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a b s t r a c t

We modify the generalized Newton method, proposed by Mangasarian (2007), for solving
NP-complete absolute value equation, so that it is numerically stable and has convergence
order two. Moreover, the convergence conditions are weaker than already iterative meth-
ods, hence this method can be applied to a broad range of problems. Applicability of the
proposed method is tested for various examples.

1. Introduction

We consider the following absolute value equation (AVE)

G(x) = Ax − |x| − b = 0, (1)

where A ∈ Rn×n, b ∈ Rn, and |.| denotes absolute value. Mangasarian has proved that the general linear complementarity
problem (LCP) is equivalent to an absolute value equation such as (1) (see Proposition in 1 [1]). To solve (1), Mangasarian
applies the generalized Newton method for solving the AVE (1) provided that the singular values of A are not less than one
(see Lemma 6 in [2]). Although, the generalized Newton method is a linear convergent method, a quadratically convergent
method under the same condition has been developed [3]. When the singular values of A exceed 1, the AVE (1) has a unique
solution [4,5]. It isworth pointing out that this condition has some equivalences [6]. Hence it seems that under this limitation,
such iterative methods converge globally [7]. On the other hand, Prokopyev proves that checking whether the AVE (1) has a
unique or multiple solutions is an NP-complete problem [8]. Therefore, it is not generally possible to construct a polynomial
algorithm for solvability of AVE. It is worth noting that to avoid the assumption of having singular values greater than one,
some other iterative methods have been developed in which all of them converge linearly [9–12].

Wedevelop an iterativemethod to overcome the two limitations suggested byMangasarian [1] of the generalizedNewton
method for solving the NP-complete AVE (1). First, since we are dealing with an NP-complete problem, we cannot generally
assume that the singular values of A exceed one. As a vivid example in R, the generalized Newton–Mangasarian method fails
to solve theAVE x−|x| = 1, because it has no solution. Consequently, as a limitation, this assumption can undoubtedly reduce
the number of the real problems and applications that occur in LCP. Second,we focus onmodifying the generalizedmethod in
such away that has convergence order two, and it is a numerically stablemethod. Here ourmethod converges locally because
of the nonlinear and NP-complete nature of the problem. If we want to obtain a global quadratically convergent method, we
need to make extra assumptions, or, we should consider very special cases. So, we wish to put it aside as an independent
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research problem. This paper is organized as follows: Section 2 deals with construction of the proposed method. Then the
convergence analysis and numerical stability are presented. Section 3 is devoted to numerical test problems. The last section
concludes the paper.

2. Main results

In this section, reconsidering the generalized Newton method [1], we modify it in such a way that it has convergence
order two with some more general conditions compared with the given conditions by Managasarian in [1]. To this end, let
the generalized Jacobian of (1) be given by [1]:

JG(x) = A − Tz(x), (2)

where Tz(x) =diag(sign(x)). Let x0 be a suitable starting vector to the exact solution, say x∗, of (1). Then, we propose the
following modified Newton–Mangasarian method

(A − Tz(xk))∆xk = −Axk + |xk| + b, (3)

xk+1
= xk + ∆xk, k = 0, 1, 2, . . . . (4)

It should be noted that we first solve the linear system (3), and then, we update the value xk+1 from (4). Therefore, we reduce
the numerical solution of solving a nonlinear system of equations to the numerical solution of a linear systems of equations.
For more details, one can consult [13–15]. We will prove, under weaker conditions than given already, that this method is
numerically stable and of convergence order two.

To prove the quadratic convergence order of the method (3)–(4), we need the following lemma:

Lemma 2.1. Let D be an open convex set in Rn, and let JG be Lipschitz continuous at x in the neighborhood D. Then, for any
t ∈ [0, 1] and x + t∆x ∈ D,

∥G(x + ∆x) − G(x) − JG(x)∆x∥ ≤
LJG
2

∥∆x∥2, (5)

where LJG is the Lipschitz constant for JG at x, in other words,

∥JG(x + t∆x) − JG(x)∥ ≤ LJG∥t∆x∥.

Proof. By the use of integral mean value theorem, we have

G(x + t∆x) − G(x) − JG(x)∆x =

∫ 1

0
JG(x + t ∆x)∆x dt − JG(x)∆x

=

∫ 1

0
(JG(x + t ∆x) − JG(x)) ∆x dt.

