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Abstract. In this paper, based on the two nested spaces of piecewise linear polynomials (on fine and coarse

meshes with sizes h and H respectively), which are continuous in macro elements but discontinuous across

interior edges/faces of them, an interior penalty continuous-discontinuous Galerkin method (IPCDGM) and

a multiscale interior penalty discontinuous Petrov-Galerkin method (MsIPDPGM) are proposed to solve the

Helmholtz problem with large wave number k and homogeneous Robin boundary condition. This paper de-

votes to analyzing the preasymptotic error of the two methods separately. In order to reduce the pollution

errors efficiently, the two methods not only include the penalty terms on jumps of function on coarse mesh

edges/faces but also add the penalty terms on jumps of first order normal derivatives on fine mesh edges/faces.

The error of the IPCDG solution in the broken H 1-norm is bounded by O(kh +k3h2). By splitting into coarse

and fine scales and basing on the IPCDG variational formulation, the MsIPDPGM’s trial and test spaces are con-

structed with the macro corrected bases. Due to the exponential decay of the correctors, the corrected bases are

obtained by solving the local problems on localized subdomains of size LH (L being the oversampling param-

eter). The preasymptotic error analysis of MsIPDPGM shows that, if kH and logk/L fall below some constants

and if the fine mesh size h is sufficient small, the errors of numerical solutions in the broken H 1-norm can be

dominated by O(H 3) without pollution effect. Numerical tests are provided to verify the theoretical findings

and advantages of the two methods.

Keywords: Helmholtz Problem, large wave number, interior penalty continuous-discontinuous Galerkin method,

Multiscale method, pollution effect, preasymptotic error estimate
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1 Introduction

LetΩ⊂ Rd (d = 2,3) be a convex polygonal domain with boundary Γ := ∂Ω. The model Helmholtz

equation reads as

{
−4u −k2u = f inΩ,

∂u
∂n + iku = 0 on Γ,

(1.1)

where i =
p
−1 denotes the imaginary unit and n denotes the unit outward normal to Γ. The problem

(1.1) is an approximation of the acoustic scattering problem (with time dependence e i w t ) . The large

positive number k is called the wave number. The Robin boundary condition is known as the first

order approximation of the radiation condition.

Due to the high indefiniteness, standard finite element methods for the problem (1.1) at high fre-

quencies (k À 1) are well known to exhibit the so-called pollution effect [2]. There have been various

attempts to reduce or avoid the pollution effect, e.g, high order FEM [24, 25], continuous interior

penalty FEM [29, 12, 30], discontinuous Galerkin methods [10, 14, 15, 17, 23] and multiscale FEM

[27, 16, 20] among many others.

Discontinuous Galerkin methods are widely used to solve Helmholtz problem owing to their sev-

eral advantages over other types of numerical methods [14, 15, 17]. The work of [14, 15] shows that the

IPDG for the Helmholtz problem can reduce the pollution effect by adjust the penalized parameters,

where the authors add the jumps of the normal and tangential derivatives.

On the other hand, the Helmholtz problem of large wave number has the common feature of mul-

tiscale problems which are very computationally challenging and often impossible to solve within an

acceptable tolerance using standard mesh methods. To overcome the lack of performance, many dif-

ferent so called multiscale methods have been proposed and there are some works about applying the

multiscale method to deal with the Helmholtz problem [27, 16]. In the paper [27, 16], by adopting the

multiscale method of [20, 21], the authors present and analyze a pollution-free multiscale finite ele-

ment method for Helmholtz problem with large wave number, where the discrete trial or test spaces

are generated from standard mesh-based finite elements by local subscale corrections.

In this paper, based on the space of piecewise linear polynomials on a fine mesh, which are con-

tinuous in elements of a coarse mesh, but discontinuous across interior edges/faces of them, an in-

terior penalty continuous-discontinuous Galerkin method (IPCDGM) is firstly proposed to solve the

Helmholtz problem with large wave number k and the preasymptotic error analysis is given out.

Then, by adopting the multiscale method of [20, 21], we construct the MsIPDPGM on the macro

IPCDGM solver where the basis are obtained by solving the local subscale corrections in spirit of nu-

merical homogenization. The two schemes not only includes the penalty terms on jumps of function

on coarse mesh edges/faces but also adds the penalty terms on jumps of first order normal deriva-

tives on fine mesh edges/faces. This is due to that the MsIPDPGM is constructed in the following two

discontinuous discrete spaces:
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VH = {vH |T ∈ P1,∀T ∈TH },

Vh = {vh |t ∈ P1 and vh |T ∈C 0,∀T ∈TH and t ∈Th},

where TH and Th denote two triangulations of Ω with mesh sizes H and h respectively, which are

regular and quasi-uniform. P1 is the set of polynomials of degree ≤ 1. The mesh Th is obtained by

refining TH . Obviously VH ⊂Vh .

One purpose of this paper is to prove the preasymptotic error bound for the IPCDGM in fine scale

mesh Th . It is shown that if k3h2 is sufficient small, the H 1 error of the numerical solution can be

bounded by O(kh +k3h2). Another purpose is to propose the MsIPDPGM based on our IPCDGM and

prove its preasymptotic error bound. It is shown that the error of the MsIPDPG solution is pollution

free if kH ≂ 1 is sufficiently small and the solutions of local problems are sufficiently accurate in local

patches with sizes O(logk). In MsIPDPGM, without fully resolving the fine scale problem on the whole

domain, we can get the macro-scale numerical solutions due to the correctors’ exponential decay. In

practice, we can reduce the pollution errors efficiently by adjusting the penalty parameters in the two

methods.

Comparing with [27, 16], we use the IPDG as macro solver to construct the MsIPDPGM. By tun-

ing the penalty parameters, the pollution error can be reduced efficiently, which doesn’t need h is

sufficient small. On the other hand, when k3h2 is sufficient small, we show that the solution to the

MsIPDPGM is superclose to the IPCDG solution.

The remainder of this paper is organized as follows. The IPCDGM and MsIPDPGM are introduced

in Section 2. Section 3 is devoted to the preasymptotic error analysis of IPCDGM and Section 4 is

devoted to MsIPDPGM. In Section 5, we simulate a model problem in two dimensions by IPCDGM

and MsIPDPGM to verify the theoretical findings.

Throughout the paper, C is used to denote a generic positive constant which is independent of

k,h, H , and f . The shorthand notations A ≲ B and B ≳ A mean A ≤C B and B ≥C A. A ≂ B is a short

notation for the statement A ≲B and B ≳ A. Moreover, the constants C j , j = 0,1,2,3 that appear later

are all independent of k,h, H , and f .

2 Formulations of IPCDGM and Multiscale IPDPGM

In this section, we will introduce the IPCDGM and the MsIPDPGM for problem (1.1). We first

introduce some notation. We shall use the standard Sobolev space H s(Ω), its norm and inner product,

and refer to [5, 8] for their definitions. But (·, ·) and 〈·, ·〉 are used for the L2-inner product on the

complex-valued spaces L2(Ω) and L2(Γ), respectively. For any open set G , we write ‖·‖s,G and |·|s,G the

norm and semi-norm of H s(G). We will write briefly that ‖·‖s = ‖·‖s,Ω and |·|s = |·|s,Ω.

Let {TH } and {Th} be two quasi-uniform families of triangulations of Ω such that Th is a re-

finement of TH . For any element T ∈ TH (t ∈ Th), we define HT = diam(T ) (ht = diam(t )) and

H = maxT∈TH HT (h = maxt∈Th ht ). Let EH and Eh denote the interior edges/faces of elements in

TH and Th , respectively. Denote by H s(Th) and H s(TH ) the spaces of piecewise H s functions on Th
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and TH , respectively. Let ∇h be the piecewise gradient on H 1(Th), i.e., (∇h v)|t = ∇(v |t ),∀t ∈ Th . ∇H

is similarly defined on H 1(TH ). Clearly, ∇h v =∇H v for any v ∈ H 1(TH ) and ∇h v =∇H v =∇v for any

v ∈ H 1(Ω).

For any interior edge/face E ∈ EH (or e ∈ Eh) there are two adjacent elements T − and T + (or t−

and t+) with T −∩T + = E (t−∩ t+ = e). We define n to be the unit outward normal vector to edge/face

of the element T + (or t+). Define the jump and average of a function v at E (or e) as

[v] = v |T + − v |T − , {v} = v |T − + v |T +

2

(
or [v] = v |t+ − v |t− , {v} = v |t− + v |t+

2

)
.

In addition, denote by HE = diam(E), he = diam(e), and by 〈·, ·〉E and 〈·, ·〉e the inner product on L2(E)

and L2(e), respectively.

2.1 IPCDGM

We first introduce the approximation space of piecewise linear functions on Th which are contin-

uous on each macro-element T ∈TH but allowed to be discontinuous at E ∈ EH :

Vh = {
vh : vh |t ∈ P1 ∀t ∈Th and vh |T ∈C 0 ∀T ∈TH

}
, (2.2)

where P1 denotes the set of all linear polynomials. Let V be the energy space defined as:

V = {
v : v |t ∈ H 2(t ) ∀t ∈Th and v |T ∈ H 1(T ) ∀T ∈TH

}
.

Clearly, Vh ⊂ V . By testing (1.1) by any v ∈ V and using the magic formula [v w] = {v} [w]+ [v] {w} we

conclude that the exact solution u satisfies

(∇u,∇H v)−
∑

E∈EH

〈{
∂u

∂n

}
, [v]

〉

E
−k2(u, v)+ ik 〈u, v〉 = ( f , v).

