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Abstract 

Mahmoud, H.M., Distances in random plane-oriented recursive trees, Journal of Computational and Applied 
Mathematics 41 (1992) 237-245. 

The average number of nodes in a stratum of random plane-oriented recursive trees is found. The expressicn 
is used to determine the exact probability distribution of the depth of the nth node. It is further shown that 
the limiting distribution of the normalized depth of this node is the standard normal distribution. Via 
martingales, the normalized external path length is shown to converge almost surely and in L2 to a limiting 
random variable. 

Keywords: Recursive tree; depth; path length; limit theorem; martingale. 

1. Introduction 

A tree is a connected graph without cycles (see [l] for basic properties). A tree on n vertices 
labeled 1, 2,. . . , n is a rooted recursive tree of order n if the node labeled 1 is distinguished as 
the root, and for each k, 2 G k < n, the labels of the vertices in the unique path joining the root 
to the vertex labeled k form an increasing sequence. We shall refer to this tree as the “usual” 
recursive tree. Notice that, by their definition, the children of the usual recursive trees are 
unordered. In this paper we study the new class of plane-oriented recursive trees when the 
trees obtained by different orderings of the children of a node of the usual recursive tree are 
considered as distinct trees. For the rest of this paper the term “tree” without qualification will 
refer to a plane-oriented recursive tree. The tree grows by adding new nodes at the candidate 
insertion positions. These are the “gaps” between the edges joining the immediate children of a 
node to their parent (thinking of the left of the leftmost edge and the right of the rightmost 
edge as gaps). 

It is very convenient in several classes of trees to work with an extension of the trees of the 
class (see [7] for an example of an extension of binary trees). Such extensions are obtained by 
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Fig. 1. All 
6 

extended plane-oriented recursive trees on three vertices. 

adding a different type of nodes called external at each possible insertion position. We extend a 
pl~e-miented recursive tree by representing each insertion position as a square node joined by 
an edge to the would-be parent if insertion falls at that position. A node with j children thus 
has j + 1 insertion positions, i.e., will have j + 1 external nodes as immediate children in the 
extension, one in each gap. Figure 1 illustrates all extended plane-oriented recursive trees of 
order 3. 

We shall analyze plane-oriented recursive trees under the uniform probability model, that is, 
we assume that all trees of a given order are equally likely. One of the reasons a class of 
random trees is considered interesting is the existence of a simple growth rule, i.e., a rule by 
which the addition of a node (to make the transition from a random tree of size n - 1 to a tree 
of size n) will appear as if the new tree has been picked at random from its sample space. Such 
is the situation with the class of random plane-oriented recursive trees. It is not difficult to see 
that when all the insertion positions in the tree are equally likely, growing the tree by choosing 
any of the insertion positions with equal probability is equivalent to growing a random tree. 

The usual recursive trees under a uniform probability model have been proposed as models 
for the spread of epidemics [lo], for pyramid schemes [4], for the family trees of preserved 
copies of ancient or medieval texts [1 l] and for algorithms used to produce convex hulls in 
higher dimensions [3]. 

In a pyramid scheme where each entrant competes with those already participating, the 
experience gained in successful recruiting enhances the prospects of future success as captured 
by the growth rule of random plane-oriented recursive trees. Similarly, plane-oriented recursive 
trees under a uniform model will be a better model for any pyramid scheme represented by 
recursive trees where a nonuniform probability model (on the trees) accounting for the affinity 
of the nodes by their degrees is more appropriate than a uniform one. 

In this paper we study the average number of external nodes in a stratum at distance k from 
the root of a random plane-oriented recursive tree of order n. This average information is 
sufficient to establish the exact probability distribution of Dn, the depth of the nth node, i.e., its 
distance from the root of the tree. This probability distribution involves Stirling numbers of the 
first kind and the generating function of these combinatorial objects is used to determine the 
mean and variance of Dn= The generating function will also enable us to prove that 0, is 
asymptotically normal. The mean of D,, is asymptotically i In n, as n + 00. The variance of Dn 
is also asymptotically of logarithmic order guaranteeing the convergence of DJln n to i in 
probability. Thus the depth of a node with a large index is about half of what it is in usual 
random recursive trees with high probability [9,10]. 

