W f (xk), k = 0, 1, 2, . . . , (1.1)

where the correction W f : D ⊂ Kn → Kn is given by

W f (x) = (W1(x), . . . ,Wn(x)) with Wi(x) =
f (xi)

a0
∏

j,i (xi − x j)
, (1.2)

where a0 is the leading coefficient of f .
In 2011, Petković, Rančić and Milošević [6] introduced and studied a new fourth-order simultaneous method

defined as follows:
xk+1 = T xk, k = 0, 1, 2, . . . , (1.3)

where the iteration function T : D ⊂ Kn → Kn is defined by T x = (T1(x), . . . ,Tn(x)) with

Ti(x) = xi − ui −
u2

i

(
f ′′(xi)
f ′(xi)

− ui(S 2
i −Gi)

)

2(1 − uiS i)2
(i = 1, . . . , n), (1.4)

where

ui =
f (xi)
f ′(xi)

, S i =
∑

j,i

1
xi − x j

and Gi =
∑

j,i

1
(xi − x j)2

.

Obviously, the domain D of the iteration function T is the set

D = {x ∈ D : f ′(xi) , 0, 1 − uiS i , 0 for all i ∈ In}. (1.5)

Here and throughout the paper In denotes the set of indices 1, . . . , n, that is In = {1, . . . , n}.
In 2016, Proinov [12] obtained relationships between different types of initial conditions that guarantee the con-

vergence of iterative methods for simultaneously finding all zeros of a polynomial. In the next definition, we give his
classification of the initial conditions of convergence theorems for simultaneous methods.

Definition 1.1 ([12]). Let f ∈ K[z] be a polynomial of degree n ≥ 2, ξ ∈ Kn be a root-vector of f , x0 ∈ Kn be an
initial guess of an iterative method for simultaneously finding all zeros of f , 1 ≤ p ≤ ∞, and R = R(n, p) be a positive
number which depends only on n and p. An initial condition is said to be:

(a) of the first type if it can be represented in the form
∥∥∥∥∥∥

x0 − ξ
d(ξ)

∥∥∥∥∥∥
p

≤ R or
‖x0 − ξ‖p
δ(ξ)

≤ R; (1.6)

(b) of the second type if it can be represented in the form
∥∥∥∥∥∥

x0 − ξ
d(x0)

∥∥∥∥∥∥
p

≤ R or
‖x0 − ξ‖p
δ(x0)

≤ R; (1.7)

(c) of the third type if it can be represented in the form
∥∥∥∥∥∥

W f (x0)

d(x0)

∥∥∥∥∥∥
p

≤ R or
‖W f (x0)‖p
δ(x0)

≤ R. (1.8)

2



Petković, Rančić and Milošević [6, Theorem 1] proved that if a polynomial f ∈ C[z] of degree n ≥ 3 has only
simple zeros and the initial guess x0 ∈ Cn is sufficiently close to a root vector ξ ∈ Cn, then the iterative method (1.3)
converges to ξ with the order of convergence four. This asymptotic result was improved by Cholakov and Petkova
[3, Theorem 4.1]. They provided a local convergence theorem of the first type (with a priori and a posteriori error
estimates) for the method (1.3). In particular, they obtained a lower estimate for the radius of the convergence ball of
this method (see Corollary 4.2 of [3]).

The main result of Petković, Rančić and Milošević [6, Theorem 5] is the following convergence theorem of the
third type:

Theorem 1.2 (Petković, Rančić and Milošević [6]). Let f ∈ C[z] be a polynomial of degree n ≥ 3 which has only
simple zeros. If an initial guess x0 ∈ Cn with distinct components satisfies the initial condition

‖W f (x0)‖∞ < δ(x0)
3n + 1

, (1.9)

then the iteration (1.3) converges to a root vector of f with the order of convergence four.

In this paper, we provide new local as well as semilocal convergence results for the iterative method (1.3). Our
semilocal results improve and complement Theorem 1.2 in several directions. The main advantage of the new semilo-
cal results are weaker sufficient convergence conditions as well as computationally verifiable a posteriori error esti-
mates. Another important aspect of our semilocal results is that the initial conditions give computationally verifiable
sufficient conditions for all zeros of a polynomial to be simple.

The paper is structured as follows: In Section 2, we present some auxiliary results. In Section 3, we obtain a
second type local convergence result (Theorem 3.3) for the method (1.3). In Section 4, we provide new semilocal
convergence results for the method (1.3) (Theorem 4.1 and Theorem 4.2). In Section 5, we provide several numerical
examples to show the applicability of our semilocal convergence results.

2. Preliminaries

Recently, Proinov [9–13] has developed a general convergence theory for iterative methods of the type

xk+1 = T xk, k = 0, 1, 2, . . . , (2.1)

where T : D ⊂ X → X is an iteration function in a metric space X, cone metric space X or n-dimensional vector space
over K (X = Kn). A central role in this theory is played by the concept a function of initial conditions of T . In this
theory, the convergence of an iterative process of the type (2.1) is always studied with respect to a function of initial
conditions.

Recall that a function E : D→ R+ is called a function of initial conditions of an iteration function T : D ⊂ X → X
if there exists an interval J ⊂ R+ containing 0 and a gauge function ϕ : J → J such that E(T x) ≤ ϕ(E(x)) for all x ∈ D
with T x ∈ D and E(x) ∈ J. Some examples of functions of initial conditions can be found in [2, 3, 7–20].

