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1. Introduction

Given an initial value problem of the form

ay
Y(to) = Yo,

(t) = F(y(1)),

(1)

a common class of schemes to solve it are explicit Runge-Kutta (RK) methods. An s-stage explicit RK method is defined
by a strictly lower triangular s x s matrix A and a vector b € R®. If y,, is the numerical approximation of the solution y(t)
at t = t,, we obtain y,,1, the numerical approximation of the solution at t,,1 = t, + h, from

i—1

Yi=ya+h)_ af(¥).

j=1

1<i<s,  yapr=Yat+h) bf(¥y), (2)

i=1

where the internal stage Y; approximates y(t, + c;h), and, as usual, ¢; = Zj;ll aj;.
Strong Stability Preserving (SSP) methods were introduced in [ 1] to ensure numerical monotonicity for problems whose
solutions satisfy a monotonicity property for the forward Euler method. In the SSP theory, numerical monotonicity is
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ensured under stepsize restrictions that involve the SSP coefficient of the RK method, and the larger the SSP coefficient
is, the larger the stepsize restriction is. Consequently, optimal s-stage pth order SSP methods, denoted by SSP(s, p), give
the largest theoretical stepsize restrictions. SSP(s, p) methods have been widely studied in the literature (see, e.g., [2]
and the references therein). However, in practice, although for some problems the theoretical stepsize restrictions for
numerical monotonicity are sharp, for some others the observed stepsize restrictions, that is, the ones that ensure
numerical monotonicity for a given problem, are larger than the theoretical ones. One of the reasons may be the beneficial
influence of additional non-SSP properties of the scheme like stability regions or the size of local error term. These issues
have been outlined in the literature (see, e.g., [3] for implicit explicit SSP methods or [4] for SSP(5,3) methods).

SSP properties have also been studied for other kind of methods (e.g., two and multistep Runge-Kutta schemes [5-7],
explicit SSP peer methods [8], etc.), and optimal SSP coefficients together with numerically optimal methods have been
obtained. For these schemes it has also been observed that for some problems the observed stepsize restrictions for
monotonicity are larger than the theoretical ones.

Implementation issues are also relevant for some problems. A naive implementation of a standard s-stage explicit
RK method requires s + 1 memory registers of length N, where N is the dimension of the differential problem (1). For
systems with a large number of equations, the high dimension of the problem (1) compromises the computer memory
capacity and thus it is important to incorporate low memory usage to some other properties of the scheme. These ideas
have been developed, e.g., in [9-18], where different low-storage RK methods have been constructed. In particular, some
low-storage methods have been studied in the context of strong stability preserving (SSP) schemes [10-16]. The idea
in, e.g., [13,15] is to deal with the Shu-Osher form of explicit RK methods and exploit the sparsity of the Shu-Osher
matrices to achieve an efficient implementation. In this way, in [13,15] it is proven that some optimal SSP schemes can
be implemented with 2N memory registers. Besides, some 2N low-storage methods, denoted by 2N*, retain the computed
approximation at the previous time step [13]. In [4], 5-stage third order SSP explicit RK methods were studied. It turns
out that optimal SSP methods cannot be implemented in two memory registers. However, it is possible to construct 2N*
low-storage non-optimal 5-stage third order SSP RK methods.

In this paper we study properties that may benefit the efficiency of SSP low-storage RK methods. More precisely, we
analyze the relationship between the size of the local error term and the observed SSP coefficient. Our goal is to obtain a
criteria to be used in the construction of efficient SSP schemes. For this purpose, we consider SSP(5,3) RK explicit methods.
These schemes were studied in [4], where the structure and low-storage properties of optimal SSP(5,3) were analyzed and
some methods of this family were obtained; in particular, the ones named SSP53_R, SSP53_H, SSP53; and SSP53,. As all
the optimal SSP(5,3) methods have the same SSP coefficient and stability regions, variations of the observed SSP coefficient
can be analyzed in terms of other properties of the schemes like variations of the local error term. Besides, in [4], some
non-optimal 2N* low-storage SSP(5,3) methods with maximum SSP coefficient were also constructed; however, these
schemes have different SSP coefficients and stability regions and thus the observed SSP coefficient may depend on these
two properties. In both cases, optimal SSP(5,3) methods and 2N* low-storage SSP(5,3) schemes, the numerical results
obtained in [4] lead us to conjecture that the smaller the || - ||;-error constant is, the larger the observed SSP coefficient.
In this paper, we go further in this analysis by means of the study of the local error and the low-storage arrangement of
these schemes.

The rest of the paper is organized as follows. In Sections 2.1 and 2.2 we give a brief introduction to SSP RK methods
and low-storage methods in the sense of [13]. In Section 2.3 we deal with low-storage SSP(5,3) methods; we review in
Section 2.3.1 the family of optimal SSP(5,3) methods that can be implemented in 3N memory registers [4], while 2N*
low-storage SSP(5,3) methods [4] are reviewed in Section 2.3.2. New efficient SSP(5,3) schemes are obtained in Section 3;
some optimal SSP(5,3) methods with minimum local error terms are obtained in Section 3.1, while non optimal 2N*
low-storage SSP(5,3) methods with minimum local error are constructed in Section 3.2. Section 4 is devoted to numerical
experiments, where different SSP(5,3) methods are tested on the 1D Buckley-Leverett equation [19,20]. The paper ends
with some conclusions in Section 5. The detailed coefficients of the different methods constructed in this paper are given
in Appendix.

2. SSP and low-storage Runge-Kutta methods review

In this section we briefly review some known concepts on SSP RK methods and low-storage schemes, in the sense
of [10-16], that will be used in the rest of the paper.