Similar to the classical IPDG formulation, we introduce the following sesquilinear form:

ah(u, v) = bh(u, v)−k2(u, v)+ i k〈u, v〉 (2.3)

where

bh(u, v) = (∇hu,∇h v)−
∑

E∈EH

(〈{
∂u

∂n

}
, [v]

〉

E
+

〈
[u],

{
∂v

∂n

}〉

E

)
+ J (u, v), (2.4)

J (u, v) =
∑

e⊂E∈EH

γ0,e

he
〈[u], [v]〉E +

∑

e∈Eh

γ1,e he

〈[
∂u

∂n

]
,

[
∂v

∂n

]〉

e
. (2.5)

γ0,e and γ1,e are penalty parameters to be specified later. Therefore, if u ∈ H 2(Ω) is the solution of

(1.1), then

ah(u, v) = ( f , v) ∀v ∈V. (2.6)

Inspired by the above formulation, we propose the following IPCDGM for problem (1.1): find uh ∈Vh

such that

ah(uh , vh) = ( f , vh) ∀vh ∈Vh . (2.7)
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Remark 2.1. (i) Penalizing the jumps of normal derivatives was used early by Douglas and Dupont [11]

for second order PDEs in the context of continuous interior penalty finite element methods (CIPFEM)

and by Babuška and Zlámal [3] for fourth order PDEs in the context of C 0 finite element methods, by

Baker [4] for fourth order PDEs and by Arnold [1] for second order parabolic PDEs in the context of IPDG

methods.

(ii) In [14, 15, 12, 30, 6, 29], the IPDGM and the CIPFEM are applied to the Helmholtz equation with

high wave number. It turned out that the penalty parameters in IPDG methods and the CIPFEM may

be tuned to eliminate the pollution effect in one dimension and greatly reduce the pollution effect in

higher dimensions. It will be shown in Section 5 by numerical tests in 2D that the penalty parameters

in our IPCDGM can also be tuned to greatly reduce the pollution error.

(iii) Note that the approximate functions used in the IPDGM are allowed to be discontinuous at

any interface of elements while those used in the CIPFEM are continuous on the whole computational

domain just like the FEM. Our IPCDGM is a method between the IPDGM and CIPFEM since the ap-

proximate functions in Vh are continuous in each macro-element in TH but may be discontinuous at

their edges/faces. The IPCDGM use less number of degrees of freedom than the IPDGM while more than

the CIPFEM on the same mesh.

(iv) The methods and theoretical results can be easily extended to Cartesian meshes. While the ex-

tension to higher order methods requires more technical skills (cf. [12]) and will be reported in a future

work.

We introduce the following semi-norms and norms on H s(TH ) or H s(Th) for further analysis.

‖v‖H =
(
‖∇H v‖2

0 +
∑

E∈EH

1

H
‖[v]‖2

0,E +
∑

E∈EH

H

∥∥∥∥
[
∂v

∂n

]∥∥∥∥
2

0,E

) 1
2

,

‖v‖h =
(
‖∇h v‖2

0 +
∑

E∈EH

1

h
‖[v]‖2

0,E +
∑

e∈Eh

h

∥∥∥∥
[
∂v

∂n

]∥∥∥∥
2

0,e

) 1
2

,

�v�H = (‖v‖2
H +k2‖v‖2

0

) 1
2 , �v�h = (‖v‖2

h +k2‖v‖2
0

) 1
2 .

2.2 Multiscale IPDPGM

In this subsection we introduce our multiscale method based on the IPCDGM. The MsIPDPGM

uses the same variational formulation as IPCDGM, while the approximation space is defined on the

coarse mesh TH , whose basis functions are obtained by solving some local problems on the fine scale

mesh.

We define our multiscale approximation spaces by following the standard procedure in [20, 21, 13,

27, 16, etc.]. First, we introduce the space of piecewise linear functions on TH :

VH = {vH : vH |T ∈ P1, ∀T ∈TH }, (2.8)

and define the local L2-projector QH : L2(Ω) →VH : for any v ∈ L2(Ω) and T ∈TH ,

(QH v − v, vH )T = 0 ∀vH ∈VH . (2.9)
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Let L be a positive integer. For any macro-element T ∈ TH , define the L-layer region surrounding T

as

ωT,0 = T. ωT,l =
{
T ′ ∈TH : T ′∩ωT,l−1 6= ;}

, l = 1, · · · ,L. (2.10)

Introduce the global and local kernel spaces of QH as

V f = {
vh ∈Vh : QH vh = 0

}
, V f

T,L = {
vh ∈V f : vh = 0 inΩ\ωT,L

}
. (2.11)

For any T ∈ TH , denote by λ j
T ∈ VH ( j = 1 · · ·r with r = d + 1) the nodal basis functions with re-

spect to T . Define the global and localized correctors (E∞λ
j
T ,ET,Lλ

j
T ) and the corresponding adjoint

correctors (E∗
∞λ

j
T ,E∗

T,Lλ
j
T ) of λ j

T as

E∞λ
j
T ∈V f : ah(E∞λ

j
T , w) = ah(λ j

T , w) ∀w ∈V f , (2.12)

E∗
∞λ

j
T ∈V f : ah(w,E∗

∞λ
j
T ) = ah(w,λ j

T ) ∀w ∈V f , (2.13)

ET,Lλ
j
T ∈V f

T,L : ah(ET,Lλ
j
T , wL) = ah(λ j

T , wL), ∀wL ∈V f
T,L , (2.14)

E∗
T,Lλ

j
T ∈V f

T,L : ah(wL ,E∗
T,Lλ

j
T ) = ah(wL ,λ j

T ), ∀wL ∈V f
T,L . (2.15)

Let x j
T be the nodal points corresponding to λ

j
T , that is, λ j

T (xm
T ) = δ j m , j ,m = 1, · · · ,r . For any vH =

∑
T∈TH
j=1···r

vH (x j
T )λ j

T ∈VH , define

E∞vH =
∑

T∈TH
j=1···r

vH (x j
T )

(
E∞λ

j
T

)
, E∗

∞vH =
∑

T∈TH
j=1···r

vH (x j
T )

(
E∗
∞λ

j
T

)
, (2.16)

EL vH =
∑

T∈TH
j=1···r

vH (x j
T )

(
ET,Lλ

j
T

)
, E∗

L vH =
∑

T∈TH
j=1···r

vH (x j
T )

(
E∗

T,Lλ
j
T

)
. (2.17)

Clearly, E∞vH ,E∗
∞vH ,EL vH ,E∗

L vH ∈V f for any vH ∈VH and

ah(E∞vH , w) = ah(vH , w), ah(w,E∗
∞vH ) = ah(w, vH ), ∀vH ∈VH , w ∈V f . (2.18)

It is easy to verify that

E∗
∞vH = E∞vH and E∗

L vH = EL vH , ∀vH ∈VH . (2.19)

Then we introduce the localized MsIPDPG trial and test spaces by correcting these nodal basis

functions.

V ms
H ,L = span

{
λ

j
T −ET,Lλ

j
T ,T ∈TH , j = 1 · · ·r }

,

V ms∗
H ,L = span

{
λ

j
T −E∗

T,Lλ
j
T ,T ∈TH , j = 1 · · ·r }

.

From (2.19), it is clear that the test space V ms∗
H ,L consists of complex conjugates of functions from the

trial space V ms
H ,L .

Now, we are ready to define the MsIPDPGM for problem (1.1) : Find ums
H ,L ∈V ms

H ,L such that

ah
(
ums

H ,L , vms∗
H ,L

)= (
f , vms∗

H ,L

)
, ∀vms∗

H ,L ∈V ms∗
H ,L . (2.20)
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Remark 2.2. (i) The well-posedness of problems (2.12)–(2.15), and (2.20) will be verified in next sections

(see Corollary 3.7, Remark 4.7).

(ii) The problems (2.12)–(2.13) are introduce only for theoretical purpose. In practice, we solve the

local problems (2.14)–(2.15) and (2.20) instead, which are good approximations to (2.12)–(2.13) , re-

spectively. As a matter of fact, it can be shown that the global correctors E∞λT, j decay exponentially (see

Section 4). The local problem (2.14) should be solved on the fine mesh scale, while the problem (2.20) on

the macro mesh TH . On the other hand, the problem (2.14) of each macro basis function can be solved

by parallel computing.

(iii) We will show in Theorem 4.12 that the solution to the MsIPDPGM is superclose to the IPCDG

solution under proper conditions.

3 Preasymptotic error analysis of IPCDGM

The task of this section is to derive the preasymptotic error estimates between the solution to the

IPCDGM (2.7) and the exact solution to (1.1). As by-products, we also give out the stability estimates

and the inf-sup condition for the scheme (2.7).

3.1 Preliminary lemmas

In this subsection, we will recall some stability estimates of the continuous problem and some

approximation properties of the discrete spaces.

The following stability estimates for the problem (1.1) were proved in [22, 9, 18].

Lemma 3.1. Suppose f ∈ L2(Ω), for the solution u to the problem (1.1), there holds

k−1 ‖u‖2 +‖u‖1 +k ‖u‖0 ≤C
∥∥ f

∥∥
0 .

The following local trace inequality will be used frequently in our analysis, which can be prove by

using the standard trace inequality and the scaling argument [5, 7].

‖v‖0,∂t ≲ h
− 1

2
t ‖v‖0,t +‖v‖

1
2
0,t ‖∇v‖

1
2
0,t , ∀v ∈ H 1(t ), t ∈Th . (3.21)

Let Ih be the Lagrange interpolation operator onto Vh . Denote by |v |2,Th = (∑
t∈Th

|v |22,t

)1/2 the

discrete semi-H 2-norm. We have the following interpolation error estimates.