Throughout this paper we follow the terminology from Proinov [13]. In particular, we refer to this paper for the
definitions of the following notions: quasi-homogeneous function of degree r ≥ 0, gauge function of order r ≥ 1;
initial point of a map; solid vector space; cone normed space.

Let (Rn, ‖ · ‖p) be equipped with coordinate-wise ordering � defined by

x � y if and only if xi ≤ yi for each i ∈ In

for x, y ∈ Rn. Then (Rn,�) is a solid vector space. Furthermore, we define in Kn a cone norm ‖ · ‖ : Kn → Rn by

‖x‖ = (|x1|, . . . , |xn|).
Then (Kn, ‖ · ‖) becomes a cone norm space over Rn. Given p with 1 ≤ p ≤ ∞, we always denote by q the conjugate
exponent of p, i.e. q is defined by means of

1 ≤ q ≤ ∞ and 1/p + 1/q = 1.
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For the sake of brevity, for a given n and p, we use the following notation

a = (n − 1)1/q, b = 21/q. (2.2)

First, we need the following three lemmas.

Lemma 2.1 ([14]). Let u, v ∈ Kn and 1 ≤ p ≤ ∞. If v is a vector with distinct components then for all i, j ∈ In,

|ui − v j| ≥
(
1 −

∥∥∥∥∥
u − v
d(v)

∥∥∥∥∥
p

)
|vi − v j|, |ui − u j| ≥

(
1 − b

∥∥∥∥∥
u − v
d(v)

∥∥∥∥∥
p

)
|vi − v j|,

where b is defined by (2.2).

Lemma 2.2 ([20]). Let u, v, ξ ∈ Kn, α ≥ 0 and 1 ≤ p ≤ ∞. If v is a vector with distinct components such that

‖u − ξ‖ � α‖v − ξ‖, (2.3)

then for all i, j ∈ In,

|ui − u j| ≥
(
1 − b (1 + α)

∥∥∥∥∥
v − ξ
d(v)

∥∥∥∥∥
p

)
|vi − v j|, (2.4)

where b is defined by (2.2).

Lemma 2.3 ([16]). Let K be an arbitrary field, and let f ∈ K[z] be polynomial of degree n ≥ 1 which splits over K.
Suppose that ξ1, ξ2, . . . , ξn are all the zeros of f counting with their multiplicities.

(i) If z ∈ K is not a zero of f , then
f ′(z)
f (z)

=

n∑

j=1

1
z − ξ j

.

(ii) If z ∈ K is not a zero of both f and f ′, then

f ′′(z)
f ′(z)

=
f ′(z)
f (z)

− f (z)
f ′(z)


1

(z − ξi)2
+

∑

j,i

1
(z − ξ j)2

 . (2.5)

We need the following three theorems of Proinov [12, 13], which play a crucial role in the proofs of the main
results of the present work.

Theorem 2.4 ([13, Theorem 3.3]). Let (X, ‖ · ‖) is a cone normed space over a solid vector space (Y,�). Let
T : D ⊂ X → X be an operator on X and E : D→ R+ be a function of initial conditions of T with a gauge function ϕ
of order r ≥ 1 on an interval J. Suppose ξ ∈ D is such that E(ξ) ∈ J and

‖T x − ξ‖ � β(E(x)) ‖x − ξ‖ for all x ∈ D with E(x) ∈ J, (2.6)

where β : J → R+ is a nondecreasing function such that

tβ(t) is a strict gauge function of order r on J (2.7)

and
for t ∈ J : φ(t) = 0 implies β(t) = 0, (2.8)

where φ : J → R+ is a nondecreasing function such that ϕ(t) = tφ(t) for all t ∈ J. Then ξ is a unique fixed point of T
in U = {x ∈ D : E(x) ∈ J}, and for each initial point x0 of T the following statements hold:

(i) The iteration (2.1) remains in the set U and converges to ξ.
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(ii) For all k ≥ 0 we have the error estimates

‖xk+1 − ξ‖ � θλrk‖xk − ξ‖ and ‖xk − ξ‖ � θkλS k(r)‖x0 − ξ‖, (2.9)

where S k(r) = 1 + r + r2 + · · · + rk−1, λ = φ(E(x0)), θ = ψ(E(x0)), and ψ : J → R+ is such that β(t) = φ(t)ψ(t)
for all t ∈ J.

Recently Proinov [12] has shown that there is a deep relationship between local and semilocal theorems for
simultaneous root-finding methods. It turns out that from any local convergence theorem for a simultaneous method
one can obtain as a consequence a semilocal theorem for the same method. In particular, Proinov [12] has presented
two theorems for converting any local convergence theorem of the second type into a theorem with computationally
verifiable initial conditions.

