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Abstract 
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We provide sufficient conditions for the 
equation with a nondifferentiable term. 

convergence of a certain Newton-like method to the solution of an 
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1. Introduction 

Consider the fixed-point problem 

T(x) =x, with T(x) = F(x) + G(x), (1) 

where F, G are nonlinear opetators defined on some convex subset D of a Banach space E 
with values in a Banach space E. We assume that F is Fr&zhet differentiable on D, whereas G 
is not. Let x0 E D and choose R > 0 such that the closed ball with center x0 and radius R, 
denoted by 0(x0, R) is included in D. Chen and Yamamoto [3] and others [lO,ll] proposed the 
Newton-like iteration 

Yn+l =Y, - (I-A(j$))-‘(yn - T(j$)), n 30, &,E @‘, R), (2) 
for approximating a fixed point x* of (1). Here A(x) denotes a linear operator which 
approximates the Fr&het derivative F’(x) of F at x E @x0, R). The above authors showed 
that under certain conditions iteration (2) generates a sequence which converges to x*. For 
G = 0, iteration (2) reduces to the classical Newton-like method which has been studied 
extensively by several authors [l-9]. Whereas for G # 0 and A(x) = F’(x), it has been studied 
in [4,9-121. Let X0 =x0 and define the sequence 

x n+1= x, - (z-A(jZ,)!-l(Zn - T&f,)), n 2 0. (3) 
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In either case the iterates (j$} and {z,}, n 2 0, can rarely be computed in infinite-dimen- 
sional spaces, since it may be difficult or even impossible to compute the inverses of the linear 
operators A( y,) or A( X,), ~2 > 0. 

In this paper we will make practical use of iterations (2) and (3), by considering the iterations 

and 

Y nt1= Ye - (-qYn))-L(Yn - T(Yn))9 

x n+1= x,- (I-PA&))-‘(q- T(x,)), 

where P is a projection operator (P* = P) on D. 

you a(~‘, R), n >, 0, (4) 

x0 =x0, n 30, (5) 

Let us assume that the inverse of the linear operator I - PA(x”) exists and 

and 

S(I-PA(X”))-~[PA(X)-PA(X~)] 11 ao( tb-x”il) +h 

(I-PA(x’))-‘[PF’(x+t(y-x))-PA(x)]11 ~u(IIx-x”II+tIIy-xII) 

-v,( llx-x”ll) +c, 

(6) 

m 

ll(Z-PA(x*))-i[(QF(x)+G(x))-(QF(~)+G(~))])I ~~~(~)b-_y~~, (8) 

for any x, y E 0(x0, ri G 0(x0, R), with Q = I - P. Here v(r + t) - vo(r), t 2 0, and vr(r) are 
nondecreasing nonnegative functions with v(O) = v,(O) = ~~(0) = 0, vo(r) is differentiable, v$r> 
> 0 for all r E [0, R], and the constants b, c satisfy b 2 0, c 2 0 and b + c < 1. 

We note that for P = Z the conditions (6)-(g) reduce to the Zabrejko-Nguen type conditions, 
considered in [3]. 

It is easy to see that the solutions of iterations (4) and (5) reduce to solving certain operator 
equations in the space Ep. If, moreover, Ep is a finite-dimensional space of dimension N, we 
obtain a system of linear algebraic equations of order at most N. 

We will provide sufficient conditions for the convergence of iterations (4) and (5) to x* as 
well as error bounds on the distances II x,+ 1 -x, II and 11 x, -x * 11, n 2 0. 

Finally, we illustrate our results by considering a nondifferentiable nonlinear integral 
equation. 

2. Convergence results 

We introduce the constant 

(1 -PA(x’))-‘(x0 - T(xo))ll, 

the functions 

&(r)=a-r+/‘v(t)dt, 
0 

e(r) = /‘q(t) dt, 
0 

,y(rj=+)+#(r)+(b+c)r, 
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and the sequences 

3 

e-n) 
r n+l =r,i-- 

w(m) ’ 

ro E [o, R], n 2 0, 

4VJ 
V n-cl =u,+---- 

w(vn) ’ 

vg = 0, n >, 0, 

(9) 

(10) 

where 

u(r) =x(r) -t2* and w(r) = 1 - vo(r) - 6. 

Here a! * denotes the minimal value in [0, R]; let r * be the minimal point. As in [3, p-391 we 
can easily show that if x(R) < 0, then x(r) has a unique zero t * in (0, r * ], since x(r) is strictly 
convex. Moreover, r * can be obtained as the limit of the monotonically increasing sequences 
(sn} and {v,}, n 2 0. Furthermore, w(r) > 0 for all r E [0, r *). 

If x(R) < 0, let us define the sets 

& u(x”, R), if x(R)<0 or x(R)=Oand t*=R, 

U(x’, R), if x(R) = 0 and t* <R, 

H= 
u(r) 

yEu(x’r)l II(I-PA(Y))-‘(Y-T(Y))~~ <W(I) 

and 

R,= 
u(r) 

rE[O, r*)l ll(I-PA(y))-‘(Y-T(y))11 GW, lb-x’ll_<r 
I 

. 

We set f(x) = P( F(x) - x) and g(x) = PG( x), where f and g are as defined in [3]. Then by 
slightly modifying the proof of [3, Theorem l] we can show the following. 