Lemma 3.2. Suppose v ∈ H 2(Th). Then

‖v − Ih v‖0 ≲ h2|v |2,Th , ‖v − Ih v‖h ≲ h|v |2,Th . (3.22)

Moreover, for the solution u to the problem (1.1), there hold

‖u − Ihu‖0 ≲ kh2
∥∥ f

∥∥
0 and �u − Ihu�h ≲ kh(1+kh)

∥∥ f
∥∥

0 . (3.23)

7

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Proof. The standard interpolation theory [5, 8] says that

‖v − Ih v‖0,t +h ‖v − Ih v‖1,t ≲ h2|v |2,t ∀t ∈Th .

Clearly, it suffices to prove the second estimate in (3.22). Denote by w = v − Ih v . It follows from the

local trace inequality that

‖v − Ih v‖2
h =

∑

t∈Th

‖∇w‖2
0,t +

∑

E∈EH

1

h
‖[w]‖2

0,E +
∑

e∈Eh

h

∥∥∥∥
[
∂w

∂n

]∥∥∥∥
2

0,e

≲
∑

t∈Th

(
h−2 ‖w‖2

0,t +|w |21,t +h2|w |22,t

)

≲
∑

t∈Th

(
h2|v |22,t

)
≲ h2|v |22,Th

.

Then (3.23) is a consequence of (3.22) and Lemma 3.1. This completes the proof of the lemma.

3.2 Preasymptotic error estimates

First we consider the continuity and coercivity of the sesquilinear form bh(·, ·) defined in (2.4).

Lemma 3.3. Suppose |γ j ,e |≲ 1( j = 0,1),∀e ∈ Eh . There hold

|bh(u, v)|≲ (‖u‖h +h|u|2,Th

)(‖v‖h +h|v |2,Th

) ∀u, v ∈V , (3.24)

|bh(uh , vh)|≲ ‖uh‖h‖vh‖h ∀uh , vh ∈Vh . (3.25)

Moreover, there exist constants α0,α1 > 0, such that if α0 ≤ γ0,e ≲ 1 and −α1 ≤ γ1,e ≲ 1, then

bh(vh , vh)≳ ‖vh‖2
h ∀vh ∈Vh . (3.26)

Proof. From (2.4)–(2.5) and the local trace inequality (3.21) we obtain

|bh(u, v)|≲‖∇hu‖0 ‖∇h v‖0 +
∑

E∈EH

(∥∥∥∥
{
∂u

∂n

}∥∥∥∥
0,E

‖[v]‖0,E +‖[u]‖0,E

∥∥∥∥
{
∂v

∂n

}∥∥∥∥
0,E

)

+
∑

e⊂E∈EH

h−1 ‖[u]‖0,E ‖[v]‖0,E +
∑

e∈Eh

h

∥∥∥∥
[
∂u

∂ne

]∥∥∥∥
0,e

∥∥∥∥
[
∂v

∂ne

]∥∥∥∥
0,e

≲
(
‖u‖2

h +h
∑

e⊂E∈EH

∥∥∥∥
{
∂u

∂n

}∥∥∥∥
2

0,E

) 1
2
(
‖v‖2

h +h
∑

e⊂E∈EH

∥∥∥∥
{
∂v

∂n

}∥∥∥∥
2

0,E

) 1
2

≲
(
‖u‖2

h +h
∑

t∈Th

(
h−1 ‖∇u‖2

0,t +h|∇u|21,t

)) 1
2

×
(
‖v‖2

h +h
∑

t∈Th

(
h−1 ‖∇v‖2

0,t +h|∇v |21,t

)) 1
2

which implies that (3.24) holds. (3.25) is a consequence of (3.24) since |vh |2,Th = 0,∀vh ∈Vh .
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It remains to prove (3.26). Suppose γ0,e ≥α0 > 0 and γ1,e ≥−α1 for some constants α0,α1 > 0. For

any vh ∈Vh , we have

bh(vh , vh) =‖∇h vh‖2
0 −2Re

∑

E∈EH

〈{
∂vh

∂n

}
, [vh]

〉

E

+
∑

e⊂E∈EH

γ0,e

he
‖[vh]‖2

0,E +
∑

e∈Eh

γ1,e he

∥∥∥∥
[
∂vh

∂n

]∥∥∥∥
2

0,e

≥‖∇h vh‖2
0 +

α0

2

∑

e⊂E∈EH

1

he
‖[vh]‖2

0,E

−
∑

e∈Eh

(
α1he

∥∥∥∥
[
∂vh

∂n

]∥∥∥∥
2

0,e
+ 2

α0
he

∥∥∥∥
{
∂vh

∂n

}∥∥∥∥
2

0,e

)

Noting from the local trace inequality that

∑

e∈Eh

(
he

∥∥∥∥
[
∂vh

∂n

]∥∥∥∥
2

0,e
+he

∥∥∥∥
{
∂vh

∂n

}∥∥∥∥
2

0,e

)
≲ ‖∇h vh‖2

0 ,

there exists a constant C̃ such that

bh(vh , vh) ≥‖∇h vh‖2
0 +

α0

2

∑

e⊂E∈EH

1

he
‖[vh]‖2

0,E − C̃ max
(
α1,

2

α0

) ∑

t∈Th

‖∇vh‖2
0,t .

Thus (3.26) holds if α1 ≤ 1/(2C̃ ) and α0 ≥ 4C̃ . This completes the proof of the lemma.

Remark 3.4. Denote by Ṽh the space of piecewise linear functions on Th . It is clear that the continuity

(3.25) and the coercivity (3.26) hold also on Ṽh .

Following the analyses in [12, 30, 29], we introduce the following elliptic projection Ph : V 7→ Vh

that will be used in the error estimates.

bh(Phφ, vh)+ (Phφ, vh) = bh(φ, vh)+ (φ, vh) ∀vh ∈Vh . (3.27)

The elliptic projection satisfies the following estimates [12].

Lemma 3.5. Under the conditions of Lemma 3.3, there holds for any φ ∈ H 2(Ω) that

‖φ−Phφ‖0 +h
∥∥φ−Phφ

∥∥
h ≲ h2|φ|2.

Next we present the main theorem of this section, which gives the preasymptotic error estimates

of the IPCDGM.

Theorem 3.6. Let u and uh be the solutions to problems (1.1) and (2.7), respectively. Suppose that

f ∈ L2(Ω) and the conditions of Lemma 3.3 hold. There exists a constant C0 > 0 such that, if k3h2 ≤C0,

then

�u −uh�h ≲ (kh +k3h2)‖ f ‖0 and ‖u −uh‖0 ≲ (kh2 +k2h2)‖ f ‖0.

9

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Proof. Denote eh = u −uh = (u −Phu)+ (Phu −uh) := ρ+θh . From (2.6)–(2.7), we have the Galerkin

orthogonality ah(eh , vh) = 0. Use the definition of Ph (3.27) to get

bh(θh , vh)−k2(θh , vh)+ ik〈θh , vh〉 = (k2 +1)(ρ, vh)− ik〈ρ, vh〉. (3.28)

Step 1: Bounding ‖θh‖0,Γ by ‖θh‖0. By letting vh = θh in (3.28) and taking the imaginary part we

conclude that

k‖θh‖2
0,Γ≲ k2‖ρ‖0‖θh‖0 +k‖ρ‖0,Γ‖θh‖0,Γ.

The trace inequality, Lemma 3.5, and Lemma 3.1 imply that

‖ρ‖0 +h‖ρ‖h ≲ kh2
∥∥ f

∥∥
0 and ‖ρ‖0,Γ≲ H− 1

2 ‖ρ‖0 +‖ρ‖
1
2
0 ‖∇Hρ‖

1
2
0 ≲ kh

3
2
∥∥ f

∥∥
0 . (3.29)

The Young’s inequality yields

‖θh‖2
0,Γ≲ k‖ρ‖0‖θh‖0 +‖ρ‖2

0,Γ≲ k2h2
∥∥ f

∥∥
0 ‖θh‖0 +k2h3

∥∥ f
∥∥2

0

≲ k2h‖θh‖2
0 +k2h3

∥∥ f
∥∥2

0 . (3.30)

Step 2: Bounding �θh�h by ‖θh‖0. By letting vh = θh in (3.28), taking the real part, and using (3.29)–

(3.30), we conclude that

�θh�2
h ≲ bh(θh ,θh)+k2‖θh‖2

0 = 2k2‖θh‖2
0 +Re

(
(k2 +1)(ρ,θh)− ik〈ρ,θh〉

)

≲ k2‖θh‖2
0 +k2‖ρ‖2

0 +k‖ρ‖0,Γ‖θh‖0,Γ

≲ k2‖θh‖2
0 +k4h4

∥∥ f
∥∥2

0 +k2h
3
2
∥∥ f

∥∥
0

(
kh

1
2 ‖θh‖0 +kh

3
2
∥∥ f

∥∥
0

)
.

which implies by the Young’s inequality that

�θh�h ≲ k‖θh‖0 + (kh)
3
2
∥∥ f

∥∥
0 . (3.31)

Step 3: Estimating ‖θh‖0. We will use the modified duality argument [30, 12]. Consider the following

adjoint problem:

−4w −k2w = θh in Ω

∂w

∂n
− ikw = 0 on ∂Ω

Similar to Lemma 3.1, we have ‖w‖2 ≲ k ‖θh‖0. Testing the above problem by eh = ρ+θh and using

the Galerkin orthogonality, we get

‖θh‖2
0 + (ρ,θh) = ah(eh , w) = ah(eh , w −Ph w)

=bh(eh , w −Ph w)+ (eh , w −Ph w)− (k2 +1)(eh , w −Ph w)+ ik 〈eh , w −Ph w〉
=bh(ρ, w −Ph w)+ (ρ, w −Ph w)− (k2 +1)(ρ+θh , w −Ph w)+ ik

〈
ρ+θh , w −Ph w

〉
.
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Noting that |vh |2,Th = 0 for any vh ∈Vh , from Lemma 3.3, (3.29)–(3.31) we conclude that

‖θh‖2
0 ≲

(‖ρ‖h +h|u|2
)(‖w −Ph w‖h +h|w |2

)+k2(‖ρ‖0 +‖θh‖0
)‖w −Ph w‖0

+k
(‖ρ‖0,Γ+‖θh‖0,Γ

)‖w −Ph w‖0,Γ

≲kh
∥∥ f

∥∥
0 kh ‖θh‖0 +k2(kh2

∥∥ f
∥∥

0 +‖θh‖0
)
kh2 ‖θ‖0

+k
(
kh

3
2
∥∥ f

∥∥
0 +kh

1
2 ‖θh‖0 +kh

3
2
∥∥ f

∥∥
0

)
kh

3
2 ‖θ‖0 ,

which implies that

‖θh‖0 ≲ k2h2
∥∥ f

∥∥
0 +k3h2‖θh‖0.

and hence the following estimate holds if k3h2 is small enough.

