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Abstract

Argyros, LK., Some generalized projection methods for solving operator equations, Journal of Computational
and Applied Mathematics 39 (1992) 1-6.

We provide sufficient conditions for the convergence of a certain Newton-like method to the solution of an
equation with a nondifferentiable term.
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1. Introduction

Consider the fixed-point problem
T(x)=x, with T(x)=F(x)+G(x), (1)

where F, G are nonlinear operators defined on some convex subset D of a Banach space E
with values i m a Banach space E. We assume that F is Fréchet differentiable on D, whereas G
is not. Let ._x_ € D and choose R >0 such that the closed ball with center x° and radius R,
denoted by U(x,, R) is included in D. Chen and Yamamoto [3] and others [10,11] proposed the
Newton-like iteration

Vnir =9 = (I=A(3,)) (7, = T(3,)), n>0, €U’ R), ()

for approximating a fixed point x* of (1). Here A(x) denotes a linear operator which
approximates the Fréchet derivative F'(x) of F at x € U(x° R). The above authors showed
that under certain conditions iteration (2) generates a sequence which converges to x*. For
G =0, iteration (2) reduces to the classical Newton-like method which has been studied
extensively by several authors [1-9]. Whereas for G # 0 and A(x) = F'(x), it has been studied
in [4,9-12]. Let x,=x° and define the sequence

Fpi1 =%, — (I-A(%,) (%, - T(%,)), n>0. (3)

0377-0427/92/%05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved



(R

LK. Argyros / Projection metnods for operator equaticn:s

In either case the iterates {y,} and {X,}, n > 0, can rarely be computed in infinite-dimen-
sional spaces, since it may be difficult or even impossible to compute the inverses of the linear
operators A(y,) or A(x,), n>0.

In this paper we will make practical use of iterations (2) and (3), by considering the iterations

Vorr =Ya = (I=PA(Y,)) (3. = T(¥2)), ¥o€U(x° R), n>0, (4)
and
xn+l =xn - (I_PA(xn))_l(xn - T('xn))’ x0=x0’ n 20’ (5)

where P is a projection operator (P> = P) on D.
Let us assume that the inverse of the linear operator I — PA(x®) exists and

(1 = PA(x®)) "'[ PA(x) = PA(x®)] | <vo(ll x —x°1l) + b, (6)
(I — PA(x®)) " '[PF'(x + t(y —x)) = PA(X)] Il <o(ll x —x° N +¢lly —x1I)
—vo(llx=x°ll) +c, (7)

and

I( - PA(x) ' [(QF (x) + G(x)) — (QF(») + GO Il <ol x=yll,  (8)
for any x, y € U(x°, r) cU(x°, R), with Q =1—P. Here v(r +1) —v,(r), t > 0, and v,(r) are
nondecreasing nonnegative functions with v(0) = v(0) = v (0) = 0, v(r) is differentiable, v¢(r)
> 0 for all r €[0, R], and the constants b, ¢ satisfy b>0,c>0and b +c < 1.

We note that for P =I the conditions (6)—(8) reduce to the Zabrejko—Nguen type conditions,
considered in [3].

It is easy to see that the solutions of iterations (4) and (5) reduce to solving certain operator
equations in the space E,. If, moreover, E, is a finite-dimensional space of dimension N, we
obtain a system of linear algebiaic equations of order at most N.

We will provide sufficient conditions for the convergence of iterations (4) and (3) to x* as
well as error bounds on the disiances || x,,, —x,ll and | x, —x*[l, n>0.

Finally, we illustrate our results by considering a nondifferentiable nonlinear integral

equation.
2. Convergence results

We introduce the constant

a=](1-Pa(x*) (2, - T(xo)),
the functions

(r)=a—r+ [o(t)dt,
0

#(r)= [ oe) dt,
x(ry=é(r)+y¢(r)+(b+o)r,
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and the sequences

Fpo1=Tn+ u(( )) €[0, R], n>0, 9)
Vpoiy =V, + ::((U)) V=0, n>0, (10)

where
u(r)=x(r)y—a* and w(r)=1-uvy(r)—>s.
Here a* denotes the minimal value in [0, R]; let r* be the minimal point. As in [3, p.39] we
can easily show that if y(R) <0, then x(r) has a unique zero t* in (0, r *}], since x(r) is strictly
convex. Moreover, r* can be obtained as the limit of the monotonically increasing sequences

{s,} and {v,}, n > 0. Furthermore, w(r) > 0 for all r € [0, r*).
If ¥(R) <0, let us define the sets

b= U(x° R), if (R)<D or x(R)=0and t*=R,
U(x° R), if x(R)=0and t*<R,
H= U (yel—l(x"r)llI(I—PA(y))"(y—T(y))II<ﬂ},

ref0,r*) w(r
and

R,= {rE [0, r*)LI(I = PA(Y) (¥ = T(¥)) I < :—((—) Iy —x°llL< }

We set f(x)=P(F(x)—x) and g(x) =PG(x), where f and g are as defined in [3]. Then by
slightly modifying the proof of [3, Theorem 1] we can show the following.