2.1. Strong stability preserving Runge-Kutta methods

SSP methods are relevant for dissipative problems (1), that is, problems such that the exact solution satisfies a
monotonicity property of the form

Iyl < lIy()ll,  forall t >to, (3)
where || - | : R¥ — R denotes a convex functional, e.g, a norm or a semi-norm. A sufficient condition for (3) is
monotonicity under forward Euler steps

ly+ hfI <lyll, forh< Atg, (4)

for all y € RN and a fixed At > 0 (see, e.g., [21, p. 501] or [22, p. 1-2] for details).
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Taking into account (3), it makes sense to require numerical monotonicity, not only for the numerical solution y,, but
also for the internal stages Y; ~ y(t, + c;h), if ¢; > 0. This is,

IYill < llyall, i=1,...,s, 1Ynsall < [yl , (5)

for all n > 0, probably under a stepsize restriction h < At, .. The seminal papers by Spijker [23-25] and Kraaije-
vanger [21,26] on numerical contractivity issues for RK schemes, settle a theoretical framework that is valid not only for
contractivity but also for monotonicity.

With a different terminology and notation, the numerical preservation of monotonicity has also been investigated in
the context of hyperbolic systems of conservation laws. In this setting, for different reasons, it is critical to deal with Total
Variation Diminishing (TVD) schemes, and in the pioneering papers [1,27], monotonicity issues for the Total Variation
semi-norm are analyzed. In these references, high order methods satisfying (5) when the forward Euler discretization of
(1) satisfies (4) are studied. In this context, these methods are known as SSP methods.

The idea in [1,26,27] is to construct high order schemes by means of convex combinations of forward Euler steps. Thus,
RK schemes (2), that in compact form are written as

Y =e®yn+ (A INF(Y), (6)
with Y = (Y1, ..., Y5, Yny1)' € REFON F(Y) = (F(Y1), ..., f(Ys), 0)f € REFDN ‘and

(i)

can be expressed as

h
Yzar®yn+(Ar®1N)<Y+;F(Y)> : (8)
where r € R and
o = +r1A)"Te, Ar =11 +1A)7'A, 9)
withe=(1,...,1)". If o, > 0 and A, > 0, where the inequalities should be understood component-wise, then the right

hand side of (8) is a convex combination of y, and forward Euler steps. The radius of absolute monotonicity, also known
as Kraaijevanger’s coefficient or SSP coefficient, is defined by

R(A)=sup{r|r=0orr>0,(I+rA)" exits, and o > 0, A, > 0} . (10)

If the forward Euler method satisfies condition (4), then, from (8), numerical monotonicity (5) can be proven under the
stepsize restriction

h < R(A) Atg .
If R(A) > 0, the method is said to be SSP. Irreducible coefficient RK schemes (A, b*) are SSP if and only if
A>0, b>0, Inc(A?) <Inc(A), (11)

where Inc(A) denotes the incidence matrix of the matrix A defined as Inc(A) = (g;) with g = 1if a; # 0 and g = 0 if
a; = 0 [26, Theorem 4.2].

In the rest of the paper, we denote s-stage pth order SSP schemes by SSP(s, p). Optimal SSP(s, p) methods, in the sense
that their SSP coefficient is the largest possible one for a given number of stages s and order p, are well known in the
literature (see, e.g., [2] and the references therein). For some combinations of the pair (s, p) there is a unique optimal
method, e.g., (s, 1), (s, 2), (3, 3), (4, 3) or (5, 4) [26]. However, for some other values, e.g., (s, p) = (5, 3) there is a family of
optimal SSP schemes. Optimal SSP(5,3) methods were studied in [4] and two schemes of this family were given in [2,15];
furthermore, the package RK-Opt in [14,28] can be used to obtain other optimal SSP(5,3) methods.

Expression (8) is a particular case of Shu-Osher representations of a RK method (see, e.g., [29, Section 2]). Given a RK
method with Butcher matrix A, a representation is given in terms of two matrices (A, I') such that the matrix I — A is
invertible and A = (I — A)~!TI"; then, the numerical approximation of the RK scheme is written as

Y =a@yn+(A® Y +h(I" @ IvF(Y), (12)

where a = (I — A)e. For explicit RK methods, as Y; = y,, we can consider « = (1,0, ..., 0)'. Adding and subtracting the
term r(I” ® Iy)Y, Eq. (12) can also be written as

Y:a®}’n+((A—rF)®IN)Y+r(F®IN)(Y—l—?P(Y)). (13)

If the following component-wise inequalities hold

A>0, I'>0, >0, A-rI >0, (14)
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then the right hand side of Eq. (13) is a convex combination of y,, the internal stages and forward Euler steps. For r = R(A),
it can be proven [29, Proposition 2.7] that there exist Shu-Osher representations (A, I") such that inequalities (14) hold.
Observe that the largest value r in (13) that satisfies A —r I" > 0 is given by r = min{A;/y;}, that agrees with the SSP
coefficient of a RK method defined in the context of TVD schemes (see, e.g., [27]; see too [2] and the references therein). In
other words, these representations are optimal. For example, «, and A, in (9), together with I := A, /r, give an optimal
representation. Observe that, in this case, A, — rI = 0 and (13) is reduced to (8).

For a detailed study on numerical monotonicity and SSP methods, see, e.g., [13,19,21,22,30-33]. Efficient SSP RK
methods have also been analyzed in [1,10,11,15,16]; see too [2] and the references therein.

2.2. Low-storage 2N, 2N* and 3N methods

Low-storage RK methods are very desirable to solve problems where memory management considerations are at least
as important as stability considerations. In the literature, different approaches to reduce the memory computer usage of
forward RK methods have been proposed [9-18,34,35].

A naive implementation of an explicit s-stage RK method requires s + 1 memory registers. However, more efficient
implementations are possible if some algebraic relations on the coefficients are imposed. Most of these efficient
implementations are based on the ideas of Williamson [18] and van der Houwen [17]. Although in a very different way, in
both cases it is possible to implement these RK methods in two memory registers, and they are usually called 2N schemes,
where N is the dimension of the differential problem (1).