Taking norm and considering the Lipschitz condition on JG, we have

∥G(x + t∆x) − G(x) − JG(x)∆x∥ = ∥

∫ 1

0

(
JG(x + t ∆x) − JG(x)

)
∆x dt∥

≤

∫ 1

0
∥JG(x + t ∆x) − JG(x)∥ ∥∆x∥ dt

≤

∫ 1

0
∥LJG t ∆x∥ ∥∆x∥ dt =

LJG
2

∥∆x∥2.

Now, we can prove the quadratic convergence of the proposed method (3)–(4). Let Nr (x∗) = {x ∈ Rn
: ∥x− x∗

∥ < r}, and
rk = ∥xk − x∗

∥.

Theorem 2.2. Suppose that x∗ is a solution of the AVE (1), i.e., G(x∗) = 0. In addition, suppose that the assumptions of the
Lemma 2.1 hold, G is a continuously differentiable for all xk ∈ Nr (x∗) ⊂ D, and ∥JG(x)−1

∥ < 1. Then, the sequence {xk}, k > 0,
generated by (3)–(4) satisfies

∥xk+1
− x∗

∥ ≤
LJG
2

∥xk − x∗
∥
2. (6)
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Proof. Considering the iterative algorithm (3)–(4) and G(x∗) = 0, we have

xk+1
− x∗

= xk − JG(xk)−1G(xk) − x∗

= xk − x∗
− JG(xk)−1(G(xk) − G(x∗))

= JG(xk)−1(G(x∗) − G(xk) − JG(xk)(x∗
− xk)

)
.

Hence

∥xk+1
− x∗

∥ = ∥JG(xk)−1(G(x∗) − G(xk) − JG(xk)(x∗
− xk)

)
∥

≤ ∥JG(xk)−1
∥∥

(
G(x∗) − G(xk) − JG(xk)(x∗

− xk)
)
∥.

Thus, by Lemma 2.1 the assertion follows.

The next theorem addresses that the sequence {xk} converges to the solution x∗.

Theorem 2.3. Let the assumptions of Theorem 2.2 hold. If 0 < rk ≤ r0 < 2/LJG , and Nr0 (x
∗) ⊂ D. Then, (3)–(4) generate the

sequence {xk} such that xk ∈ Nr0 (x
∗), and xk → x∗ as k → ∞.

Proof. Since 0 < rk ≤ r0, then by assumption we have
r0LJG
2 < 1. Consequently, Theorem 2.2 gives

∥xk+1
− x∗

∥ <
LJG
2

∥xk − x∗
∥∥xk − x∗

∥

<
r0LJG
2

∥xk − x∗
∥ < ∥xk − x∗

∥.

Hence the sequence {xk} converges to x∗.

The uniqueness of the solution is established in the next theorem.

Theorem 2.4. If the conditions of Theorem 2.3 hold, then the solution x∗ is unique in N2/LJG
(x∗).

Proof. By contradiction suppose that y∗ is another solution in N2/LJ (x
∗). Therefore, G(y∗) = 0, and ∥y∗

− x∗
∥ < 2/LJG . In the

proof of Theorem 2.2 substitute y∗ for xk+1, and use Lemma 2.1, we have

∥y∗
− x∗

∥ = ∥JG(x∗)−1G(y∗) − G(x∗) − JG(x∗)(y∗
− x∗)∥

≤
LJG
2

∥y∗
− x∗

∥∥y∗
− x∗

∥ < ∥y∗
− x∗

∥.

This is impossible only if y∗
= x∗.

2.1. Numerical stability analysis

In practice, we have to use floating point arithmetic with finite digits accuracy. Consequently rounding errors occur, and
we compute x̂k or xkε instead of xk [13,16]. Actually, the computed x̂k satisfies

(A − Tz(x̂k) + Ek
1)∆x̂k = −Axk + |xk| + b + Ek

2, (7)

x̂k+1
= x̂k + ∆x̂k + Ek

3, k = 0, 1, 2, . . . . (8)

where Ek
1 , E

k
2 , and Ek

3 are the errors that are made in computing G(x̂k) = Ax̂k − |x̂k| − b, forming JG(x̂k) and solving the linear
system (3), and updating (4), respectively. For more details one can consult the Chapter one of [16].