‖θh‖0 ≲ k2h2
∥∥ f

∥∥
0 . (3.32)

The proof of the theorem follows by combining (3.29), (3.31), (3.32), and the triangle inequality.

Corollary 3.7. Under the conditions of Theorem 3.6, there holds the following estimate

�uh�h ≲ ‖ f ‖0,

and hence the IPCDGM is well-posed.

Proof. The proof is a direct consequence of Theorem 3.6 and Lemma 3.1.

Remark 3.8. (i) The stability estimates of the IPCDG solution in L2- and H 1-norms are the same as

those of the exact solution in Lemma 3.1.

(ii) It can be shown that the IPCDGM is absolute stable if the imaginary part of the penalty param-

eters are positive (cf. [14, 15, 30, 29]). While for simplicity we only consider the real penalty parameters

in this paper.

3.3 Discrete inf-sup condition

The following inf-sup condition of ah(·, ·) is useful in the analysis of the multiscale IPCDGM.

Lemma 3.9. Under the conditions of Theorem 3.6, there holds

inf
uh∈Vh \{0}

sup
vh∈Vh \{0}

Reah(vh ,uh)

�vh�h�uh�h
≳ 1

k
. (3.33)

Proof. For any given uh ∈Vh , we define the following problem: find wh ∈Vh

ah(wh , vh) = 2k2(uh , vh), ∀vh ∈Vh .

Corollary 3.7 implies that �wh�h ≲ k2‖uh‖0 ≲ k�uh�h . Set vh = uh +wh to get

Reah(vh ,uh) = Reah(uh ,uh)+Reah(wh ,uh)

= Reah(uh ,uh)+2k2(uh ,uh)≳ �uh�2
h

where we have used (3.26) to derive the last inequality. On the other hand �vh�h ≲ �uh�h +�wh�h ≲
k�uh�h , which together with the above estimate implies that (3.33) holds. This completes the proof

of the lemma.
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4 Preasymptotic error analysis of MsIPDPGM

In this section, we first list some useful lemmas about L2-projector and cut-off functions. Then we

prove the exponential decay of the global corrector. In the last subsection, we present the preasymp-

totic error analysis of the MsIPDPGM.

4.1 Preliminary lemmas

Recall that Ṽh is the space of piecewise linear functions on Th (see Remark 3.4). The following

lemma lists some useful estimates on two interpolation operators: the Oswald interpolation operator

[26, 19] (denoted by I c
h) and the Scott-Zhang interpolation operator [28, 5] (denoted byΠh).

Lemma 4.1. There exist two interpolation operators I c
h : Ṽh → Ṽh∩H 1(Ω) andΠH : H 1(Ω) →VH∩H 1(Ω)

satisfying the following estimates:

h−2
∥∥vh − I c

h vh
∥∥2

0,T +
∥∥∇(vh − I c

h vh)
∥∥2

0,T ≲
∑

e∈Eh ,e∩T 6=;
h−1 ‖[vh]‖2

0,e , ∀vh ∈ Ṽh ,T ∈TH , (4.34)

‖v −ΠH v‖0 ≲ H ‖∇v‖0 , ∀v ∈ H 1(Ω). (4.35)

The following lemma gives some estimates of the L2-projector QH .

Lemma 4.2. The following estimates hold for any v ∈ H 2(Ω), vh ∈Vh and T ∈TH :

‖v −QH v‖0 ≲ H 2|v |2, ‖vh −QH vh‖0,T ≲ H‖∇vh‖0,T , and ‖QH vh‖H ≲ ‖vh‖h .

Proof. The first two estimates are well-known (see e.g. [5]).

Denote by vc
h = I c

h vh . It follows from (4.34)–(4.35), the local trace inequality, the inverse inequality,

and the stability estimates |QH vh | j ,T ≲ |vh | j ,T ( j = 0,1) that

‖QH vh‖2
H =‖∇HQH vh‖2

0 +
∑

E∈EH

1

H
‖[QH vh]‖2

0,E +
∑

E∈EH

H

∥∥∥∥
[
∂QH vh

∂n

]∥∥∥∥
2

0,E

≲‖∇HQH vh‖2
0 +

∑

E∈EH

1

H

∥∥[
QH vh −ΠH vc

h

]∥∥2
0,E

≲‖∇HQH vh‖2
0 +

∑

T∈TH

1

H 2

∥∥QH vh −ΠH vc
h

∥∥2
0,T

≲‖∇HQH vh‖2
0 +

1

H 2

(∥∥QH (vh − vc
h)

∥∥2
0 +

∥∥QH vc
h − vc

h

∥∥2
0 +

∥∥vc
h −ΠH vc

h

∥∥2
0

)

≲‖∇H vh‖2
0 +

1

H 2

∥∥vh − vc
h

∥∥2
0 +‖∇H vc

h‖2
0

≲‖∇H vh‖2
0 +

∑

E∈EH

1

h
‖[vh]‖2

0,E ≲ ‖vh‖2
h .

This completes the proof of the lemma.
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From [13, Lemma 6] and the fact that
∑

e∈Eh
h
∥∥[∂vh

∂n

]∥∥
0,e ≲

∑
t∈Th

‖∇vh‖2
0,t , we have the following

lemma which shows that given some vH ∈VH there exists a H 1-conforming preimage b ∈Q−1
H vH ⊂Vh

with comparable support. The proof is omitted.

Lemma 4.3. For each vH ∈VH , there exists b ∈Vh∩H 1(Ω), such that QH b = vH , supp(b) ⊆ supp
(
I c

H vH
)

and

‖b‖h ≲ ‖vH‖H . (4.36)

Remark 4.4. Note that I c
H may be appropriately defined such that supp(b) ⊆ωT,L ,Ω\ωT,L , orωT,L \ωT,L−1,

if so is suppvH .

For any T ∈TH , let ηT be a cut-off function of piecewise constant on Th with values in the interval

[0,1], which satisfies

ηT =




1 in ωT,L−1,

0 in Ω\ωT,L ,
and

∥∥[ηT ]
∥∥

L∞(e)




≲ h

H , ife ∈ Eh ,e ⊂ (
ωT,L \ωT,L−1

)◦,

= 0, otherwise.
(4.37)

Here ◦ denotes the interior of a point set. Note that for any vh ∈ V f , ηT vh may not be in Vh since it

may be discontinuous in the macro-elements contained in ωT,L \ωT,L−1. The following lemma says

that there exists a proper approximation of ηT vh in Vh .

Lemma 4.5. For any vh ∈V f , there exists I c
h,T (ηT vh) ∈Vh satisfying the following estimates.

h−1
∥∥ηT vh − I c

h,T (ηT vh)
∥∥

0 +
∥∥ηT vh − I c

h,T (ηT vh)
∥∥

h ≲ ‖vh‖h, ωT,L\ωT,L−1 , (4.38)

H−1
∥∥vh − I c

h,T (ηT vh)
∥∥

0 +
∥∥vh − I c

h,T (ηT vh)
∥∥

h ≲ ‖vh‖h, Ω\ωT,L−1 . (4.39)

Here ‖v‖h,G =
(∑

t∈Th ,t⊂Ḡ ‖∇v‖2
0,t +

∑
E∈EH ,E⊂G

1
h‖[v]‖2

0,E +∑
e∈Eh ,e⊂G h

∥∥[
∂v
∂n

]∥∥2
0,e

) 1
2

for G ⊂Ω and Ḡ is the

closure of G.

Proof. Define

I c
h,T (ηT vh) =





I c
h(ηT vh), in ωT,L \ωT,L−1,

ηT vh , otherwise,
(4.40)

where I c
h is the Oswald interpolation operator satisfying (4.34). Clearly I c

h,T (ηT vh) ∈Vh and there holds

∥∥ηT vh − I c
h,T (ηT vh)

∥∥2
0 ≲

∑
e∈Eh

e⊂(ωT,L \ωT,L−1)◦

h
∥∥[ηT vh]

∥∥2
0,e . (4.41)

Since vh = vh −QH vh , from Lemma 4.2 we have

‖vh‖0,T ≲ H ‖∇vh‖0,T . (4.42)
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Therefore, from the local trace and inverse inequalities, (4.41), the magic formula, (4.37), and (4.42),

we conclude that

∥∥ηT vh − I c
h,T (ηT vh)

∥∥2
h ≲h−2

∥∥ηT vh − I c
h,T (ηT vh)

∥∥2
0

≲
∑

e∈Eh
e⊂(ωT,L \ωT,L−1)◦

h−1
∥∥{
ηT

}
[vh]+

[
ηT

]
{vh}

∥∥2
0,e

≲
∑

e∈Eh
e⊂(ωT,L \ωT,L−1)◦

h−1
∥∥ [vh]

∥∥2
0,e +

∑
t∈Th

t⊂ωT,L \ωT,L−1

h−1 h2

H 2
h−1

∥∥vh
∥∥2

0,t

≲
∑

e∈Eh
e⊂(ωT,L \ωT,L−1)◦

h−1
∥∥ [vh]

∥∥2
0,e +

∑
T∈TH

T⊂ωT,L \ωT,L−1

∥∥∇vh
∥∥2

0,T

which together with (4.41) implies that (4.38) holds.