More recently, in the context of SSP methods, low-storage implementations have been obtained from the sparse
structure of the Shu-Osher form (12) of optimal SSP methods [11,13,15]; this is the case for optimal SSP(s,1), SSP(s,2),
SSP(3,3), SSP(4,3) and SSP(n?, 3) schemes. In this combined analysis, some optimal SSP RK methods turn out to be optimal
also in terms of the storage required for their implementation.

In some cases, the sparse structure of the Shu-Osher matrices in (12) enables a 2N low-storage implementation.
However, some of these low-storage schemes do not retain y,, the previous time step approximation, and they require
a third memory register to save this value. Recall that, if y, is retained during all the step, it can be used to check
some accuracy or stability condition (e.g., for a variable stepsize implementation) without additional memory usage. To
differentiate both implementations, the 2N low-storage RK methods that retain the numerical solution of the previous
step are marked with 2N* [2, Section 6.1.3].

In this paper we consider 5-stage Runge-Kutta methods with a canonical Shu-Osher representation of the form

0 0 0 0 0 O 0 0 0 0 0

0
1 0 0 0 0 O yn1 0 0 0 0 0
_ )\31 )»32 0 0 0 0 _ 0 V32 0 0 0 0
A= A.4‘l )\.42 )\.43 0 0 0 ’ r= 0 0 Y43 0 0 0 ? (15)
Ast Asy As3 Asg O O 0 0 0 g4 0 O
A6t As2 Aez Aes Aes O 0 0 © 0 ¥4 O
where Ae = (0,1,..., 1) If Ay = Asy = As3 = Agz = Ag3 = Aga = 0, then a 2N* implementation is possible

(see [4, Algorithm 1]). In particular, optimal SSP(s,2), SSP(3,3) and SSP(4,3) schemes are 2N* low-storage methods [2,13].
On the other hand, if either

hapg =Asy =Xhex = hes =0, or  As3 =gz =2Ags =0, (16)

then a 3N implementation is possible (see [4, Algorithms 2 and 3]).
2.3. Low-storage SSP(5,3) methods

In this section we review the most relevant properties of SSP(5,3) methods that will be used in the rest of the paper.
First, we analyze the structure of the family of optimal SSP(5,3) methods and next, the form of 2N* low-storage SSP(5,3)
methods.

2.3.1. Optimal SSP(5,3) methods

The first optimal SSP(5,3) methods were found by numerical search in [15,16]; nowadays, different optimal SSP(5,3)
methods can be numerically constructed with the code RK-Opt [28]. The recent study done in [4] showed that the family
of optimal SSP(5,3) methods has a Butcher tableau of the form

0| O 0 0 0 O
0 0 0

C 0

1

1 0 0 o0
0
0

N N I

C3
C4 | Qs1 a4 a4 O

Cs | 51 dsp Qsy  Qsg
by b, by by bs
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where
r r by r?
g1 = ——, A3 =——, Qsg=—, b3=—, 18
YT 60bs T 60bs” ' bsr’ 60 (18)
and r = R(A) is the real root of the polynomial x> — 5x% + 10x — 10 = 0. The stability function of these schemes is
2 3 74 25
R2)=14+z4+ =+ —+ — + —, 19
@) ++2+6+12r+60r2 (19)

that agrees with the optimal polynomial &5 5 that gives the optimal threshold factor r = Rs 3 for linear problems
[21, Theorem 5.2]. In this way, the third order condition b*Ac = 1/6 is fulfilled and only the following order conditions
1

bte=1, btc = -, b'c? = -, (20)

2 3

must be imposed to (17)-(18). After imposing conditions (20), the five free parameters in (17)-(18) namely, asq, b1, by,
b, and bs, can be reduced to two free parameters. If we assume that by and bs are the free parameters and asq, by and b,
are functions of by and bs, then the unique solution of (20) with positive solutions is the following one:

—2by (30bs — 15bs +1%) + 3V/d b —1_b bs r 12 Jd 5 bs r 2 Jd 1

o1 = 60b4bsr e R TR R S R TR TG

where d = bybs (20b4(5b5 +r(7r — 10)) — r4). In this way, not only the construction but also the study of relevant
properties (e.g., size of local error constant) of optimal SSP(5,3) methods are simplified considerably.

As it has been pointed out in the introduction, the Butcher coefficients (A, b*) for SSP Runge-Kutta methods must
satisfy conditions (11). For schemes of the form (17)-(18) the sign conditions are satisfied if and only if as; > 0 and b4,
by, by, bs > 0. Furthermore, as; > 0; otherwise, if as; = 0, the condition on the incidence matrices (11) implies that
as201 + Q52031 + As4a41 = 0; but this is impossible for methods (17)-(18) as the left hand side of this expression is
different from zero.

Canonical Shu-Osher representations for the 2-parametric family of optimal methods (17)-(20) were also studied in [4].
There the minimum number of memory registers required to implement optimal SSP(5,3) methods was determined by
using the sparse optimal Shu-Osher representation (A, I") with the subdiagonal matrix I" given below (see [4] for details).

0 0 0 0 0 O 00 0 O 0 O
1 0 0 0 0 O 10 0o 0 00
0 1 0 0 0 O o 1 o 0 0 O
= p— r
A=l 0o & o o of T'=fo o g o o of: (22)
Asi Asz O g—g 0 0 0 0 O % 0 0
0 A62 Ag3 0 b5r 0 0 O 0 0 b5 0
r2
dag=1— ——, 23a
41 60D, (23a)
by r r
dsi=1—— —rlasi—— ), rpp=rlas;— — ), 23b
51 bs ( 51 60b5> 52 < 59 60b5> (23b)

r r2
A2 =r1|by—by—1b - — , Aez=r|by——]. 23
62 T( 1 2 —TI'Ds <f151 60b5>> 63 r< 2 60) (23¢)

Again the coefficients as;, b; and b, must be understood as the functions defined in (21) depending on the parameters
b4 and bs. In order to obtain a representation (22) with non-negative coefficients we only require the inequalities

As2 >0, Ag2 >0, Ag3 >0, (24)

as we have numerically obtained that the non-negativity of the other coefficients in (23), namely X4; and As1, is redundant.