Theorem 2.5 ([12, Theorem 5.1]). Let f ∈ K[z] be a polynomial of degree n ≥ 2. Suppose there exists a vector x ∈ Kn

with distinct components such that

E f (x) =

∥∥∥∥∥
W f (x)

d(x)

∥∥∥∥∥
p
≤ τ =

1

(1 +
√

a)2
(2.10)

for some 1 ≤ p ≤ ∞, where the operator W f is defined by (1.2) and a with (2.2). In the case n = 2 and p = ∞ we
assume that the inequality (2.10) is strict. Then f has only simple zeros and there exists a root-vector ξ ∈ Kn of f
such that

‖x − ξ‖ � α(E f (x))‖W f (x)‖ and
∥∥∥∥∥

x − ξ
d(x)

∥∥∥∥∥
p
≤ h(E f (x)), (2.11)

where the functions α, h : [0, τ]→ R+ are defined by

α(t) =
2

1 − (a − 1)t +
√

(1 − (a − 1)t)2 − 4t
and h(t) = tα(t). (2.12)

Moreover, if the inequality (2.10) is strict, then the second inequality in (2.11) is strict too.

Theorem 2.6 ([12, Theorem 5.2]). Let f ∈ K[z] be a polynomial of degree n ≥ 2. Suppose there exists a vector x ∈ Kn

with distinct component such that ∥∥∥∥∥
W f (x)

d(x)

∥∥∥∥∥
p
<

R(1 − R)
1 + (a − 1)R

(2.13)

for some 1 ≤ p ≤ ∞ and 0 ≤ R ≤ 1/(1 +
√

a), where W f is defined by (1.2) and a with (2.2). Then polynomial f has
only simple zeros in K and there exists a root-vector ξ ∈ Kn of f such that

‖x − ξ‖ � α(E f (x))‖W f (x)‖ and
∥∥∥∥∥

x − ξ
d(x)

∥∥∥∥∥
p
< R, (2.14)

where the function α is defined by (2.12).

3. Local convergence analysis

The main purpose of this section is to prove a local convergence theorem of the second type with error estimates.
Let f ∈ K[z] be a polynomial of degree n ≥ 2 which has only simple zeros in K and let ξ ∈ Kn be a root vector

of the polynomial f . We study the convergence of the iterative method (1.3) with respect to the function of initial
conditions E : D→ R+ defined by

E(x) =

∥∥∥∥∥
x − ξ
d(x)

∥∥∥∥∥
p

(1 ≤ p ≤ ∞). (3.1)

Define the real functions β, ψ,Ψ : [0, 1/n)→ R as follows

β(t) =
(2an − 3a − 1)t2 − (2n − 1 − a)t + 2n

2(1 − nt)(1 − t − at2)2
a t3, (3.2)
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ψ(t) = 1 − bt(1 + β(t)), (3.3)

Ψ(t) = ψ(t) − β(t) = 1 − bt − β(t)(1 + bt), (3.4)

where a, b are defined by (2.2). It is easy to show that β is an increasing function and ψ and Ψ are decreasing functions.
Besides, β is a quasi-homogeneous function of the third degree on [0, 1/n). Let R be the unique solution of the equation
Ψ(t) = 0 in (0, 1/n). Then we can define the functions φ, ϕ : [0,R]→ R+ by

φ(t) =
β(t)
ψ(t)

and ϕ(t) = t φ(t). (3.5)

Note that φ is a quasi-homogeneous function of the third degree on [0,R] and ϕ is a control function of the fourth
order on [0,R].

Lemma 3.1. Let f ∈ K[z] be a polynomial of degree n ≥ 2 which has only simple zeros in K and let ξ ∈ Kn be a root
vector of f . Suppose x ∈ D is a vector such that f (xi) , 0 for some 1 ≤ i ≤ n. Then

Ti(x) − ξi =
A2

i + 2σi A2
i − 2σi Ai − Bi

2(1 + σi)(1 − Ai)2
(xi − ξi), (3.6)

where σi, Ai and Bi are defined by

σi = (xi − ξi)
∑

j,i

1
xi − ξ j

, Ai = (xi − ξi)
∑

j,i

x j − ξ j

(xi − ξ j)(xi − x j)
(3.7)

and

Bi = (xi − ξi)2
∑

j,i

(x j − ξ j)(2xi − x j − ξ j)

(xi − ξ j)2(xi − x j)2
. (3.8)

Proof. From Lemma 2.3(i), taking into account that ξ is a root-vector of f and the fact that f (xi) , 0 for some
1 ≤ i ≤ n, we get

1
ui

=
f ′(xi)
f (xi)

=

n∑

j=1

1
xi − ξ j

=
1

xi − ξi
+

∑

j,i

1
xi − ξ j

=
1 + σi

xi − ξi
. (3.9)

Again from Lemma 2.3(ii) for z = xi and f ′(xi) , 0, we get

f ′′(xi)
f ′(xi)

=
f ′(xi)
f (xi)

− f (xi)
f ′(xi)


1

(xi − ξi)2
+

∑

j,i

1
(xi − ξ j)2



=
1 + σi

xi − ξi
− 1 + τi

(1 + σi)(xi − ξi)
=

σ2
i + 2σi − τi

(1 + σi)(xi − ξi)
, (3.10)

where

τi = (xi − ξi)2
∑

j,i

1
(xi − ξ j)2

.