As the tree grows by the progressive insertion of nodes, two other cumulative random 
variables may serve as measures of the overall cost of the construction of the tree, or the cost of 
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later processing of the whole tree if each internal (external) node is to be accessed equally 
often. The first random variable is the internal path length 

n 

I,,= CD,,, 
j=l 

and several of its properties can be derived from information about the different depths of the 
nodes in a tree. An insertion always increases the number of external nodes by 2, and thus a 
tree of order n will have 2n - 1 external nodes. Suppose they are indexed by 1, 2,. . . ,2n - 1, 
from left to right, say, and that their depths are x1,. . . , x2,, _ 1. We define the second cumulative 
random variable Xn by 

2n-1 

Xn= C Xj. 
j=l 

This random variable is called the exremal path length. The strong dependence between the 
random variables Xi makes it difficult to compute the exact distribution of & In this paper we 
find a martingale associated with the external path length. The convergence theorem of 
martingales will then imply that a normalized version of Xn has a limiting distribution, as 
n + 00. We show that there exists a random variable X such that ( Xn - n In n)/(2n) converges 
to X almost surely and in L*. As a by-product, the method allows us to compute the mean and 
variance of the external path length. 

To put this work in perspective, it extends several results in the usual recursive trees to 
plane-oriented recursive trees. The reader is referred to [2,8-10,131 for the counterparts in the 
usual recursive trees of properties of the plane-oriented recursive trees discussed in this paper. 

2. The number of nodes in a stratum 

Let Ynk denote the number of external nodes at distance k from the root in a plane-oriented 
recursive tree of order rt. Under our model of randomness, Ynk is a random variable. In this 
section we determine E[Y,,], the average of this quantity. This average involves [J], the signless 
Stirling numbers of the first kind of order s, where [i] for nonnegative integers s and j is the 
coefficient of xi in the product (x), =x(x + 1) l l . (x + s - 1). The average of Ynk also involves 
the quantity 1 x 3 x - l l x (2s - 1) for positive integer s. We shall denote this quantity by 
(2s - l)!!. An o th er useful notation for this paper appears from the need to differentiate 
functions of the form (z), at z = $. The first two derivatives involve the quantities 

1 1 1 
Q=l+ -$+y+ l *. + 

(2 n - 1)’ ’ 
j = 1, 2. 

The quantities a:) are related to the harmonic numbers by 

where H,“) = I+ l/2’ + l l l + l/rj. (It is customary to drop the superscript when it is 1, and 
we shall follow this notation in this paper.) We formulate our first result next. 
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1. ir;he acerage number of external nodes at distance k from the root in a plane-oriented 
rec~~~~~e tree with n nodes is gilTen by 

2 n-Ar 
Ynk] = , n_3)” 

(2 
;: ’ forna2- . . [ 1 

The tree T, evolves from T, _ 1 by an insertion of the nth node at level Dn. An insertion 
1 j will convert an external node at that level into an internal node and two new sibling 

anal nodes will appear on level j: one to the left and one to the right of the new internal 
and also an external node will appear at level j + 1 as the only child of the new internal 

. The net increase in Ynj is therefore 1. So, an insertion at level j - 1 will also increase Yni 
1. Level j is not affected by insertion at any levels other than j and j - 1. Thus, 

E[Y,+ i ]+l, ifk=j, 

E[Yni IDn=k] = E[Yn_+ j] +l, if k=j-1, 

E[Y,+ j], otherwise. 

It follows from unconditioning the last relation that 

E[~j] =E[Yn_,,] +Pr(D,=j)+Pr(D,=j-1). (1) 
As all 2n - 3 Gxtemal nodes of T,_ 1 are equally likely, 

Y 
WD, 

R-l,r 
= r I Y,_,,J = - 

2n-3. 

That is, unconditionally, 

EPA r] 
Pr(D,=r)= 2n_j . 

So, (1) can 5e rewritten as 

E[YL] 
2n-2 1 

= -E[Y,_*, j] + EE[Y.-,,j-l]. 
2n-3 

(2) 

(3) 
To soEve this recurrence we introduce the leaf polynomials 

t,(Z)= cE[Y,lz'. 

j=O 

Multiplying both sides of (3) by zi and summing over j (noting that E[Y,,] = 01, we obtain the 
folio-wing recurrence on the leaf polynomials: 

2n-24-z 
LW = 2n 3 L-,(z), - 

with L ,( z 1~ z. This recurrence has the solution 

2” 
L(z) = 

(2 n - 3)!! 
+z(+z+i)*+z+n-1). 