It remains to prove (4.39). Denote by wh = vh −ηT vh . Noting that ηT = 1 and [ηT ] = 0 in ωT,L−1,

similarly as above, we have

‖wh‖2
h =‖∇h wh‖2

0,Ω\ωT,L−1
+

∑
E∈EH

E⊂Ω\ωT,L−1

1

h
‖[wh]‖2

0,E +
∑

e∈Eh
e⊂Ω\ωT,L−1

h

∥∥∥∥
[
∂wh

∂n

]∥∥∥∥
2

0,e

≲‖∇h wh‖2
0,Ω\ωT,L−1

+
∑

E∈EH
E⊂Ω\ωT,L−1

1

h
‖[(1−ηT )vh]‖2

0,E

≲‖(1−ηT )∇h vh‖2
0,Ω\ωT,L−1

+
∑

e∈Eh
e⊂Ω\ωT,L−1

h−1
∥∥ [vh]

∥∥2
0,e +

∥∥∇h vh
∥∥2

0,Ω\ωT,L−1

≲‖vh‖h,Ω\ωT,L−1 .

On the other hand, from Lemma 4.2, we have

‖wh‖0 ≲‖vh‖0,Ω\ωT,L−1 ≲ H‖∇h vh‖0,Ω\ωT,L−1 ≲ H‖vh‖h,Ω\ωT,L−1

Then (4.39) follows by combining the above two estimates and (4.38) and using the triangle inequality.

This completes the proof of the lemma.

4.2 Exponential closeness between the localized and global correctors

In this subsection, the main task is to prove that the localized corrector ET,Lλ
j
T is exponentially

close to the global corrector E∞λ
j
T .

Lemma 4.6.

(i) The norms ‖ ·‖h and � ·�h are equivalent on the space V f if kH ≲ 1.

(ii) Under the conditions of Lemma 3.3, there exist a positive constant C1, such that, if kH ≤C1 then

Reah(vh , vh)≳ ‖vh‖2
h , ∀vh ∈V f .
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(iii) Suppose kh ≲ 1. Then |ah(uh , vh)|≲ �uh�h �vh�h , ∀uh , vh ∈Vh .

Proof. Obviously ‖vh‖h ≲ �vh�h . Using Lemma 4.2 and QH vh = 0 ,we have

�vh�2
h = ‖vh‖2

h +k2‖vh‖2
0 = ‖vh‖2

h +k2‖vh −QH vh‖2
0

≲ ‖vh‖2
h + (Hk)2‖∇h vh‖2

0 ≲ ‖vh‖2
h

which implies that (i) holds.

From (2.3), (3.26), and Lemma 4.2, we have

Reah(vh , vh) =bh(vh , vh)−k2‖vh‖2
0 ≳ ‖vh‖2

h −C (kH)2 ‖∇h vh‖2
0

which implies that (ii) holds.

For vh ∈Vh , let vc
h = I c

h vh ∈Vh ∩H 1(Ω). It follows from the trace inequality, the local trace inequal-

ity, the inverse inequality, and (4.34) that

k ‖vh‖2
0,Γ≲ k

∥∥vc
h

∥∥2
0,Γ+k

∥∥vh − vc
h

∥∥2
0,Γ

≲ k
∥∥vc

h

∥∥
0

∥∥vc
h

∥∥
1 +kh−1

∥∥vh − vc
h

∥∥2
0

≲
∥∥∇vc

h

∥∥2
0 +k2

∥∥vc
h

∥∥2
0 +kh−1

∥∥vh − vc
h

∥∥2
0

≲ ‖∇h vh‖2
0 +k2 ‖vh‖2

0 +
∥∥∇h(vc

h − vh)
∥∥2

0 +
(
k2 +kh−1)∥∥vh − vc

h

∥∥2
0

≲ ‖∇h vh‖2
0 +k2 ‖vh‖2

0 +
(
1+k2h2 +kh

) ∑

e∈Eh

h−1 ‖[vh]‖2
0,e ≲ �vh�h ,

which implies that k ‖uh‖0,Γ ‖vh‖0,Γ≲ �uh�h �vh�h and hence (iii) follows from (2.3) and (3.25). This

completes the proof of the lemma.

Remark 4.7. From the Lax-Milgram lemma, the corrector problems (2.12)–(2.15) are well-posed under

the conditions of Lemma 4.6.

Similar to [13, Lemma 8] for coercive elliptic problems, we have the following stability result for

the corrected basis functions for the highly indefinite Helmholtz problem.

Lemma 4.8. Under the conditions of Lemma 4.6, there hold

��vH −E∞vH
��

h ≲
��vH

��
H ∀vH ∈VH and

�� λ
j
T −ET,Lλ

j
T

��
h ≲

��λ j
T

��
H . (4.43)

Proof. We first prove the first inequality. From Lemma 4.3, for any vH ∈VH , there exists b ∈Vh∩H 1(Ω)

such that QH b = vH and ‖b‖h ≲
∥∥vH

∥∥
H . Noting that vH −E∞vH −b ∈V f , from Lemma 4.6 and (2.18),

we have

��vH −E∞vH −b
��2

h ≲ah
(
vH −E∞vH −b, vH −E∞vH −b

)= ah
(−b, vH −E∞vH −b

)

≲�b�h
��vH −E∞vH −b

��
h .

Thus
��vH −E∞vH −b

��
h ≲ �b�h and hence

��vH −E∞vH
��

h ≲ �b�h .
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On the other hand, from Lemma 4.2,

�b�2
h = ‖b‖2

h +k2 ‖b‖2
0 ≲

∥∥vH
∥∥2

H +k2
∥∥vH

∥∥2
0 +k2

∥∥b − vH
∥∥2

0

≲
∥∥vH

∥∥2
H +k2

∥∥vH
∥∥2

0 +k2H 2
∥∥∇b

∥∥2
0

≲
��vH

��2
H .

The proof of the first inequality in (4.43) follows by combining the above two estimates.

Note that supp(b) ⊆ supp
(
I c

Hλ
j
T

)=ωT,1 and hence λ j
T −E∞λ

j
T −b ∈ V f

T,L . The proof of the second

inequality in (4.43) can be proved by following the lines for the first one. We omit the details.

The following theorem says that the localized corrector ET,Lλ
j
T is exponentially close to the global

corrector E∞λ
j
T , which is the main result of this subsection.

Theorem 4.9. Under the conditions of Lemma 4.6, there exists a positive constant C2 such that if kH <
C2 then

∥∥E∞λ
j
T −ET,Lλ

j
T

∥∥
h ≲βL

��λ j
T

��
H , ∀T ∈TH , j = 1 · · ·r, (4.44)

where β :=
(

(kH)2+1
C 2

2+1

) 1
4 < 1 and E∞ and ET,L are defined in (2.12) and (2.14), respectively.

Proof. First, from Lemma 4.8 we have

�� E∞λ
j
T −ET,Lλ

j
T

��
h ≲

��λ j
T

��
H . (4.45)

Therefore, it suffices to prove (4.44) for sufficiently large L. Without lose of generality, we suppose

L > 2 in the rest of the proof which is divided into two steps.

Step 1: Denote by ϕ∞ = E∞λ
j
T , ϕL = ET,Lλ

j
T , τ=ϕ∞−ϕL ∈V f . From (2.12), (2.14), and Lemma 4.6,

we have

‖τ‖2
h ≲Reah(τ,τ) = Reah(τ,ϕ∞−ψL)≲ ‖τ‖h‖ϕ∞−ψL‖h , ∀ψL ∈V f

T,L .

From Lemma 4.3, for QH
(
I c

h,T (ηTϕ∞)
)

with ηT in (4.37) and I c
h,T in (4.40), there exists a b ∈Vh ∩H 1(Ω)

which satisfies

‖b‖h ≲
∥∥QH

(
I c

h,T (ηTϕ∞)
)∥∥

H and QH
(
b − I c

h,T (ηTϕ∞)
)= 0.

Note that supp(ηTϕ∞) ⊆ ωT,L , so is supp
(
I c

h,T (ηTϕ∞)
)

and supp(b). Setting ψL := I c
h,T (ηTϕ∞)−b ∈

V f
T,L , by using Lemmas 4.2 and 4.5, we obtain

‖τ‖h ≲
∥∥ϕ∞− I c

h,T (ηTϕ∞)
∥∥

h +‖b‖h

≲
∥∥ϕ∞− I c

h,T (ηTϕ∞)
∥∥

h +
∥∥QH

(
I c

h,T (ηTϕ∞)
)∥∥

H

=
∥∥ϕ∞− I c

h,T (ηTϕ∞)
∥∥

h +
∥∥QH

(
I c

h,T (ηTϕ∞)−ϕ∞
)∥∥

H

≲
∥∥ϕ∞− I c

h,T (ηTϕ∞)
∥∥

h

≲
∥∥ϕ∞

∥∥
h,Ω\ωT,L−1

. (4.46)
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Step 2: We introduce the following piecewise constant cut-off function on Th :

ξT =




0 in ωT,L−2,

1 in Ω\ωT,L−1,
and ‖[ξT ]‖L∞(e)




≲ h

H , ife ∈ Eh ,e ⊂ (
ωT,L−1 \ωT,L−2

)◦,

= 0, otherwise.
(4.47)

Therefore, from Remark 3.4, the identity {v w} = {v} {w}+ 1
4 [v] [w], and the magic formula, we have