From (1.4), (3.9) and (3.10), we obtain

Ti(x) − ξi = xi − ξi − xi − ξi

1 + σi
− (xi − ξi)(σ2

i + 2σi − τi − µ2
i + νi)

2(1 + σi)(1 + σi − µi)2

=

1 −
2(1 + σi − µi)2 + σ2

i + 2σi − τi − µ2
i + νi

2(1 + σi)(1 + σi − µi)2

 (xi − ξi)

=

(
1 − 1

1 + σi − µi

(
1 +

(1 + σi − µi)2 − 1 + νi − τi

2(1 + σi)(1 + σi − µi)

))
(xi − ξi),

where

µi = (xi − ξi)
∑

j,i

1
xi − x j

and νi = (xi − ξi)2
∑

j,i

1
(xi − x j)2

.

Now taking into account that σi − µi = −Ai and νi − τi = Bi, we get (3.6).
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Lemma 3.2. Let f ∈ K[z] be a polynomial of degree n ≥ 2 which has only simple zeros in K, ξ ∈ Kn be a root vector
of f and 1 ≤ p ≤ ∞. Suppose a vector x ∈ Kn with distinct components satisfies

E(x) < 1/n and Ψ(E(x)) ≥ 0, (3.11)

where the functions E and Ψ are defined by (3.1) and (3.4) respectively. Then the following statements hold true:

(i) x ∈ D , where D is defined by (1.5);
(ii) ‖T x − ξ‖ � β(E(x)) ‖x − ξ‖, where β is defined by (3.2);

(iii) E(T x) ≤ ϕ(E(x)), where ϕ is defined by (3.5).

Proof. (i) First we have to prove that f ′(xi) , 0 for every i ∈ In. Let i ∈ In be fixed. If xi = ξi, then f (xi) = 0 and
f ′(xi) , 0, since f has only simple zeros. Let xi , ξi. From Lemma 2.1 with u = ξ and v = x, and (3.11), we get

|xi − ξ j| ≥
(
1 −

∥∥∥∥∥
x − ξ
d(x)

∥∥∥∥∥
p

)
|xi − x j| ≥ (1 − E(x)) di(x) > 0, (3.12)

for every i , j. Hence xi is not a zero of f and (3.9) is well defined. We define σi as in (3.7). It follows from (3.9)
that f ′(xi) , 0 is equivalent to σi , −1. From (3.7), the triangle inequality and (3.12), we obtain

|σi| ≤ |xi − ξi|
∑

j,i

1
|xi − ξ j| ≤

|xi − ξi|
(1 − E(x))di(x)

∑

j,i

1 ≤ (n − 1)E(x)
1 − E(x)

< 1 , (3.13)

which yields σi , −1. In view of the definition of D (see (1.5)), it remains to prove that

1 − f (xi)
f ′(xi)

∑

j,i

1
xi − x j

, 0. (3.14)

From (3.9) and (3.7) it follows that

1 − f (xi)
f ′(xi)

∑

j,i

1
xi − x j

=
1 − Ai

1 + σi
, (3.15)

where Ai is defined by (3.7). This means that (3.14) holds true if and only if Ai , 1. By (3.7), the triangle inequality,
(3.12), Hölder’s inequality, and the first part of (3.11), we obtain

|Ai| ≤ |xi − ξi|
∑

j,i

|x j − ξ j|
|xi − ξ j||xi − x j|

≤ |xi − ξi|
(1 − E(x))di(x)

∑

j,i

|x j − ξ j|
d j(x)

≤ aE(x)2

1 − E(x)
<

1
n

(3.16)

which proves that Ai , 1.
(ii) We have to prove that

|Ti(x) − ξi| ≤ β(E(x)) |xi − ξi| for all i ∈ In. (3.17)

Let i ∈ In be fixed. If xi = ξi, then Ti(x) = ξi and so (3.17) becomes an equality. Suppose xi , ξi. From Lemma 3.1
and the triangle inequality, we get

|Ti(x) − ξi| ≤ |Ai|2 + 2 |σi| |Ai|2 + 2 |σi| |Ai| + |Bi|
2(1 − |σi|)(1 − |Ai|)2

|xi − ξi|. (3.18)

From (3.8), the triangle inequality and (3.12) it follows that

|Bi| ≤ |xi − ξi|2
∑

j,i

|x j − ξ j| |2xi − x j − ξ j|
|xi − ξ j|2 |xi − x j|2

≤ |xi − ξi|2
(1 − E(x))2di(x)2

∑

j,i

|x j − ξ j| (|xi − x j| + |xi − ξ j|)
|xi − x j|2 . (3.19)
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Using the triangle inequality, we obtain

|xi − ξ j| ≤ |xi − x j| + |x j − ξ j| ≤
(
1 +
|x j − ξ j|

d j(x)

)
|xi − x j| ≤ (1 + E(x)) |xi − x j|. (3.20)

From (3.19), (3.20) and Hölder’s inequality, we obtain the following estimate

|Bi| ≤ a(2 + E(x)) E(x)3

(1 − E(x))2
. (3.21)

Combining (3.18), (3.16), (3.13) and (3.21), we get (3.17).
(iii) Inequality in (ii) allow us to apply Lemma 2.2 with u = T x, v = x and α = β(E(x)). By Lemma 2.2 and (3.3),

we deduce
|Ti(x) − T j(x)| ≥ (1 − bE(x)(1 + β(E(x))) |xi − x j| = ψ(E(x)) |xi − x j|.