The curves defined by equations A5, = 0, A = 0 and Agz = 0, in (24), are represented in Fig. 1. The region limited by

these curves encloses all optimal SSP(5,3) methods. Although all of them are optimal methods, their local error norm

[|Cerr ||, where C, is the vector containing the coefficients of the leading truncation error [36, p. 158], namely

1

Cor = ; (1—12b'Ac%, 1—24b'A%c, 3(1—8Db'(Ac-c)), 1—4b'c?), (25)

or their low-storage properties are not the same; to stress the first fact we have added some contour lines for the error
norm in Fig. 1.

With regard to low-storage implementation, in [4] it was proven that optimal SSP(5,3) methods cannot be implemented

in 2N memory registers. However, if As; = Agy = 0 or Agz3 = 0 in (22), then 3N implementations are possible. In the first
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036} ! A 2
‘| N 00t 0.018
-
~,
. -,
" 0.34 \ \A\
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Q o & e s“'m 0.016622
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0.32} 1 @ S 0016
\ ° N
0.3 :."'.' g \ ot ~\’\. ..........
' . )/ e S
~~~~~ * o ceees Agp=Ok
.................. e _
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b

Fig. 1. (b4, bs)-region for optimal SSP(5,3) methods (17)-(18) and level sets of the local error norm ||Cer|l,. The six optimal SSP(5,3) methods
considered in this paper are shown with different symbols.

case, As; = Ag2 = O, there is only a method satisfying both restrictions, the one with (by, bs) = (0.181803, 0.287632)
(see the intersection of curves As; = 0 and Ag; = 0 in Fig. 1). This method was first numerically obtained in [15] and
in this paper we will refer to it as SSP53_R. For the second case, Ag3 = 0, there exist a family of methods that can be
implemented in three memory registers: all the schemes obtained with the values of the parameters (by4, bs) along the
curve Ag3 = 0 in Fig. 1.

In terms of the Butcher coefficients, for optimal SSP(5,3) methods (17)-(18), trivially Ag3 = 0 in (23c) is equivalent
to b, = r2/60, and thus, from (18), condition b, = bs holds. In a similar way, As; = As; = 0 in (23) is equivalent to
as; = r/(60bs) and b; = b,. In this case, from (18) we obtain that as; = as,. Consequently, if one of the following
statements holds,

1. b, = bs,
2. by = b, and as; = as;,

then optimal SSP(5,3) methods (17)-(18) can be implemented in 3N memory registers.
2.3.2. 2N* Low-storage SSP(5,3) methods

In this section we consider 5-stage 2N* methods of the form (15). These schemes, studied in [4], have a simple Butcher
tableau of the form

0 0 0 0 0 O
ub1 Ub] 0 0 0 0
v(by + by) vby wvb, O 0 O
w(by 4+ by +bs) | why why wb; 0 0 (26)
x(b1 + by + b3 + by) | xby xby, xbs xby O
b] b2 b3 b4 b5
where b;, i=1,...,5, u, v, w and x are free parameters. This representation allows an easier way of dealing with third

order conditions (see [4] for details).
In [4] we obtained two methods, namely SSP53_2Nj and SSP53_2N3, that will be used later in the numerical
experiments. In the table below we summarize some properties of these schemes.

Method R(A) Coefficients in (26) A matrix in (15) | Cerr Il
SSP53_2N7 21807 u=v=w,x=1 A;in(27) 0.027841
SSP53_2N5 21487 u=v,w =X A, in (27) 0.022736

Method SSP53_2N7 has the largest possible SSP coefficient and, although the SSP coefficient for the other scheme
SSP53_2N3 is not the largest one, this method has some other relevant properties (see [4] for details). Each of these
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methods have a particular sparse structure for the Shu-Osher matrix A in (15):

0 00 0 0 0 00 0 0 0 0
1 00 0 00 10 0 0 0 0
0 10 0 0 0 01 0 0 0 0
A=1"9 01 0 00| M=| s 0 s 0 0 0 (27)
dsi 0 0 Ass O O 0 0 0 0 1 0O
0 00 0 10 i 0 0 0 ig O

3. Efficient SSP(5,3) methods

In this section we construct some new SSP(5,3) methods that will be tested in the numerical experiments. First, we
consider the family of optimal SSP(5,3) methods. They have the same SSP coefficient and, therefore, comparisons of
observed SSP coefficients are more reliable. In the second part we consider 2N* low-storage SSP(5,3) methods.

3.1. Efficient 5-stage third order optimal SSP methods

For the family of optimal SSP(5,3) methods (17)-(18), we focus our attention on the local error constants ||Cex ||, of
the schemes (see (25)) and their low-storage properties. First, we use standard numerical optimization techniques to
get the 5 unknowns in (17), namely asq, by, ba, by and bs, that minimize ||C,||,. More precisely, we solve the following
optimization problem:

Minimize ||Ce ||, subject to:
Method of the form (17)-(18),
as1, b1, by, bs, bs >0, (28)
As2 >0, g2 >0, Ag3 >0,
Third order conditions (20).

We have used the function fmincon in Matlab to get the five positive unknowns in (28). There we have considered ||Ce ||,
as the objective function, the third order conditions (20) as the nonlinear equality constrains, and Asy, Aga, Agz > 0,
as the nonlinear inequality constraints. The minimum value for the local error is ||Cerr|, = 0.014679, obtained when
(bg, bs) = (0.247411, 0.290558). We have represented this method, named SSP53_e, with an empty circle in Fig. 1.
Observe that though this method is on the curve As; = 0, the corresponding scheme cannot be implemented in 3N