∥∥ϕ∞
∥∥2

h,Ω\ωT,L−1
≤

∥∥ξTϕ∞
∥∥2

h ≲Reah(ξTϕ∞,ξTϕ∞)+k2(ξTϕ∞,ξTϕ∞
)

=
(
Reah(ϕ∞,ξ2

Tϕ∞)+k2
∥∥ξTϕ∞

∥∥2
0

)

+ 1

2
Re

∑

E∈EH

(({∂ϕ∞
∂n

}
, [ξT ]2 [

ϕ∞
])

E
−

([∂ϕ∞
∂n

]
, [ξT ]2 {

ϕ∞
})

E

)

+
∑

E∈EH

γ0

h

(∥∥[ξT ]
{
ϕ∞

}∥∥2
0,E − 1

4

∥∥[ξT ]
[
ϕ∞

]∥∥2
0,E

)

+
∑

e∈Eh

γ1h

(∥∥∥ [ξT ]
{∂ϕ∞
∂n

}∥∥∥
2

0,e
− 1

4

∥∥∥ [ξT ]
[∂ϕ∞
∂n

]∥∥∥
2

0,e

)

:=I + I I + I I I + IV. (4.48)

Next we estimate the each term in (4.48). First we estimate I . Similar to Lemma 4.5, there exists

I c
h,T (ξ2

Tϕ∞) ∈Vh defined similarly as in (4.40) but with L replaced by L−1 and ηT vh replaced by ξ2
Tϕ∞,

which satisfies the following estimates:

h−1
∥∥ξ2

Tϕ∞− I c
h,T (ξ2

Tϕ∞)
∥∥

0 +
∥∥ξ2

Tϕ∞− I c
h,T (ξ2

Tϕ∞)
∥∥

h ≲‖ϕ∞‖h, ωT,L−1\ωT,L−2 , (4.49)

H−1
∥∥ϕ∞− I c

h,T (ξ2
Tϕ∞)

∥∥
0,ωT,L−1\ωT,L−2

+
∥∥ϕ∞− I c

h,T (ξ2
Tϕ∞)

∥∥
h,ωT,L−1\ωT,L−2

≲‖ϕ∞‖h, ωT,L−1\ωT,L−2
. (4.50)

Moreover, from Lemma 4.3, there exists a b ∈Vh ∩H 1(Ω) satisfying

QH b =QH
(
I c

h,T (ξ2
Tϕ∞)

)
, and ‖b‖h ≲

∥∥QH
(
I c

h,T (ξ2
Tϕ∞)

)∥∥
H . (4.51)

We write

I =Reah
(
ϕ∞,ξ2

Tϕ∞− I c
h,T (ξ2

Tϕ∞)
)+Reah

(
ϕ∞, I c

h,T (ξ2
Tϕ∞)−b

)

+Reah
(
ϕ∞,b

)+k2
∥∥ξTϕ∞

∥∥2
0

:=I1 + I2 + I3 + I4,

Noting that ξ2
Tϕ∞− I c

h,T (ξ2
Tϕ∞) is supported in ωT,L−1 \ωT,L−2, from (2.3), Remark 3.4, we have

I1 ≲
��ϕ∞

��
h,ωT,L−1\ωT,L−2

��ξ2
Tϕ∞− I c

h,T (ξ2
Tϕ∞)

��
h +k

∥∥ϕ∞‖0,Γ∩ωT,L−1\ωT,L−2
‖ξ2

Tϕ∞− I c
h,T (ξ2

Tϕ∞)‖0,Γ .

In case of Γ∩ωT,L−1 \ωT,L−2 6= ;, it follows from the local trace inequality and ϕ∞ ∈V f that

∥∥ϕ∞‖0,Γ∩ωT,L−1\ωT,L−2
≲ H− 1

2
∥∥ϕ∞‖0,ωT,L−1\ωT,L−2 +H

1
2
∥∥∇hϕ∞‖0,ωT,L−1\ωT,L−2

≲ H
1
2
∥∥∇hϕ∞‖0,ωT,L−1\ωT,L−2 .
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From (4.49) we conclude that

I1 ≲
��ϕ∞

��
h,ωT,L−1\ωT,L−2

��ξ2
Tϕ∞− I c

h,T (ξ2
Tϕ∞)

��
h

+kH
1
2 h− 1

2
∥∥∇hϕ∞

∥∥
0,ωT,L−1\ωT,L−2

∥∥ξ2
Tϕ∞− I c

h,T (ξ2
Tϕ∞)

∥∥
0

≲
��ϕ∞

��2
h,ωT,L−1\ωT,L−2

+k(Hh)
1
2
∥∥ϕ∞

∥∥2
h,ωT,L−1\ωT,L−2

≲
∥∥ϕ∞

∥∥2
h,ωT,L−1\ωT,L−2

.

Since QH
(
I c

h,T (ξ2
Tϕ∞)

)∣∣
Ω\ωT,L−1

= QHϕ∞
∣∣
Ω\ωT,L−1

= 0, we have supp
(
QH

(
I c

h,T (ξ2
Tϕ∞)

)) ⊆ ωT,L−1 \

ωT,L−2, so is supp(b) (see Remark 4.4). Therefore I c
h,T (ξ2

Tϕ∞)−b ∈ V f vanishes in ωT,L−2. It follows

from (2.12) that

I2 = ah
(
λ

j
T , I c

h,T (ξ2
Tϕ∞)−b

)= 0.

Moreover, from (3.25), the trace inequalities, Lemma 4.2, (4.51), we conclude that

I3 ≲
��ϕ∞

��
h,ωT,L−1\ωT,L−2

��b
��

h +k
∣∣〈ϕ∞,b

〉∣∣

≲
��ϕ∞

��
h,ωT,L−1\ωT,L−2

��b
��

h +kH
1
2
∥∥∇hϕ∞

∥∥
0,ωT,L−1\ωT,L−2

‖b‖
1
2
0 ‖b‖

1
2
1

≲
��ϕ∞

��
h,ωT,L−1\ωT,L−2

��b
��

h + (kH)
1
2
∥∥∇hϕ∞

∥∥
0,ωT,L−1\ωT,L−2

(
k‖b‖0 +‖b‖1

) 1
2

≲
��ϕ∞

��
h,ωT,L−1\ωT,L−2

(‖b‖h +k‖b −QH b‖0 +k‖QH b‖0
)

≲
��ϕ∞

��
h,ωT,L−1\ωT,L−2

(‖b‖h +k‖QH b‖0
)

≲
��ϕ∞

��
h,ωT,L−1\ωT,L−2

��QH
(
I c

h,T (ξ2
Tϕ∞)

)��
H ,ωT,L−1\ωT,L−2

=
��ϕ∞

��
h,ωT,L−1\ωT,L−2

��QH
(
I c

h,T (ξ2
Tϕ∞)−ϕ∞

)��
H ,ωT,L−1\ωT,L−2

≲
��ϕ∞

��
h,ωT,L−1\ωT,L−2

��I c
h,T (ξ2

Tϕ∞)−ϕ∞
��

h,ωT,L−1\ωT,L−2

≲
∥∥ϕ∞

∥∥2
h,ωT,L−1\ωT,L−2

.

It is clear that

I4 ≲ k2
∥∥ξTϕ∞

∥∥2
0,Ω\ωT,L−2

≲(kH)2
∥∥ϕ∞

∥∥2
h,Ω\ωT,L−2

.

By combing the above estimates for I1-I4, we obtain

I ≲ (kH)2
∥∥ϕ∞

∥∥2
h,Ω\ωT,L−2

+
∥∥ϕ∞

∥∥
h,ωT,L−1\ωT,L−2

. (4.52)

Then we estimate the second term I I . Clearly, [ξT ] vanishes at e if e 6∈ (
ωT,L−1 \ωT,L−2

)◦. It follows
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from the local trace inequality, the inverse inequality, and Lemma 4.2 that

I I ≲
(

h

H

)2 ∑

E∈(ωT,L−1\ωT,L−2)◦

(∥∥∥
{∂ϕ∞
∂n

}∥∥∥
0,E

∥∥[
ϕ∞

]∥∥
0,E +

∥∥∥
[∂ϕ∞
∂n

]∥∥∥
0,E

∥∥{
ϕ∞

}∥∥
0,E

)

≲h
5
2

H 2


 ∑

t⊂ωT,L−1\ωT,L−2

h−1
∥∥∇ϕ∞

∥∥2
0,t




1
2

 ∑

E∈(ωT,L−1\ωT,L−2)◦

1

h

∥∥[ϕ∞]
∥∥2

0,E




1
2

+ h
3
2

H 2


 ∑

E∈(ωT,L−1\ωT,L−2)◦
h
∥∥∥
[∂ϕ∞
∂n

]∥∥∥
2

0,E




1
2

 ∑

t⊂ωT,L−1\ωT,L−2

h−1
∥∥ϕ∞

∥∥2
0,t




1
2

≲ h

H

∥∥ϕ∞
∥∥2

h,ωT,L−1\ωT,L−2
. (4.53)

Similarly,

I I I ≲
(

h

H

)2 ∑

E∈(ωT,L−1\ωT,L−2)◦

1

h

(∥∥{
ϕ∞

}∥∥2
0,E +

∥∥[
ϕ∞

]∥∥2
0,E

)

≲ 1

H 2

∥∥ϕ∞
∥∥2

0,ωT,L−1\ωT,L−2
≲

∥∥ϕ∞
∥∥2

h,ωT,L−1\ωT,L−2
, (4.54)

and

IV ≲
(

h

H

)2 ∑

e∈(ωT,L−1\ωT,L−2)◦
h

(∥∥∥
{∂ϕ∞
∂n

}∥∥∥
2

e
+

∥∥∥
[∂ϕ∞
∂n

]∥∥∥
2

e

)