By taking the minimum over all j ∈ In such that j , i, we obtain

di(T x) ≥ ψ(E(x))di(x) > 0 (3.22)

which implies that T x has distinct components. It follows from (3.17), (3.22) and (3.5) that

|Ti(x) − ξi|
di(T x)

≤ β(E(x))
ψ(E(x))

|xi − ξi|
di(x)

= φ(E(x))
|xi − ξi|
di(x)

.

By taking the p-norm and taking into account (3.5), we obtain

E(T x) ≤ φ(E(x)) E(x) = ϕ(E(x))

which completes the proof.

Now, we are ready to state and prove the main result in this section.

Theorem 3.3. Let f ∈ K[z] be a polynomial of degree n ≥ 2 which has only simple zeros in K, ξ ∈ Kn be a root
vector of f and 1 ≤ p ≤ ∞. Suppose x0 ∈ Kn is an initial guess with distinct components which satisfies the following
conditions

E(x0) < 1/n and Ψ(E(x0)) ≥ 0, (3.23)

where the functions E and Ψ are defined by (3.1) and (3.4) respectively. Then the iteration (1.3) is well defined and
converges to ξ with error estimates

‖xk+1 − ξ‖ � θλ4k‖xk − ξ‖ and ‖xk − ξ‖ � θkλ(4k−1)/3‖x0 − ξ‖ for all k ≥ 0, (3.24)

where λ = φ(E(x0)), θ = ψ(E(x0)) and φ and ψ are defined by (3.5) and (3.3), respectively. Moreover, if the second
inequality in (3.23) is strict, then the rate of convergence is of order four.

Proof. We shall apply Theorem 2.4 to the iteration function T : D ⊂ Kn → Kn defined by (1.4).
Consider the interval J = [0,R], where R is the unique solution of the equation Ψ(t) = 0 in (0, 1/n), and define

the function ϕ : J → R+ by (3.5). As we have noticed above, ϕ is a gauge function of order r = 4 on J. On the other
hand, condition (3.23) is equivalent to E(x0) ∈ J. Now from Lemma 3.2, we conclude that E : D→ R+ is a function
of initial condition of T with gauge function ϕ of order r = 4 on J. Furthermore, Lemma 3.2 implies that T satisfies
the contractive condition (2.6) with β : J → R+ defined by (3.2).

Now we shall show that x0 is an initial point of T . According to the assumptions of the theorem, we have
x0 ∈ D and E(x0) ∈ J. Hence, by Lemma 3.2 we conclude that x0 ∈ D . According to Proposition 4.1 of [10] we
have to prove that x ∈ D with E(x) ∈ J implies T x ∈ D. Since x ∈ D, then T x ∈ Kn. From (3.22), we get T x ∈ D.
From Lemma 3.2 and condition (3.23), we get E(T x) ≤ E(x) < 1/n. This yields Ψ(E(T x)) ≥ Ψ(E(x)) ≥ 0 since Ψ is
decreasing on [0, 1/n). Thus, we have T x ∈ D, E(T x) < 1/n and Ψ(E(T x)) ≥ 0. Applying Lemma 3.2 to the vector
T x, we conclude that T x ∈ D.

Hence, all the assumptions of Theorem 2.4 are satisfied. Applying Theorem 2.4 to the operator T : D ⊂ Kn → Kn

and the function of initial conditions E : D→ R+ , we conclude that the iteration (1.3) is well defined and converges
to ξ with error estimates (3.24). This completes the proof.
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Setting p = ∞ in Theorem 3.3, we get the following result.

Theorem 3.4. Let f ∈ K[z] be a polynomial of degree n ≥ 2 which has only simple zeros in K and let ξ ∈ Kn be a
root vector of f . Suppose x0 ∈ Kn is an initial guess with distinct components which satisfies the following conditions

E(x0) =

∥∥∥∥∥∥
x0 − ξ
d(x0)

∥∥∥∥∥∥∞
<

1
n

and Ψ(E(x0)) ≥ 0, (3.25)

where the function Ψ is defined by

Ψ(t) = 1 − 2t − β(t)(1 + 2t), where β(t) =
(2n − 1)(n − 2)t2 − nt + 2n
2(1 − nt)(1 − t − (n − 1)t2)2

(n − 1)t3. (3.26)

Then the iteration (1.3) is well defined and converges to ξ with error estimates

‖xk+1 − ξ‖ � θλ4k‖xk − ξ‖ and ‖xk − ξ‖ � θkλ(4k−1)/3‖x0 − ξ‖ for all k ≥ 0, (3.27)

where θ = ψ(E(x0)), λ = φ(E(x0)), the functions ψ and φ are defined by ψ(t) = Ψ(t) + β(t) and φ(t) = β(t)/ψ(t). More-
over, if the second inequality in (3.25) is strict, then the rate of convergence is of order four.

Corollary 3.5. Let f ∈ K[z] be a polynomial of degree n ≥ 2 which has only simple zeros in K and let ξ ∈ Kn be a
root vector of f . Suppose x0 ∈ Kn is an initial guess with distinct components which satisfies the following conditions

E(x0) =

∥∥∥∥∥∥
x0 − ξ
d(x0)

∥∥∥∥∥∥∞
≤ 4

7n
. (3.28)

Then the iteration (1.3) is well defined and converges to ξ with order of convergence four and with error estimates
(3.27).