memory registers as As3 7 0 and Ag3 7 O (see (16)). The Butcher and the Shu-Osher coefficients of this method are given
in the Appendix, Eq. (A.1).

Next, we get the 3N low-storage optimal SSP(5,3) method with minimum error constant ||Cer||,. As all points along
curve Ag3 = 0 correspond to methods that can be implemented in 3N memory registers, we simply have to modify
the optimization problem (28) by setting Ag3 = 0. For these 3N methods the minimum value for the error norm is
[|Cerrll, = 0.014875. This scheme is achieved at (by, bs) = (0.271439, 0.297885), the point where curves As; = 0 and
As2 = 0 meet. We have denoted this method by SSP53_3N. Its Butcher coefficients (A.2) can be seen in the Appendix.

Finally, modifying accordingly problem (28), we construct the optimal SSP(5,3) method with the highest error,
[|Cerr Il = 0.019859. This method, referred as SSP53_H in [4], can also be obtained from the intersection of curves Ag3 = 0
and Ag; = 0, that happens at point (0.169383, 0.377269). Observe that this method can be implemented in 3N memory
registers.

3.2. Efficient 2N* low-storage SSP(5,3) methods

In this section we consider the family of methods of the form (26) and look for a numerically optimal third order
method with respect the 2-norm of the coefficients in the leading term of the local error. For this purpose, we use standard
numerical optimization techniques to get the 9 unknowns in (26), namely b;,i =1, ..., 5; u, v, w, x. More precisely, we
have solved the following optimization problem.

Minimize ||Ce ||, subject to:
Method of the form (26),
bj>0,i=1,...,5, (29)
u>v>w>x>1,
Third order conditions (20).
We have used again the function fimincon in Matlab to get the nine positive unknowns in (29). We have proceeded in a

similar way as in the optimization problem (28), but now for methods with the structure defined in (26). Unfortunately,
the minimum value of the error, namely ||Ce|l, = 0.01212, is obtained for a method A with a poor SSP coefficient,
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R(A) = 0.7451. Due to this bad result, we restrict the study to methods of the form (26) satisfying u = v = w and x = 1
whose matrix A in the Shu-Osher representation (15) is of the form A in (27). We proceed in this way because scheme
SSP53_2N7 in [4], with the largest SSP coefficient, belongs to this family (see Section 2.3.2). For this subfamily of schemes
we have used the function fmincon in Matlab to get the 6 unknowns, namely b;,i = 1,...,5 and u. The optimization
problem is the following one:
Minimize || Cer ||, subject to:
Method of the form (26),
bi>0,i=1,...,5, (30)
Uu=v=w=>X= 1 .
Third order conditions (20).
In this case, the minimum value for the error, [|Cer ||, = 0.025407, is obtained for a Runge-Kutta method A with SSP
coefficient R(A) = 1.8229. The coefficients of this method (A.4), named SSP53_2Nz, are given in the Appendix Section.
Finally, we have used again numerical optimization for the restricted family of 2N* methods with u = v and w = x in
(26) and Shu-Osher matrix of the form A, in (27). Remember that the scheme SSP53_2N3 in [4] belongs to this family
(see Section 2.3.2). We have used again the function fmincon in Matlab to solve the optimization problem
Minimize ||Ce ||, subject to:
Method of the form (26),
bi>0,i=1,...,5, (31)
U=v=>w=X2> 1 N
Third order conditions (20).

We have denoted SSP53_2Nj the method with the minimum local error ||Cerll, = 0.015458. This method has SSP
coefficient R(A) = 1.4252, and its coefficients (A.5) are given in the Appendix Section.

4. Numerical experiments

In this section we analyze the performance of some optimal and non optimal SSP(5,3) methods when the hyperbolic
1-dimensional Buckley-Leverett problem is solved. The exact solution for this problem is Total Variation Diminishing
(TVD) and our goal is to study if there is any relationship between the observed SSP coefficient and the norm of the
leading term of the local error.

The hyperbolic 1-dimensional Buckley-Leverett equation is defined by (see, e.g., [19,20])

0 0 3u?
—u(x, t —®(u(x,t)) =0, with o) = ——. 32
8t( )+8X(( ) (u) d_ P (32)
We consider 0 < x < 1,0 <t < 1/8, periodic boundary condition u(0, t) = u(1, t) and initial condition
0 for0<x<1/2,
u(x,0):{1 for ;1/
3 or 3 <X=<1.
We semi-discretize this problem using a uniform grid with mesh-points x; = jAx where j = 1,2,...,N and Ax = 1/N,
N = 100. We denote Uj(t) ~ u(x;, t) and we approximate (32) by the system of ordinary differential equations
1 .
Uj(t) = B(dj(uj—l/Z(t)) = ®(Uin12(1))),  j=12,...,N, (33)
where

1
Uip12(8) = Uj + 545(9]) (U1 = Uj)

and ¢(0) is the Koren’s limiter defined by

. 2 1 Ui — Ui
¢(@)=max [0, min {2, - + =6, 20 , where 6=_—-——"—.
33 Uit1 = U;
In order to compute the observed SSP coefficient for a given explicit RK, we have integrated (33) with different stepsizes,
from At = 2-1073 to At = 1072, For each stepsize At, the maximal ratio of the TV-seminorm of two consecutive
numerical approximations, in the time interval [0, 1/8], is computed

l[tnl7v

M(At):max{ |nzl,withnAt§1/8}.

lun—1ll7v

If u(At) = 1, then the explicit RK method is Total Variation Diminishing (TVD) on the interval [0, 1/8], that is |Ju,|lv <
lun—1ll7v (see [19] for details).
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Table 1
Theoretical and observed SSP coefficients, error constant and number of memory registers.