Theorem 1. Suppose that y(R) <0. Then
(a) equation (1) has a fixed point x* in U(x°, t*), which is unique in U;
(b) for any y, € H, the iteration (4) is well defined, remains in U(x°, r*), n >0, and satisfies

EAES DAY ) (11)

n?

and
Iy, —x*|<r*=r,, n>0, (12)

provided that r, is chosen in (9) such that rye R, .

For completion we wiil now generalize [3, Proposition 1 and Theorem 2]. For any y € H, we
choose a number r, € R, which we fix and set

a, = lI(I-PA(y))"'(y = T(») I,
{1, if y=x%and r,=0,

Y w(r,) I otherwise,
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and
r
x.(r)=a,+ d‘_U [v(ry +1)+u(r, + t)} dt+(b+c— l)r).
. . “\’o

Moreover, we define the sequence

o —q+ x+(4.)
n+l n d}.w(r,, +qn) k4

n>=0, q;=0.
Then we can show the next theorem.

Theorem 2. Suppose that the hypotheses of Theorem 1 are true. Then

(b) the estimete x,(r*—r,) <0 is true and the function x(r) has a unique zero q* in
[0, r*-r.l
Moreover, the sequence {y,}, n > 9, with y, =y satisfies

" .Y,H.] _yn il Sqn-é—l —qns
and

Iy.—x*|<q*-g,<r*-r,, nz0.
We now comnlete this paper with an example. For simplicity we will assume that A{x) =
F'(x) or D.
3. Applications
Consider the integral equation

(1) = jo 'K(1, 5, x(s)) ds, (13)

where the kernel K(t, s, x(s)) is nondifferentiable on some convex subset D c E = Cl0, 1]
equipped with the sup-norm. We set

T(x)= [ K(t, 5, x(s))ds and F(x)= [ K(t, 5, x(s)) ds,
0 0
where K(t, s, x(s)) is differentiable on D. Then
PF'(x) = fll?;(t, s, x(s)) ds,
0
where

R(t, s, x(s) = X A1)B(s, x(s)
i=1
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is a degenerate kernel approximating the functions K(t, s, x), e.g., a portion of the Taylor or

Fourier series for the function K(t, s, x) if we consider it as a function of ¢. The modified
Newton—-Kantorovich iteration (3) can now be written as

$ani(0) = ['K(t, 5, 2,() ds = ['Ki(t, 5, 2,()x,(5) ds
0

+['Ri(t, 5, x,(5)%psi(s) ds (14)
0

D)= [K{t, 5, 1,(5)) ds = [ Ki{t, 5, x,(5))x,(s) ds;
0 0

then iteration (14) can be written as
£ =0+ B A [ B8, 5,55 ) 05
which can be solved to give'; system of linear algebraic equations
[Bi(s, %) %00(s) ds
- i ['Bi(s, () 4,(5) ds [ 'Bi(5, 5\ %or(s) ds = ['Bi(s. x,(5))f(s) ds.
Denote by D(xl,:) the determinant of the above system and assume D(x,) # 0, n > 0. Then,

[B1(5, 251 500i(5) 05 = 5 [ T Dilxn)Bils, xa(5))sls) s

1
D(x,) % =1
and
— A; (t)Dkl(xn)Bk(s xn(s))

Xyai(t) = f(t)+f >y

D(x,)
i=1k=1 n
where D, (x,) is the cofactor of the element in the ith row and kth column of the determinant
D(x,).

Defme the ope..tors K A, 5, %), O, s, x), G(t,s, x) and L(¢, s, x) by O(t, s, x)=
K(i, s, x) —K(t s, x), G(t s, x) =K(t, s, x) — K(t, s, x) and

Lt 5.5) = ey & T AQDUEs, ).

i=1k=1
Let us now consider a ball U(x,, R)cD for some R>0 fixed such that the inverse
I — PF'(x,) exists on U(x,, R). Assume that for each r with r €[0, R] the functions defined
above satisfy the conditions

fu(s) ds,

10(t, s, x)+G(t, s, x) — (Q(t, s, y) + G(t, s, YD <N/{t, s)|x -y,
and
[L(t, s, x5)! <J, (¢, 5),
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for all ¢, s€[0, 1] and x, y € U(x,, R). if equation (13) is considered in E, then choose real
nonnegative functions v, v and v, to satisfy the conditions listed after (8), and

1 1
vo(r)<2r(1+ sup [ J(t,s) ds) sup [ M,(t, 5) ds,
tefo,117¢ tef0,11”0

1
vy(r) < Zr(l + sup flJ,(t, s) ds) sup f N,(t, s) ds,
0 0

s=n 11 r=in 11
\ LI 10N 3

v = v,y and linear. Moreover, choose b = ¢ = 0. It can now easily be seen that conditions (6)—(8)
are satisfied. The conclusions of Theorems 1 and 2 can now apply provided that y(R) < 0.
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