Proof. In view of Theorem 3.4 we have to prove that x0 satisfies the initial conditions (3.25). The first part of (3.25)
is obvious. To prove the second part of (3.25) it is sufficient to show that Ψ(4/(7n)) > 0. This inequality is equivalent
to

β

(
4
7n

)
<

7n − 8
7n + 8

. (3.29)

Note that the function β(4/7n) is decreasing and (7n − 8)/(7n + 8) is increasing for n ≥ 2. Then for every n ≥ 2,

β

(
4

7n

)
=

64(n − 1)(49n3 + 2n2 − 40n + 16)
3n(49n2 − 44n + 16)2

≤ 224
961

<
3

11
≤ 7n − 8

7n + 8
.

This completes the proof.

4. Semilocal convergence analysis

In this section, we establish semilocal convergence theorems for the iterative method (1.3). The results improve
Theorem 1.2 in several directions.

Let f ∈ K[z] be a polynomial of degree n ≥ 2. We study the convergence of the method (1.3) with respect to the
function of initial conditions E f : D→ R+ defined by

E f (x) =

∥∥∥∥∥
W f (x)

d(x)

∥∥∥∥∥
p

(1 ≤ p ≤ ∞). (4.1)

For given n and p define the number µ by

µ =
n − 1

n(a + n − 1)
, (4.2)
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where a is defined by (2.2). Consider the function Ω : [0, µ)→ R+ defined by

Ω(t) = Ψ(h(t)), (4.3)

where the functions Ψ and h are defined by (3.4) and (2.12), respectively. Note that the definition of Ω is correct since
µ ∈ [0, τ], h(µ) = 1/n and h([0, µ)) = [0, 1/n), where τ is defined in (2.10).

Now, we can state and prove the main result of this paper.

Theorem 4.1. Let f ∈ K[z] be a polynomial of degree n ≥ 2 and 1 ≤ p ≤ ∞. Suppose x0 ∈ Kn is an initial guess with
distinct components satisfying

E f (x0) < µ and Ω(E f (x0)) ≥ 0, (4.4)

where µ is defined by (4.2) and the functions E f and Ω are defined by (4.1) and (4.3), respectively. Then f has only
simple zeros in K and the iteration (1.3) is well-defined and converges to a root-vector ξ of f with order of convergence
four and with error estimate

‖xk − ξ‖ � α(E f (xk))‖W f (xk)‖, (4.5)

for all k ≥ 0 such that E f (xk) < µ and Ω(E f (xk)) ≥ 0, where the function α is defined by (2.12).

Proof. Let x0 ∈ Kn satisfy (4.4). From the first inequality of (4.4) and Theorem 2.5, we conclude that f has only
simple zeros and there exists a root-vector ξ ∈ Kn of f such that

∥∥∥∥∥∥
x0 − ξ
d(x0)

∥∥∥∥∥∥
p

< h(E f (x0)) <
1
n
. (4.6)

The function Ψ is decreasing on [0, 1/n). Hence, from (4.6), (4.3) and the second inequality in (4.4), we obtain

Ψ


∥∥∥∥∥∥

x0 − ξ
d(x0)

∥∥∥∥∥∥
p

 > Ψ(h(E f (x0))) = Ω(E f (x0)) ≥ 0.

It follows from Theorem 3.3 that the iteration (1.3) is well-defined and converges to ξ with fourth-order of conver-
gence. It remains to prove the estimate (4.5). Suppose that for some k ≥ 0,

E f (xk) < µ and Ω(E f (xk)) ≥ 0. (4.7)

Then it follows from the first inequality in (4.7) and Theorem 2.5 that there exists a root-vector η ∈ Kn of f such that

‖xk − η‖ � α(E f (xk)) ‖W f (xk)‖ and

∥∥∥∥∥∥
xk − η
d(xk)

∥∥∥∥∥∥
p

< h(E f (xk)) <
1
n
. (4.8)

From the second inequality in (4.8) and the second inequality in (4.7), we get

Ψ


∥∥∥∥∥∥

xk − η
d(xk)

∥∥∥∥∥∥
p

 > Ψ(h(E f (xk))) = Ω(E f (xk)) ≥ 0.

By Theorem 3.3, we conclude that the iteration (1.3) converges to η. By the uniqueness of the limit, η = ξ. Hence, the
error estimate (4.5) follows from the first inequality in (4.8).

Using Corollary 3.5 and Theorem 2.6, we obtain the next semilocal result.

Theorem 4.2. Let f ∈ K[z] be a polynomial of degree n ≥ 2 and x0 ∈ Kn be an initial guess with distinct components
satisfying

E f (x0) =

∥∥∥∥∥∥
W f (x0)

d(x0)

∥∥∥∥∥∥∞
≤ R′n =

4(7n − 4)
7n(11n − 8)

. (4.9)

Then f has only simple zeros in K and the iteration (1.3) is well-defined and converges to a root-vector ξ of f with
order of convergence four and with error estimate

‖xk − ξ‖ � α(E f (xk))‖W f (xk)‖, (4.10)

for all k ≥ 0 such that E f (xk) ≤ R′n, where the function α is defined in (2.12) with p = ∞.
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Proof. Let R = 4/(7n) then (4.9) can be written in the form
∥∥∥∥∥∥

W f (x0)

d(x0)

∥∥∥∥∥∥∞
<

R(1 − R)
1 + (n − 2)R

.