SSP Observed SSP Gain Error Number of
coefficient R(A) coefficient Rops(A) % constant registers
SSP53_o (A.3) 2.6506 3.088 16.50% 1.75000e—02 3N
SSP53_e (A1) 2.6506 3.008 13.48%  1.46786e—02 >3N
SSP53_3N (A.2) 2.6506 2.968 11.97% 1.48753e—02 3N
SSP53_R [4,15]  2.6506 2916 10.01% 1.66219e—02 3N
SSP53, [4] 2.6506 2.788 5.18% 1.81787e—02 >3N
SSP53_H [4] 2.6506 2.740 3.37% 1.98589e—02 3N
SSP53_2N%  [4] 2.1807 2.300 5.47% 2.78407e—02  2N*
SSP53_2N3  [4] 2.1487 2.444 13.74%  2.27362e—02 2N*
SSP53_2N35  (A4) 1.8229 2.292 25.73%  2.54073e—02 2N*
SSP53_2N;  (AS5) 1.4252 2.184 53.20%  1.54584e—02 2N*
Table 2
Optimal SSP(5,3) methods with the maximum observed SSP coefficient for a prescribed error constant.
Error Max. observed Gain 3N # registers
constant SSP coefficient % method >3N
SSP53_H [4] 1.98589e-02 2.740 3.37% 4
SSP53_1.95 1.95000e-02 2.772 4.58% v
SSP53_1.90 1.90000e-02 2.880 8.65% v
SSP53_1.85 1.85000e-02 2.996 13.03% v
SSP53_1.80 1.80000e-02 3.072 15.90% v
SSP53_o (A.3) 1.75000e-02 3.088 16.50% v
SSP53_1.70 1.70000e-02 3.084 16.35% v
SSP53_1.65 1.65000e-02 3.076 16.05% v
SSP53_1.60 1.60000e-02 3.060 15.45% v
SSP53_1.55 1.55000e-02 3.032 14.39% v
SSP53_3N (A.2) 1.48753e-02 3.008 13.48% v
SSP53_e (A1) 1.46786e-02 3.008 13.48% v

For this problem we have obtained that forward Euler method is TVD for 0 < At < Atf?® ~ 0.0025. For different

schemes A we have repeated this computation to obtain the value At%* such that u(At%*) = 1; then the quotient
Atg’” / Atﬁé’s gives the observed SSP coefficient of scheme A, that we will denote by Ryps(A).

In Table 1 we summarize the numerical results obtained as well as some information on the schemes considered. More
precisely, for each method, we give the theoretical SSP coefficient and the observed SSP coefficient for this hyperbolic
problem. We also add the gain of the observed SSP coefficient with regard to the theoretical one, the error constant norm
||Cerr ||, defined in (25) and, finally, the number of memory registers needed for the implementation. Next, we discuss the
results obtained.

Optimal SSP(5,3) methods

First, we have considered six schemes of the family of optimal SSP(5,3) Runge-Kutta methods: the method SSP53_o
with the highest observed SSP coefficient (we explain in the next paragraph how we have obtained this method), and
the new methods SSP53_e and SSP53 3N obtained in Section 3.1; besides, we have considered other methods from the
literature, namely SSP53_R, SSP53, and SSP53_H [4,15]. We observe that, although all of them have the same optimal
SSP coefficient, R(A) = 2.6506, the observed coefficients vary; indeed, from the smallest one, Rops(A) = 2.740, to the
largest one, Ryps(A) = 3.088, there is a gain of 16.50%. If we study the local error constants, it seems that the smaller
these constants are, the larger the observed SSP coefficients are. However, this is not true for the method SSP53_o.

In order to further analyze the relationship between the error constant and the observed SSP coefficient, we have also
computed the observed SSP coefficient for many other optimal SSP(5,3) methods: for the 2-parameter family of optimal
SSP(5,3) methods (17), we have fixed the value of the local error, say ||Cer|l, = ¢, and we have numerically obtained both,
the method with the maximum and the one with the minimum observed SSP coefficient; we have repeated this process
for different values of c in the range of possible values [0.014679, 0.019859]. In Table 2 we can see, for these values of
¢, the method with the maximum value of the observed SSP coefficient. We have also added information about the gain
with respect to the theoretical SSP coefficient, and the number of registers needed in the implementation. The maximum
observed SSP coefficient, Ry,s(A) = 3.088, is obtained when ¢ = 0.0175. We have denoted this method SSP53_o; its
coefficients (A.3) have been written down in the Appendix. In Fig. 2 we show the observed SSP coefficient vs. the 2-norm
of the local error for the different optimal SSP(5,3) considered. There we have denoted with white circles (red squares),
joined with a blue line (joined with a green line), the methods with the maximum (minimum) observed SSP coefficient. In
the range [0.0175, 0.019859] it is true that the smaller the local error is, the larger the maximum observed SSP coefficient
is. However, once the maximum value R,,s(A) = 3.088 is achieved at ||Ce ||, = 0.0175, there is a light decrease of the
maximum observed SSP coefficient.
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Fig. 2. Observed SSP coefficient R,ps(A) vs. 2-norm for the local error for optimal SSP(5,3) methods (17)-(18).

We have also considered the subfamily of optimal SSP(5,3) methods with Ag3 = 0 (see Fig. 1). This is a 1-parameter
family of optimal SSP(5,3) methods that can be implemented in 3N memory registers. In this family each value of the local
error, ||Cer|l, = ¢, ranged in the interval [0.014875, 0.019859], determines a unique optimal SSP(5,3) method. In Fig. 2 we
have denoted with six-pointed stars, joined with a red line, these 3N methods. Surprisingly, circles and six-pointed stars
coincide in the range of values [0.016, 0.019859]. This means that in this interval the maximum observed SSP coefficient
Rops(A) is obtained for optimal SSP(5,3) methods that can be implemented in 3N memory registers. On the other hand,