≲
(

h

H

)2 ∥∥∇hϕ∞
∥∥2

0,ωT,L−1\ωT,L−2
≲

(
h

H

)2

‖ϕ∞‖2
h,ωT,L−1\ωT,L−2

. (4.55)

By plugging the estimates (4.52)–(4.55) into (4.48) we obtain

C 2
2‖ϕ∞‖2

h,Ω\ωT,L−1
≤ (kH)2

∥∥ϕ∞
∥∥2

h,Ω\ωT,L−2
+

∥∥ϕ∞
∥∥

h,ωT,L−1\ωT,L−2

≤ (kH)2
∥∥ϕ∞

∥∥2
h,Ω\ωT,L−3

+
(∥∥ϕ∞

∥∥2
h,Ω\ωT,L−3

−
∥∥ϕ∞

∥∥2
h,Ω\ωT,L−1

)

for some constant C2 independent of k,h, H , and f . As a consequence,

‖ϕ∞‖2
h,Ω\ωT,L−1

≤β4
∥∥ϕ∞

∥∥2
h,Ω\ωT,L−3

where β :=
(

(kH)2+1
C 2

2+1

) 1
4 < 1 if K H <C2. Recursively, we have

‖ϕ∞‖h,Ω\ωT,L−1 ≤β2
∥∥ϕ∞

∥∥
h,Ω\ωT,L−3

≤ ·· · ≤



βL−2

∥∥ϕ∞
∥∥

h,Ω\ωT,1
if L even

βL−1
∥∥ϕ∞

∥∥
h,Ω\ωT,0

if L odd

≲βL
∥∥ϕ∞

∥∥
h,Ω\ωT,0

=βL
∥∥ϕ∞−λ j

T

∥∥
h,Ω\ωT,0

≲βL�λ j
T�H ,

where we have used Lemma 4.8 to prove the last inequality. The proof of the theorem follows by

combining the above estimate and (4.46).
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Theorem 4.10. Under the conditions of Theorem 4.9, there holds
∥∥(

E∞−EL
)
vH

∥∥
h ≲βL(kH)−1�vH�H ,

∥∥(
E∗
∞−E∗

L

)
vH

∥∥
h ≲βL(kH)−1�vH�H , ∀vH ∈VH .

Proof. From (2.19), it suffice to prove the first inequality. Denote by

Z = (
E∞−EL

)
vH =

∑
T∈TH
j=1···r

vH (x j
T )

(
E∞−ET,L

)
λ

j
T ∈V f .

Let ζT be a piecewise constant cut-off function defined as ξT in (4.47) but with L replaced by L +2.

That is

ζT =




0 in ωT,L ,

1 in Ω\ωT,L+1,
and ‖[ζT ]‖L∞(e)




≲ h

H , ife ∈ Eh ,e ⊂ (
ωT,L+1 \ωT,L

)◦,

= 0, otherwise.
(4.56)

Similar to Lemma 4.5, there exists I c
h,T (ζT Z ) ∈Vh satisfying the following estimate:

H−1
∥∥Z − I c

h,T (ζT Z )
∥∥

0 +
∥∥Z − I c

h,T (ζT Z )
∥∥

h ≲‖Z‖h, ωT,L+1 . (4.57)

Lemma 4.3 implies that there is a function b ∈ Vh ∩H 1(Ω) which satisfies that QH b = QH
(
I c

h,T (ζT Z )
)

and ‖b‖h ≲
∥∥QH

(
I c

h,T (ζT Z )
)∥∥

H =
∥∥QH

(
I c

h,T (ζT Z )−Z
)∥∥

H . Since I c
h,T (ζT Z )−b ∈V f and supp

(
I c

h,T (ζT Z )−
b
)⊆Ω\ωT,L , we have

ah
((

E∞−ET,L
)
λ

j
T , I c

h,T (ζT Z )−b
)= 0.

Therefore, from Lemmas 4.2 and 4.6, (4.57), the fact that supp
(
QH

(
I c

h,T (ζT Z )
)) ⊆ ωT,L+1 \ωT,L , and

�b�h ≲ ‖b‖h + k‖QH b‖0 + k‖b −QH b‖0 ≲ ‖b‖h + k‖QH b‖0 ≲
��QH

(
I c

h,T (ζT Z )− Z
)��

H , we conclude

that

‖Z‖2
h ≲Reah(Z , Z ) = Re

∑
T∈TH
j=1···r

vH (x j
T )ah

((
E∞−ET,L

)
λ

j
T , Z

)

=Re
∑

T∈TH
j=1···r

vH (x j
T )ah

((
E∞−ET,L

)
λ

j
T , Z − I c

h,T (ζT Z )
)

+Re
∑

T∈TH
j=1···r

vH (x j
T )ah

((
E∞−ET,L

)
λ

j
T , I c

h,T (ζT Z )−b
)

+Re
∑

T∈TH
j=1···r

vH (x j
T )ah

((
E∞−ET,L

)
λ

j
T ,b

)

=Re
∑

T∈TH
j=1···r

vH (x j
T )ah

((
E∞−ET,L

)
λ

j
T , Z − I c

h,T (ζT Z )
)

+Re
∑

T∈TH
j=1···r

vH (x j
T )ah

((
E∞−ET,L

)
λ

j
T ,b

)

≲
∑

T∈TH
j=1···r

∣∣vH (x j
T )

∣∣∥∥(
E∞−ET,L

)
λ

j
T

∥∥
h

(��Z − I c
h,T (ζT Z )

��
h +

��b
��

h

)
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≲
∑

T∈TH
j=1···r

∣∣vH (x j
T )

∣∣∥∥(
E∞−ET,L

)
λ

j
T

∥∥
h

(��Z − I c
h,T (ζT Z )

��
h +

��QH
(
I c

h,T (ζT Z )−Z
)��

H

)

≲
∑

T∈TH
j=1···r

∣∣vH (x j
T )

∣∣∥∥(
E∞−ET,L

)
λ

j
T

∥∥
h

��Z − I c
h,T (ζT Z )

��
h

≲
∑

T∈TH
j=1···r

∣∣vH (x j
T )

∣∣∥∥(
E∞−ET,L

)
λ

j
T

∥∥
h‖Z‖h,ωT,L+1

≲
( ∑

T∈TH
j=1···r

∣∣vH (x j
T )

∣∣2∥∥(
E∞−ET,L

)
λ

j
T

∥∥2
h

) 1
2
( ∑

T∈TH
j=1···r

‖Z‖2
h,ωT,L+1

) 1
2

≲
( ∑

T∈TH
j=1···r

∣∣vH (x j
T )

∣∣2∥∥(
E∞−ET,L

)
λ

j
T

∥∥2
h

) 1
2

‖Z‖h .

Therefore it follows from Theorem 4.9 and
��λ j

T

��
H ≲ H

d
2 −1 that

‖Z‖h ≲βL
( ∑

T∈TH
j=1···r

|vH (x j
T )|2

��λ j
T

��2
H

) 1
2

≲βL H−1
( ∑

T∈TH
j=1···r

|vH (x j
T )|2|T |

) 1
2

≲βL H−1‖vH‖0 ≲βL(kH)−1�vH�H .

This complete the proof of the theorem.

4.3 Preasymptotic error analysis of Multiscale IPCDGM

In this subsection, we present the pre-asymptotic error analysis of Multiscale IPCDGM.

First, we prove the inf-sup condition of ah(·, ·) with respect to the pair of spaces V ms
H ,L and V ms∗

H ,L .

Lemma 4.11. Under the conditions of Theorems 3.6 and 4.9, there exist a constant C3 > 0 such that if

L ≥ |log(C3H)/ logβ|, then

inf
ums∗

H ,L ∈V ms∗
H ,L \{0}

sup
vms

H ,L∈V ms
H ,L\{0}

Reah(vms
H ,L ,ums∗

H ,L )

�vms
H ,L�h�ums∗

H ,L �h
≳ 1

k
. (4.58)

Proof. For any ums∗
H ,L ∈V ms∗

H ,L , let ums∗
H = (1−E∞∗)QH ums∗

H ,L . Lemma 3.9 implies that there exists vh ∈Vh

such that

Reah(vh ,ums∗
H )≳ 1

k
�vh�h�ums∗

H �h .

Set vms
H = (1−E∞)QH vh and vms

H ,L = (1−EL)QH vh ∈V ms
H ,L . Clearly QH vms

H ,L =QH vms
H =QH vh . Therefore,

from Lemmas 4.8 and 4.2 and Theorem 4.10, we obtain
��vms

H ,L

��
h ≲

��vms
H

��
h +

��(
E∞−EL

)
QH vh

��
h

≲ �QH vh�H +βL(kH)−1�QH vh�H ≲ �QH vh�H ≲ �vh�h .
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Similarly, noting that ums∗
H ,L = (1−E∗

L )QH ums∗
H ,L and QH ums∗

H ,L =QH ums∗
H , we have

��ums∗
H ,L

��
h ≲

��QH ums∗
H ,L

��
H =

��QH ums∗
H

��
H ≲

��ums∗
H

��
h .

By the above three estimates, (2.18), Lemma 4.6, Theorem 4.10, and Lemma 4.2, we have

1

k

��vms
H ,L

��
h

��ums∗
H ,L

��
h ≲1

k
�vh�h

��ums∗
H

��
h ≲Reah

(
vh ,ums∗

H

)

=Reah
(
vms

H ,ums∗
H

)= Reah
(
vms

H ,ums∗
H ,L

)

=Reah
(
vms

H ,L ,ums∗
H ,L

)+Reah
((

EL −E∞
)
QH vh ,ums∗

H ,L

)

≤Reah
(
vms

H ,L ,ums∗
H ,L

)+CβL(kH)−1�QH vh�H
��ums∗

H ,L

��
h

=Reah
(
vms

H ,L ,ums∗
H ,L

)+CβL(kH)−1
��QH vms

H ,L

��
H

��ums∗
H ,L

��
h

≤Reah
(
vms

H ,L ,ums∗
H ,L

)+CβL(kH)−1
��vms

H ,L

��
h

��ums∗
H ,L

��
h ,

which implies (4.58) if βL H−1 is sufficiently small, or equivalently, L ≥ |log(C3H)/ logβ| for some con-

stant C3 > 0. This completes the proof of the lemma.