Now we concern with studying numerical stability of (2)–(3). For this purposes, similar to Wozniakowski [13,15], we
need to consider and study G(x) = G(x; d) = 0 which means that G depends on an input data d. The condition number of
G(x; d), which plays an important role in our study, is defined by

cond(G; d) = ∥G′

x(x
∗
; d)−1G′

d(x
∗
; d)∥

∥d∥
∥x∗∥

, (9)

where G′
x and G′

d stand for the Frechet derivatives with respect to x and d. Let G(x; A) = Ax − |x| − b, where the data vector
is supposed to be the given matrix A. For the sake of simplicity we do not consider the vector b as a part of the data vector.
Hence, G′

x(x; A) = A − Tz(x), and G′

A(x; A) = diag(x) where diag(x) denotes an n × n diagonal matrix whose elements are
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di,i = xi for i = 1, . . . , n. Then,

cond(G; A) = ∥G′

x(x
∗
; A)−1G′

A(x
∗
; A)∥

∥A∥

∥x∗∥

= ∥(A − Tz(x∗))−1diag(x∗)∥
∥A∥

∥x∗∥

= ∥(A − Tz(x∗))−1
∥∥x∗

∥
∥A∥

∥x∗∥

= ∥(A − Tz(x∗))−1
∥∥A∥.

We have proved

Lemma 2.5. Let the matrix A be the data vector in (1). Then,

cond(G; A) = ∥(A − Tz(x∗))−1
∥∥A∥. (10)

As can be seen from (10), if Tz(x∗) = 0, then G(x; A) = Ax − b = 0, and we obtain the classic condition number of the
matrix A, say K (A) = ∥A−1

∥∥A∥.

Now, we suppose that xk generated by (3)–(4) is close enough to x∗. It is crucial that the numerical accuracy of xk+1 highly
depends on the condition number (10). For a moment we stop and focus on the G(xk) in (3). Based on our assumption, if
k is large, then the value of G(xk) tends to zero. So, in this case, we have a homogeneous linear system and no matter how
ill-conditioned it is. This is the reasonwhyweonly pay attention to the condition number cond(G; A), and not to the condition
number cond(G′

; A);
As Wilkinson says [17], we are not generally able to solve the equation G(x; A) = 0 exactly because we have to compute

in finite digits floating point of arithmetic. Let eps = 5 × 10−t and Oϵ denote the machine precision and round-off error in
quantity O, respectively. Let

fl(G(xk; A)) = (I + ∆Gk
ϵ)G(x

k
+ xkϵ; A + Aϵ) = G(xk) + δG(xk), (11)

where ∥∆Gk
ϵ∥ ∼ eps, ∥xkϵ∥ ∼ eps, ∥Aϵ∥ ∼ eps∥A∥, and

δG(xk) = ∆Gk
ϵG(x

k) + (A − Tz(xk))xkϵ + diag(xk)D(Aϵ) + O(eps2), (12)

where D is a vector whose elements are given by di = max Aϵ(i, j), j = 1, . . ., n.
Similarly, let

fl(G′(xk; A)) = G′(xk) + δG′(xk), δG′(xk) = O(eps). (13)

Hence, we can assume that the numerical solution of (3) satisfies

(G′(xk) + δG′(xk) + Ek)∆x̃k = G(xk) + δG(xk), (14)

with Ek = O(eps). For more details on solving (13) consult [13]. Consequently, the next improvement, xk+1, is computed by

xk+1
= (I + ξ k)(xk + ∆x̃k), (15)

where ξ k is a diagonal matrix with ∥ξ k
∥ ∼ eps. Now, we are ready to state the numerical stable features of (14)–(15).

Theorem 2.6. Let (11)–(13) hold. Then the method (14)–(15) is numerically stable.

Proof. Under the assumptions (11)–(13), by using the Lemma2, the proof is very similar to the proof of the Theorem 5.1 in
[15], and we prefer not to repeat such argument here. Therefore, the result follows.

It is worthmentioning that we can study the numerical stability and basins of attraction by themeans introduced in [18].