when the error c is in the interval [0.01467859, 0.016), the maximum observed SSP coefficient corresponds to optimal
SSP(5,3) methods that cannot be implemented in 3N memory registers.

We have also found that, for each value of ¢, the minimum observed SSP coefficient (red squares in Fig. 2) is
obtained when A5, = 0 or Ae; = O (see also Fig. 1). Optimal SSP(5,3) method SSP53_R in [15], with error constant
[[Cerrll, = 0.0166219 and obtained when A5, = Ag; = 0, has been represented in Fig. 2 with a diamond symbol (see also
Fig. 1). Observe that the line joining methods SSP53_R and SSP53_H in Fig. 2 corresponds with the curve As; = 0 in Fig. 1,
while the line joining the methods SSP53_e and SSP53_R corresponds with the curve As; = 0.

Non-optimal 2N* SSP(5,3) methods

Finally, we have considered some other SSP(5,3) Runge-Kutta methods that, although they are not optimal, they can
be implemented in 2N* memory registers: the new methods SSP53_2N3 and SSP53_2N}; obtained in Section 3.2, and other
similar methods, namely SSP53_2N7 and SSP53_2N3, aforementioned in Section 2.3.2. The numerical results have been
added at the bottom of Table 1. In this case, the schemes have different SSP coefficients. We observe that the smaller the
error constant is, the largest the gain with respect to the theoretical SSP coefficient is. The largest observed SSP coefficient,
2.444, is not obtained with the scheme with the largest theoretical SSP coefficient but with SSP53_2N%, whose observed
SSP coefficient is lightly lower.

5. Conclusions

In this paper we have studied the efficiency of SSP Runge-Kutta methods that can be implemented with a low number
of memory registers using Shu-Osher representations. Our goal was to study the influence of the local error term in the
observed stepsize restrictions for numerical monotonicity. For this purpose, we have considered the family of SSP(5,3)
methods and the Buckley-Leverett equation. We have dealt with optimal SSP(5,3) methods, whose implementation
requires at least 3 memory registers, and non-optimal 2N* low-storage SSP(5,3) schemes. Several methods have been
constructed. The numerical experiments done show that, for optimal SSP(5,3) methods:

- In general, schemes with small error constants provide larger observed SSP coefficients.

- If the local error constant is fixed, then in most of the cases the maximum observed SSP coefficient is obtained for
a 3N low-storage method (1g3 = 0).

- From the point of view of the observed SSP coefficient, the unique 3N scheme with As; = Ag; = 0, that is, method
SSP53_R, is not competitive with a conveniently constructed 3N schemes with Ag3 = 0.
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For 2N* low-storage non-optimal SSP(5,3) methods, we have observed that:

- The smaller the error constant is, the larger the gain of the observed SSP coefficient with respect to the theoretical
SSP one.
- As the error constant decreases, the theoretical SSP coefficient of the method decreases.

Consequently, in the search of efficient low-storage SSP methods, besides the size of the SSP coefficients, the magnitude
of the error constants should also be taken into account. There must be a compromise between large theoretical SSP
coefficients and small error constants as these variables seem to be inversely correlated. Furthermore, our experience with
3N low-storage optimal SSP(5,3) schemes highlights the interest of low-storage methods as a class of efficient schemes
not only because of their low-storage properties but also because they may provide methods with large observed SSP
coefficients.

In this paper we have considered explicit Runge-Kutta methods, but the study done can also be extended to other
kind of SSP methods (e.g., two and multistep Runge-Kutta schemes [5-7], explicit SSP peer methods [8], etc.). This may
be a topic for future work.
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Appendix. Coefficients of the methods

In this section we show the coefficients of the methods obtained in this paper: the three new optimal SSP(5,3)
methods named SSP53_e, SSP53_3N, and SSP53_o, and the two non optimal 2N* low-storage SSP(5,3) schemes named
SSP53_2N 3 and SSP53_2N j. The coefficients of other methods considered in the numerical experiments can be found
in the corresponding references. For each Runge-Kutta method we show both, its Butcher coefficients and its Shu-Osher
form (A, I') with Ae = (0, 1, ..., 1)! and subdiagonal matrix I". This subdiagonal structure can be obtained directly from
(22)-(23c).

Scheme SSP53_e
This is the optimal SSP(5,3) method with the lowest value of the leading local error, ||Cer ||, = 0.01467859. It is obtained

by solving the optimization problem (28). It cannot be implemented in 3N memory registers. The Butcher coefficients for
this scheme are

0 0 0 0 0 0
0.377268915331368 | 0.377268915331368 0 0 0 0
0.754537830662736 | 0.377268915331368 0.377268915331368 0 0 0
0.535673936262144 | 0.178557978754048  0.178557978754048 0.178557978754048 0 0
0.777371470949368 | 0.152042242678717 0.152042242678717  0.152042242678717  0.321244742913218 0

‘0.203807751220298 0.141125888396921 0.117097251841844  0.247410692588023 0.290558415952914
(A1)
and the Shu-Osher form is

0 0 0 0 0 O 0 0 0 0 0 O