Then it follows from Theorem 2.6 that f has only simple zeros in K and there exists a root-vector ξ ∈ Kn of f such
that ∥∥∥∥∥∥

x0 − ξ
d(x0)

∥∥∥∥∥∥∞
< R.

Now Corollary 3.5 implies that the iteration (1.3) converges to ξ with order of convergence four. The proof of the
error estimate (4.10) is similar as in the the proof of Theorem 4.1. This ends the proof.

We end this section with a corollary of Theorem 4.2 which improves the result of Petković, Rančić and Milošević
[6] (see Theorem 1.2 above) in several directions.

Corollary 4.3. Let f ∈ K[z] be a polynomial of degree n ≥ 2 and x0 ∈ Kn is an initial guess with distinct components
satisfying

E f (x0) =

∥∥∥∥∥∥
W f (x0)

d(x0)

∥∥∥∥∥∥∞
≤ R′′n =

1
An − B

, (4.11)

where A = 11/4 and B = 3/7. Then f has only simple zeros in K and the iteration (1.3) is well-defined and converges
to a root-vector ξ of f with order of convergence four and with error estimate (4.10).

Proof. Define the function E f : D→ R+ by (4.1) with p = ∞. If x0 satisfy the initial condition (4.11), then

E f (x0) =

∥∥∥∥∥∥
W f (x0)

d(x0)

∥∥∥∥∥∥∞
≤ 1

An − B
<

4(7n − 4)
7n(11n − 8)

.

Hence, x0 satisfies the initial condition (4.9) of Theorem 4.2 and the statement of the corollary follows.

Remark 4.4. We shall compare the convergence domains of Theorem 4.1 (p = ∞), Theorem 4.2, Corollary 4.3 and
Theorem 1.2. Denote these domains by ∆, ∆′, ∆′′ and ∆̃, respectively. It is easy to prove that

∆ ⊃ ∆′ ⊃ ∆′′ ⊃ ∆̃. (4.12)

Indeed, let Rn be the unique solution of the equation Ω(t) = 0 in the interval (0, µ), where Ω and µ are defined by
(4.3) and (4.2), respectively. Then the initial conditions (4.4) of Theorem 4.1 can be written in the form E f (x0) ≤ Rn.
Hence, the convergence domain ∆ of Theorem 4.1 is the set

∆ =
{
x ∈ D : E f (x) ≤ Rn

}
.

The convergence domains ∆′ and ∆′′ can be written in the same form replacing Rn by R′n and R′′n , respectively. The
convergence domains ∆̃ of Theorem 1.2 is the set

∆̃ =

{
x ∈ D :

‖W f (x)‖
δ(x)

< R̃n

}
,

where R̃n = 1/(3n + 1). Now the inclusions (4.12) follow from the inequalities

Rn ≥ R′n > R′′n > R̃n . (4.13)

In Figure 1, one can see the comparison of Rn, R′n, R′′n and R̃n for n = 2, . . . , 11.

Remark 4.5. Theorem 4.1 improves Theorem 1.2 in several directions. The main of them are the following:

• larger convergence domain (see Remark 4.4);

• computationally verifiable a posteriori error estimates right from the first iteration;

• computationally verifiable sufficient condition for all zeros of a polynomial to be simple.
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5. Numerical examples

In this section, we provide several numerical examples to show the applicability of Theorem 4.1 in the case p = ∞.
Let f ∈ C[z] be a polynomial of degree n ≥ 2 and let x(0) ∈ Cn be an initial guess. We consider the function of initial
conditions E f : D→ R+ defined by

E f (x) =

∥∥∥∥∥
W f (x)

d(x)

∥∥∥∥∥∞
. (5.1)

Furthermore, we define the function Ω : [0, µ)→ R by Ω(t) = Ψ(h(t)), where µ = 1/(2n) and the functions Ψ and h
are defined by (3.26) and (2.12), respectively.

It follows from Theorem 4.1 that if there exists an integer m ≥ 0 such that

E f (xm) < µ and Ω(E f (xm)) ≥ 0, (5.2)

then f has only simple zeros and the iteration (1.3) starting from x0 is well-defined and converges to a root-vector ξ
of f with order of convergence four. Besides, the following a posteriori error estimate holds:

‖xk − ξ‖∞ ≤ εk, where εk = α(E f (xk)) ‖W f (xk)‖∞ (5.3)

for all k ≥ m such that
E f (xk) ≤ µ and Ω(E f (xk)) ≥ 0. (5.4)

In the examples below, we apply the iterative method method (1.3) using the stopping criterion

εk < 10−15 (k ≥ m) (5.5)

together with (5.4). For each example we calculate the smallest m ≥ 0 which satisfies the convergence condition (5.2),
the smallest k ≥ m for which the stopping criterion (5.5) is satisfied, as well as the value of εk for the last k. From
these data it follows that:

• f has only simple zeros;

• the iteration (1.3) starting from x(0) is well-defined and converges to a root-vector of f with order of convergence
four;

• at kth iteration the zeros of f are calculated with an accuracy at least εk.
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In Table 2 the values of iterations are given to 15 decimal places. The values of other quantities (µ, E f (xm), etc.)
are given to 6 decimal places.