Theorem 1. Suppose that x(R) < 0. Then 
(a) equation (1) has a fixed point x * in GCx ‘, t * ), which is unique in 0; 
(b) for any y, E H, the iteration (4) is well defined, remains in @x0, r *), n >, 0, and satisf;es 

II Yn+l -Y, II Gr,+l -r,, n 2% (11) 

and 

II y n-x*li,<r*-rn, n2.0, (12) 

provided that r. is chosen in (9) such that r. E RYO. 

For completion we wiil now generalize [3, Proposition 1 and Theorem 21. For any Y E K we 
choose a number r,, E R,, which we fix and set 

aY = II(I-PA(Y))-‘(Y - T(y))lI, 

i L if y . =x0 and T,, = 0, 
d, = 

w( Q-l, otherwise, 
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~~(r)=a,+d, f(v(r,+t)+v,(r,+t))dt+(b+c-l)r). 

0 

oreover, we define the sequence 

Xv(%) 
Q n+1=%8+- d,w(r, + 4,) ’ 

n&f!, qo==o. 

Then we can show the next theorem. 

eorem 2. Supmse that the hypotheses of Theorem 1 are true, Then 

(a) qxo, +q) CH; 

(b) the estkmctd x&r * - r,J < 0 is true and the function x,(r) has a unique zero q * in 
[O, r * - rJ. 

Moreover, the sequence ( y,!, n > 8, with y0 = y satisfies 

IO Yn+l -Yn if Wn+r -a, 

and 

II Y n-x*I)<q*-q&!-*-rY, na0. 

-We now complete this paper with an example. For simplicity we avill assyme that A(X) = 
F’(X) on D. 

3. Applications 

Consider the integral equation 

x(t) = /k(t, s, x(s)) ds, (13) 

where the kernel’K(t, s, x(s)) is nondifferentiable on some convex subset D C E = CCO, 11 
equipped with the sup-norm. We set 

T(x) =/k(t, s, x(s)) ds and 
0 

F(x) = jk(t, s, x(s)) ds, 
0 

where E(t, s, x(s)) is differentiable on I). Then 

PF’(x) =/%;(t, s, x(s)) ds, 
0 

where 

E(t, 3’9 X(S))= iAi(t)B;(s, X(s)) 
i=l 



I.K. At-gyros / Projection methods for operator equations 5 

is a degenerate kernel approximating the functions K(t, s, x), e.g., a portion of the Taylor or 
Fourier series for the function &, s, x) if we consider it as a function of t. The modified 
Newton-Kantorovich iteration (3) can now be written as 

xn+l(t) = /*K(t, s, x,(s)) ds - /%;(t, s, x,(s))x,(s) ds 
0 0 

+ 
/ 

‘&, s, X,(S))X,+,(S) ds 
0 

(14) 

Let 

f,(t) = /kjr, s, x,(s)) ds - j%;jr, s, x&))x,,(s) ds; 
0 0 

then iteration (14) can be written as 

x,+1(t) =.W) + E Ai(t)llBi’(x~ X,(S))%+ 1(s) ds9 
i=l 0 

which can be solved to give a system of linear algebraic equations 

f1w9 x,(s))x,+*(s) ds 
0 

- E \lB:(S> Xn(S))Aj(S) dS/lB;(s, Xn(s))Xn+l(s) ds=/‘B:(s, Xn('))fn(s) dsm 
i=*‘O 0 0 

Denote by D(x,) the determinant of the above system and assume D(x,) f 0, n 3 0, Then, 

/1Bi+9 Xn(S))Xn+lW ds = &j-l i Dki( x,,)Bt( s, x,,(s) ji,,(S) ds, 
0 n 0 k=l 

and 

Xn+l(t) = f,(t) + I1 E E Ai(t)Dki(;/xB;(s’ xn(s))fn(~) ds, 

0 i=l k=l n 

where Dki( X,) is the cofactor of the element in the ith row and kth column of the determinant 
D&I. 

Define the opelL!ors EJt, s, x), Q(t, s, x), G(t, s, x) and Lit, s, x) by Q(t, s, d = 
&, s, x) - K(t, s, x), G(t, s, x) = K(t, s, x) -EO, s, x) and 

L(t’ ” x, 
= 1 ~ ~ A (t)Dki(X)B~(S, X). 

D’x) i=l k=l i 

Let us now consider a ball U(xo, R) c D for some R > 0 fixed such that the inverse 
I - PF’( x0) exists on U&,, R). Assume that for each r with r E [0, R] the functions defined 
above satisfy the conditions 

and 

IE;(t, S, x) -K=i,(t, S, y)[ <M,(r, s) I x -Y I, 

I Q(t, ,r, x) + G(t, s, x)-(Q(t, s, y)+G(t, s, y)?l <N,(t, S)lx-Y!, 

I qt, s, x()) i <J&t, s), 



6 1-K. Argyros ,I plojection methods for operator equations 

for all 1, s E [O, l] and X, y E U(x,, I?). If equatim (13) is considered in E, then choose real 
nonnegative functions PO, v and v, to satisfy the conditions listed after (8), and 

v&q < 2r 1 + ( r;t*l/o%(k s) ds) ,$$W9 s) d& 

v,(r) < 2r 1 + sup lIJ,( t, s) ds 
( i / 

SUP ‘N,(t , s) ds, 
CE[O,l] 0 tE[O,l] 0 

v = co and linear. Moreover, choose b = c = 0. It can now easily be seen that conditions (6)~(81 
are satisfied. The conclusions of Theorems 1 and 2 can now apply provided that x(R) < 0. 
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