1 0 0 0 0 0 yvi 0 0 0 0 0
Al o 1 0 0 0o | O v 0o 0 o0
- A4t 0 A43 0 0 0 ’ - 0 0 Y43 0 0 0

)\.51 0 0 )\54 0 0 0 0 0 V54 0 0

0 )\62 )»53 0 )\65 0 0 0 0 0 V65 0

A41 = 0.526709009150106, 143 = 0.473290990849893,

As1 = 0.148499306837781, Asq4 = 0.851500693162219,

Ae2 = 0.166146375373442, Ag3 = 0.063691005483375, A5 = 0.770162619143183;

y21 = 0.377268915331368, y3; = 0.377268915331368, y43 = 0.178557978754048, ys4 = 0.321244742913218,
ve5 = 0.290558415952914.

Scheme SSP53_3N

This is the optimal SSP(5,3) method with the lowest value of the leading local error, namely ||Ce; ||, = 0.01487531, that
can be implemented in 3N memory registers. It is obtained by solving the optimization problem (28) with the additional
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condition Ag3 = 0. The Butcher coefficients for this scheme are

0 0 0 0 0 0
0.377268915331368 | 0.377268915331368 0 0 0 0
0.754537830662736 | 0.377268915331368  0.377268915331368 0 0 0
0.488254447100037 | 0.162751482366679 0.162751482366679  0.162751482366679 0 0
0.788683186188260 | 0.148302591520154  0.148302591520154  0.148302591520154  0.343775411627798 0

| 0.196480926343466 0.117097251841844 0.117097251841844  0.271439329143100  0.297885240829746
(A.2)
and the Shu-Osher form is

0 0 0 0 0 O 0 0 0 0 0 O
1 0 0 0 0 O Y21 O 0 0 0 O
A= 0 1 0 0 0 O = 0 yn O 0 0 O
- A4t 0 A3 0 0 0 ’ - 0 0 Ya3 0 0 0
)\.51 0 0 )\.54 0 0 0 0 0 V54 0 0

0 Xy O 0 Xes O 0 0 0 0 v O

Ag1 = 0.568606169888847, 143 = 0.4313938301111528,

As1 = 0.088778858640267, Asq4 = 0.911221141359733,

Agy = 0.210416684957724, Lgs = 0.789583315042277 ;

y21 = 0.377268915331368, y3, = 0.377268915331368, y43 = 0.162751482366679, y54 = 0.343775411627798,
ve5 = 0.297885240829746 .

Scheme SSP53_o
This is the optimal SSP(5,3) method showing the highest value of the observed SSP coefficient R,ps(A) = 3.088. It is

numerically obtained by fixing the value of the local error, say ||Cerr |, = ¢, and analyzing the values of the observed SSP
coefficient for these c-methods. The maximum value is obtained when ¢ = 0.0175. It can be implemented in 3N memory

registers and the norm of the leading truncation error is ||Ce ||, = 0.0175. The Butcher coefficients for this scheme are

0 0 0 0 0 0
0.377268915331368 | 0.377268915331368 0 0 0 0
0.754537830662736 | 0.377268915331368  0.377268915331368 0 0 0
0.648537741845154 | 0.216179247281718  0.216179247281718  0.216179247281718 0 0
0.698265024354585 | 0.206522632400617  0.131300520276274  0.131300520276274  0.229141351401419 0

| 0.224992896536234 0.117097251841844 0.117097251841844  0.204354274270769  0.336458325509300
(A.3)
and the Shu-Osher form is

0 0 0 0 0 O 0 0 0 0 0 O
1 0 0 0 0 O y21 O 0 0 0 o0
A= 0 1 0 0 0 O r— 0 yn O 0 0 O
- A4t 0 A3 0 0 0 ’ - 0 0 Ya3 0 0 0
)\.51 }\.52 0 }\.54 0 0 0 0 0 V54 0 0

0 Xy O 0 Xes O 0 0 0 0 ys O

Ag1 = 0.426988976571684, 143 = 0.5730110234283154,
As1 = 0.193245318771018, A5y = 0.199385926238509, As4 = 0.607368754990473,
Ay = 0.108173740702208, Ags = 0.891826259297792 ;
y21 = 0.377268915331368, y3; = 0.377268915331368, y43 = 0.216179247281718, y54 = 0.229141351401419,
ve65 = 0.336458325509300.

Scheme SSP53_2N7

This is the 5-stage third order 2N* method of the form (26) that solves the optimization problem (30). For this method

the leading local error is ||Cer|l, = 0.02540727. The SSP coefficient is 1.822952 and the observed SSP coefficient is
Rops(A) = 2.292.

0 0 0 0 0 0
0.266541020678955 | 0.266541020678955 0 0 0 0
0.815101729727488 | 0.266541020678955  0.548560709048532 0 0 0
1.104618743881888 | 0.266541020678955  0.548560709048532  0.289517014154401 0 0 (A'4)
0.537056421518187 | 0.108739964320909  0.223794715642056  0.118113413497299  0.086408328057923 0

‘ 0.108739964320909  0.223794715642056  0.118113413497299  0.086408328057923  0.462943578481813
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and the Shu-Osher form is

0 0 O 0 0 0 0 0 0 0 0 O

1 0 0 0 0 0 ya1 O 0 0 0 O

A 010 0o 0o rF_| 0 v 0o 0 o0 0
- 0 0 1 0 0o o0 |’ - 0 0 ys3 0 0 0
)\.51 0 0 1-— }\.5] 0 0 0 0 0 V54 0 0

0 0 O 0 1 0 0 0 0 0 s O

As1 = 0.592032910942121;
¥21 = 0.266541020678955, y3; = 0.548560709048532, y43 = 0.289517014154401, y54 = 0.086408328057923,
ves = 0.462943578481813.

Scheme SSP53_2N7;
This is the 5-stage third order 2N* method of the form (26) that solves the optimization problem (31). For this method

the leading local error is ||Cer|l, = 0.01545843. The SSP coefficient is 1.425159 and the observed SSP coefficient is
Rops(A) = 2.184.

0 0 0 0 0 0
0.292845746913355 | 0.292845746913355 0 0 0 0
0.632378540889763 | 0.292845746913355  0.339532793976408 0 0 0
0.385276307296290 | 0.085552377928378  0.099191599043240  0.200532330324672 0 0
1.086952476303169 | 0.085552377928378  0.099191599043240  0.200532330324672 0.701676169006879 0

| 0.066486721228291 0.077086392610822 0.155842975571268  0.545305098127742  0.155278812461877
(A5)
and the Shu-Osher form is

0 O 0 0 0 0 0 0 0 0 0 O

1 0 0 0 0 0 ya1 0 0 0 0 o0

A= 0o 1 0 0 0 0 o 0 vy O 0 0 O
- )\.41 0 1-— )\.41 0 0 0 ’ - 0 0 Y43 0 0 0

0 O 0 1 0 0 0 0 0 4 0 O

1 O 0 0 1—2x6 O 0 0 0 0 ys O

A41 = 0.707858560931430, Ag; = 0.222853615080669,
21 = 0.292845746913355, y5, = 0.339532793976408, y43 = 0.200532330324672, ys4 = 0.701676169006879,
Yes = 0.155278812461877 .
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