Example 5.1. We consider the polynomial

f (z) = z5 − 15z4 + 22z3 + 438z2 − 1175z − 1575

with zeros ±5, −1, 7, 9 and initial guess

x0 = (−5.7, −1.8, 4.1, 6.2, 9.8),

which are taken form Nedzhibov and Petkov [4]. For this polynomial µ = 0.1. It can be seen from Table 1 that the
convergence condition (5.2) is satisfied for m = 3. This guarantees that f has only simple zeros and the iteration (1.3)
(starting from x0) is well-defined and converges to a root-vector ξ of f with order of convergence four. Also, it shows
that the stopping criterion (5.5) is satisfied for k = 4. Moreover, we can see from this table that at the fifth iteration we
have calculated the zeros of f with accuracy less than 10−155. In Table 2, we present numerical results for Example 5.1
giving the first four iterations.

Table 1: Values of m, E f (xm), Ω(E f (xm)), k, εk for Example 5.1

m E f (xm) Ω(E f (xm)) εm k εk εk+1

3 0.000000 0.999999 1.678603 × 10−7 4 8.650052 × 10−36 5.288490 × 10−156

Table 2: Numerical results for Example 5.1.

s x(s)
1 x(s)

2 x(s)
3

0 −5.7 −1.8 4.1
1 −4.990616790202758 −1.006790776418849 5.048737791535741
2 −5.000000003395358 −0.999999998746670 4.999944962410054
3 −5.000000000000000 −0.999999999999999 4.999999999999989
4 −5.000000000000000 −0.999999999999999 4.999999999999999
s x(s)

4 x(s)
5

0 6.2 9.8
1 6.062075553270243 9.036744753761113
2 7.290004092874400 9.000010142803904
3 7.000000167860284 8.999999999999999
4 7.000000000000000 9.000000000000000

Example 5.2. Let us consider the polynomial

f (z) = z9 + 3z8 − 3z7 − 9z6 + 3z5 + 9z4 + 99z3 + 297z2 − 100z − 300 (5.6)

with the zeros −3, ±1, ±2i, ±2 ± i. For this polynomial µ = 0.055555. Petković, Ilić and Tričković [5] considered
this polynomial with Aberth’s initial approximation x0 ∈ Cn (see [1]) given by

x0
ν = −a1

n
+ r0 exp (iθν), θν =

π

n

(
2ν − 3

2

)
, ν = 1, . . . , n, (5.7)

where n = 9 and r0 = 100.
One can see from Table 3 that at the eighteen iteration (m = 18) we prove the convergence of the method, and at

the nineteen iteration (k = 19) we obtain the zeros of f with necessary accuracy. Moreover, at the next iteration we
get the zeros of f with accuracy less than 10−104.
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Table 3: Values of m, E f (xm), Ω(E f (xm)), k, εk for Example 5.2.(a)

m E f (xm) Ω(E f (xm)) εm k εk εk+1

18 0.000007 0.999984 1.114636 × 10−5 19 1.230716 × 10−24 1.739414 × 10−105

Now, we shall apply the method (1.3) again to the polynomial (5.6) with the initial guess (5.7) but with r0 = 10.
We can see from Table 4 that at the tenth iteration (m = 10) we prove the convergence of the method, and at the twelve
iteration (k = 12) we obtain the zeros of f with accuracy less than 10−42. In Figure 2, we present the trajectories of
approximations generated after 12 iterations.

Table 4: Values of m, E f (xm), Ω(E f (xm)), k, εk for Example 5.2.(b)

m E f (xm) Ω(E f (xm)) k εk−1 εk εk+1

10 0.017657 0.957888 12 9.952478 × 10−10 6.711502 × 10−43 1.133974 × 10−182

-10 -5 5

-5

5

10

Figure 2: Trajectories of approximations

Example 5.3. Consider the polynomial

f (z) = z12 − (2 + 5i)z11 − (1 − 10i)z10 + (12 − 25i)z9 − 30z8

−z4 + (2 + 5i)z3 + (1 − 10i)z2 − (12 − 25i)z + 30

with zeros ±1, ±i,
√

2/2 ± i
√

2/2, −√2/2 ± i
√

2/2, 2i, 3i, 1 ± 2i and the initial guess

x0 = (1.3 + 0.2i, −1.3 + 0.2i, −0.3 − 1.2i, −0.3 + 1.2i, 0.5 + 0.5i, 0.5 − 0.5i,

−0.5 + 0.5i, −0.5 − 0.5i, 0.2 + 2.2i, 0.2 + 3.2i, 1.3 + 2.2i, 1.3 − 2.2i)
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which are taken from Sakurai and Petković [21]. In this case µ = 0.041666. For this example, we get that at the third
iteration (m = 3) we prove the convergence of the method and that at the forth iteration (k = 4) we obtain the zeros of
f with necessary accuracy (see Table 5).

Table 5: Values of m, E f (xm), Ω(E f (xm)), k, εk for Example 5.3

m E f (xm) Ω(E f (xm)) εm k εk εk+1

3 0.000001 0.999996 1.157111 × 10−6 4 4.232015 × 10−25 4.465326 × 10−100
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