3. Numerical implementations and comparisons

To show the applicability and check the convergence order of the developedmethod in this work, we tested it for solving
100 examples. To this end, by the command randi([−m, m], n, n) usingMatlab, we generated 100 randommatrices A ∈ Rn×n

for various n such as n = 20, 50, 100, 500, 1000, andm = 1, 2, . . . , 20. Then, we produced 100 sample solutions x∗ with the
same strategy, but only form = 0.5, and used it to generate the vector b by b = Ax∗

−|x∗
|. For these data, the initial values x0
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Table 1
Numerical results and comparisons for n = 20.

Methods ∥x1 − x∗
∥ ∥x2 − x∗

∥ ∥x3 − x∗
∥ COC ET

New method (3)–(4) 1.295(−1) 3.7450(−2) 8.0472(−4) 1.99 6
Magasarian’s method (8) in [1] 1.5836 2.8509(−1) 8.8639(−2) 0.99 9
Khaksar’s method (9) in [10] 7.5082 6.8391 (−1) 8.5375(−2) 1.20 7

Table 2
Numerical results and comparisons for n = 50.

Methods ∥x1 − x∗
∥ ∥x2 − x∗

∥ ∥x3 − x∗
∥ COC ET

New method (3)–(4) 5.0839(−1) 3.507(−2) 4.4175(−4) 2.00 15
Magasarian’s method (8) in [1] 3.7501 1.5837(−1) 2.0751(−2) 1.00 24
Khaksar’s method (9) in [10] 2.5846 6.8310(−1) 4.8390(−2) 1.00 16

Table 3
Numerical results and comparisons for n = 100.

Methods ∥x1 − x∗
∥ ∥x2 − x∗

∥ ∥x3 − x∗
∥ COC ET

New method (3)–(4) 5.3810(−2) 1.9630(−4) 3.6259(−9) 2.00 30
Magasarian’s method (8) in [1] 3.9572(−1) 3.6289(−2) 8.3885(−2) 1.01 47
Khaksar’s method (9) in [10] 2.9630(−1) 8.3820 (−2) 5.5302(−3) 1.01 35

Table 4
Numerical results and comparisons for n = 500.

Methods ∥x1 − x∗
∥ ∥x2 − x∗

∥ ∥x3 − x∗
∥ COC ET

New method (3)–(4) 4.4439(−2) 5.0079(−4) 8.4161(−9) 2.100 100
Magasarian’s method (8) in [1] 6.8204(−1) 4.3920(2−) 3.9208(−3) 1.10 153
Khaksar’s method (9) in [10] 5.6392(−1) 3.8460(−2) 3.5027(−4) 1.21 200

Table 5
Numerical results and comparisons for n = 1000.

Methods ∥x1 − x∗
∥ ∥x2 − x∗

∥ ∥x3 − x∗
∥ COC ET

New method (3)–(4) 6.3901(−3) 6.4820(−6) 4.9561(−12) 2.04 201
Magasarian’s method (8) in [1] 4.8601(−2) 6.8410(−3) 5.9739(−4) 1.13 281
Khaksar’s method (9) in [10] 4.0851(−3) 5.9847 (−4) 5.9817(−5) 1.04 307

were chosen so that they satisfied our hypotheses. For comparison purposes, we have used the computational convergence
order (COC) defined by [19,20].

COC =
ln ∥xk+1

− xk∥
ln ∥xk − xk−1∥

, k = 0, 2, . . . .

In tables, a(b) denotes a × 10b and the last columns show elapsed time (ET) in second. Although all of the tested problems
by our method were succeeded, however, since all our sample matrices did not satisfy the condition of the methods [1]
and [10], and for the save of space, in the following we reported some of the results in which all the mentioned methods
accomplished. As can be seen in Tables 1–5, our developed method (3)–(4) supports the given theory and has convergence
order two and is competitive rather than the compared iterative methods.

4. Concluding remarks

Wehavemodified the generalized Newtonmethod [1] for solving AVE so that it works underweaker convergence, hence,
it can be used for wider range of the problems. In addition, it is numerically stable with local convergence order two while
similar iterative methods are linear convergent. Only one linear system of equation needs to be solved for each iteration
which shows another effectiveness of the developed method. This method was successfully applied to solve 100 samples.
It is a single step method and it seems that this method can be exploited for developing multi step methods for solving AVE.
These kinds of solvers are more economic and have been well studied in the literature [14,21,22,23].
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