The following theorem gives the error estimate between the MsIPDPG solution and the IPCDG

solution, which is the main result of this paper.

Theorem 4.12. Assume that f ∈ H j (Ω) ( j = 0,1,2), k3h2 ≤C0, kH < min(C1,C2), and L ≥ |log(C3H)/ logβ|.
Let ums

H ,L and uh be the MsIPDPG solution to (2.20) and the IPCDG solution to (2.7), respectively. Under

the conditions of Lemma 3.3, there holds

��ums
H ,L −uh

��
h ≲ H j+1| f | j +βL(kH)−1‖ f ‖0.

Here Cl (l = 0,1,2,3) are from Theorem 3.6, Lemma 4.6, Theorem 4.9, and Lemma 4.11, respectively, and

β ∈ (0,1) is from Theorem 4.9.

Proof. Denote by τ= ums
H ,L −uh ∈Vh , τH ,L = (1−EL)QHτ ∈ vms

H ,L . Introduce the following adjoint prob-

lem: find w∗
H ,L = (

1−E∗
L

)
wH ∈V ms∗

H ,L with wH ∈VH such that

ah(vH ,L , w∗
H ,L) =(∇h vH ,L ,∇hτH ,L)+k2(vH ,L ,τH ,L)+

∑

E∈EH

1

h

(
[vH ,L], [τH ,L]

)
E

+
∑

e∈Eh

h
([∂vH ,L

∂n

]
,
[∂τH ,L

∂n

])
e
, ∀vH ,L ∈V ms

H ,L . (4.59)

Clearly, wH = QH w∗
H ,L . From Lemma 4.11, the adjoint problem satisfies the stability �w∗

H ,L�h ≲
k�τH ,L�h .

Setting vH ,L = τH ,L in (4.59) and denoting by w∗
H ,∞ = (

1−E∗
∞

)
wH , we use the fact τ−τH ,L ∈V f , the
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orthogonality ah(τ, w∗
H ,L) = 0, Theorem 4.10, and Lemmas 4.2 and 4.6 to get

�τH ,L�2
h =ah

(
τH ,L , w∗

H ,L

)= ah
(
τH ,L , w∗

H ,L −w∗
H ,∞

)+ah
(
τH ,L , w∗

H ,∞
)

=ah
(
τH ,L , w∗

H ,L −w∗
H ,∞

)+ah
(
τ, w∗

H ,∞
)

=ah
(
τH ,L , w∗

H ,L −w∗
H ,∞

)+ah
(
τ, w∗

H ,∞−w∗
H ,L

)

=ah(τ−τH ,L , w∗
H ,∞−w∗

H ,L) = ah
(
τ−τH ,L ,

(
E∗

L −E∗
∞

)
wH

)

≲�τ−τH ,L�h
��(

E∗
L −E∗

∞
)
QH w∗

H ,L

��
h

≲�τ−τH ,L�hβ
L(kH)−1�w∗

H ,L�h

≲βL H−1�τ−τH ,L�h�τH ,L�h .

Noting that βL H−1 ≲ 1, we have

�τ�h ≲ �τ−τH ,L�h +�τH ,L�h ≲ �τ−τH ,L�h . (4.60)

On the other hand, from the fact τ−τH ,L ∈V f and Lemma 4.2, we obtain

(
f ,τ−τH ,L

)=
∑

T∈TH

(
f ,τ−τH ,L

)
T =

∑

T∈TH

(
f −QH f , (τ−τH ,L)−QH (τ−τH ,L)

)
T

≲H j+1| f | j‖∇h(τ−τH ,L)‖0 ≲ H j+1| f | j�τ−τH ,L�h . (4.61)

Since (1−EL)QH vms
H ,L = vms

H ,L ,∀vms
H ,L ∈ V ms

H ,L , we have τ− τH ,L = ums
H ,L −uh − (1−EL)QH

(
ums

H ,L −uh
) =

(1−EL)QH uh −uh . It follows from Lemma 4.6, (4.61), Theorem 4.10 , Lemma 4.2, and Corollary 3.7

that

�τ−τH ,L�2
h ≲Reah(τ−τH ,L ,τ−τH ,L)

=Reah(uh ,τH ,L −τ)+Reah
(
(E∞−EL)QH uh ,τ−τH ,L

)

=Re
(

f ,τH ,L −τ
)+Reah

(
(E∞−EL)QH uh ,τ−τH ,L

)

≲H j+1| f | j�τ−τH ,L�h +βL(kH)−1�uh�h�τ−τH ,L�h

≲
(
H j+1| f | j +βL(kH)−1‖ f ‖0

)
�τ−τH ,L�h ,

that is,

�τ−τH ,L�h ≲ H j+1| f | j +βL(kH)−1‖ f ‖0. (4.62)

At last the proof of the theorem follows by plugging (4.62) into (4.60).

Remark 4.13. Theorem 4.12 shows that there is no pollution error between the MsIPDPG solution and

the IPCDG solution and the MsIPDPG solution is a good approximation to the IPCDG solution even in

the case of large wave number.

As a consequence of Theorems 3.6 and 4.12, we have the following corollary which gives the error

between the MsIPDPG solution and the exact solution.
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Corollary 4.14. Let ums
H ,L and u be the MsIPDPG solution to (2.20) and the exact solution to (1.1), re-

spectively. Under the conditions of Theorem 4.12, there holds

��u −ums
H ,L

��
h ≲ H j+1| f | j +

(
kh +k3h2 +βL(kH)−1)‖ f ‖0.

Remark 4.15. The error bound in Corollary 4.14 consists of four parts: the interpolation error O(kh),

the pollution error O(k3h2), the multiscale approximation error O(H j+1), and the multiscale trunca-

tion error O(βL(kH)−1). In the next section we will investigate numerically the influence of each part.

In particular, we will show that the pollution error may be greatly reduced by tuning the penalty pa-

rameters.

5 Numerical example

In this section, we will simulate the Helmholtz problem (5.63) in two-dimension domain Ω by

IPCDGM and MsIPDPGM.
{

−4u −k2u = f inΩ,
∂u
∂n + iku = g on Γ := ∂Ω.

(5.63)

f is so chosen that the exact solution is

u = 1

4k2

(
e ik(x−1) +e−ikx −2

)(
y2 − y + i

k

)
.

The computational domain Ω is the unit square [0,1]× [0,1]. TH and Th are the two sets of uniform

isosceles right-angled triangular meshes ofΩ. The mesh Th is derived by uniform mesh refinement of

TH . In the example, we will give out the H 1 relative errors between the exact solutions and IPCDGM,

MsIPDPGM solutions respectively. The proper penalty parameters γ1,e of (2.7) and (2.20) will be cho-

sen as γ1,e = [−1/12,−1/24] on two different interior edge sets which are obtained by a dispersion

analysis on the two meshes such that the phase errors can be reduced efficiently. In [6], the parameter

γ1,e is derived for one dimensional problem by dispersion analysis, we use them in our computational

for the two dimensional problem.

In the mesh sets TH and Th , the corrector of an IPCDG basis of one coarse mesh point is depicted

in Figure 1 which is obtained by solved the local problem in the whole domainΩ.

In Figure 2, fixing the parameters relations kH = 2 and kh = 1/2, we show the H1-relative errors be-

tween the exact solution and IPCDGM, MsIPDPGM solutions withγ1,e =O(h) andγ1,e = [−1/12,−1/24]

respectively. It shows that the proper parameter γ1,e can reduce the pollution error effectively for both

IPCDGM and MsIPDPGM.

In Table 1, fixing k = 32, h = 512 and changing H = 1/16,1/32,1/64,1/128, we show the changing

of H1-relative errors between MsIPDPGM and IPCDG solutions with the sufficiently large sampling

number L (Layer). The results are in accord with the following super convergence.

�uh −ums
H ,L�h ≈�uh −ums

h �h ≲ H 3‖ f ‖2.
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Figure 1: The corrector of a coarse point IPCDG-basis.
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Figure 2: Set the relations of kH = 2,kh = 1/2. For each wave number k = 8,16,32,64,128,256, H 1 relative errors between

the exact solutions and IPCDGM, MsIPDPGM solutions are shown with γ1,e =O(h) (left) and γ1,e = [−1/12,−1/24] (right).

Conclusion

The proposed IPCDGM and MsIPDPGM can greatly reduce the pollution error by choosing a

proper penalty parameter γ1,e . Preasymptotic error estimates are proved for both methods. In partic-

ular, it is shown that the error between the IPCDG solution and the MsIPDPG solution in the broken

H 1-norm is O(H 3) under proper assumptions. For Helmholtz equations with large wave number, the

IPCDGM on a fine mesh involves an enormous algebraic system that need to be solved, while the

MsIPDPGM can be assembled on a coarse mesh and the local basis functions on patches of macro

elements can be computed in parallel. The layers of the local patches can be chosen according to

H=1/16 H=1/32 H=1/64 H=1/128

5.124867e-04 6.138274e-05 7.353098e-06 9.057307e-07

Table 1: Fix k = 32, h = 512; Changing H = 1/16,1/32,1/64,1/128 and choosing the sampling parameter sufficient large,

H 1 relative errors between MsIPDPGM solutions and IPCDGM solutions.
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O(logk) without affecting the accuracy. Numerical tests are provided to verify the present analysis.
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