But the generating function ( $2 >, generates the sequence 2-“[;: 1, k = 0, 1, . . . , n, and the 

theorem follows. q 



I1.M. Mahmoud / Distances in recursice trees 241 

3. Exact and limiting distributions for the depth 

According to (2), the exact probability distribution of Dn is linked to the average of Ynk. So, 
the average developed in Theorem 1 provides an immediate proof for the next theorem. 

Theorem 2. 

2 n-1-k 

Pr(D,,=k)= n-l 

(2 n-3)!! [ 1 k l 

The mean value for Dn follows from this exact distribution. It is given by 

Wrll = (2 ,““I,!! ;<;[y l]y 

and the remaining sum can be handled by differentiating ( z>, _ 1 once at z = $. This yields the 
simple expression 

The well-known asymptotics of the harmonic numbers (see [5], for example) admit an asymp- 
totic development with high accuracy: 

E[Dn] = $ lnn+ln2+$+0 

Similarly, the second factorial moment of Dn is obtained by first finding an expression for 
CI:A[“k*]k(k - 1)/2k from the second derivative of ( z>,_ 1 at z = 4. The variance follows and 
is given by 

Var[D,] =#~,-LY~~!~=~ In n+ln2+$y-_$n2+0 

From an application of Chebychev’s inequality we can conclude that 

Ql 
- -+ i, in probability. 
In n 

The average internal path length Z,, can be calculated from 

mzl = i Wkl, 
k=l 

and from the averages for the depths, the expression 

E[ Z,,] = ( H2,,-3 - iH_,)(n - i) - $(n - 1) 

follows. For large n, E[ Z,J N 3 n In n. 
We next use the exact probability distribution of Dn to prove the asymptotic normality of a 

normalized version of D,,. 
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Theorem 3. ?ike normalized random byariable Dz defined by 

D,, - $ In rz 
Dz= _ 

II’! In n 

Introduce iM,( t 1, the moment generating function of DE, i.e., 

distribution JV(O, I), the standard normal distribution with mean zero and 

for any fiied real number t. For notational convenience denote $ In n by a,,. From the exact 
ability distribution of Theorem 2, 

1lqt) = 

= 

= 

= 

x 

c exp 
R=O 

2 n-l e-+Q #&I 

( 
1 

( h-3)!! k$, ’ e 

p-1 e-&t 

(2 n - 3)!! 
($ e’/G),_ 1 

But (2n - 3)!! ‘5 (2n)!/(2 ““n(n!)) and the first gamma function approaches I?$ = 16, as 
n + a. And thus by the Stirling approximation for the second gamma function, for large n, 

N,(t) ry 
4*(n!)n e-6’ 

(2n, ! ~ r( n)nrw(r/dQ/2m1. 

The terms n!nT( n)/(2n)! can be combined as (:I-‘, which is known to have the asymptotic 
equivalent G/4” (see [5]). Hence, 

By the Taylor expansion, 

M,(t)-Gexp -iGt+ 1 [I t 
$+- 

t* 
2&+4a, 

+ 0(ai312 
1 

)i I i 
- 1 Tc n N et’/?, 

/ 

the right side of the latter relation being the moment generating function of M(O, 1). q 

4. e external path length 

Martingales have been used in the context of path lengths of some classes of trees [8,12]. In 
this section we find a martingale associated with the external path length Xn, then use it to 



H.M. Mahmoud / Distances in recursiLre trees 243 

prove the existence of a limiting random variable almost surely and in L* for a properly 
normalized version of the external path length. The method admits a way of calculating the 
mean and variance of Xn. Observe that algorithmically a tree T, of order n is obtained from a 
tree T, _ 1 of order n - 1 by inserting the nth Aode at level Q. The nth node may replace any 
of the 2n - 3 external nodes of Tn_ 1 with probability 1/(2n - 3). The new node gives the tree 
three new external nodes: one to its left, one to its right (which are children of the parent of the 
new internal node) and its own child, but one of the external nodes of T,_ 1 is lost in the 
process. The net gain in the external path length is therefore 20, + (D,, + 1) - D,, = 2 Dn + 1. 
Let S, denote the sigma field generated by the tree Tn. When the shape of the tree Tn _ , is 
available, the levels x1,. . . , x2n_3 of the external nodes are completely determined. Thus Dn 
may assume any of the values x 1, x2, . . . , x2n_3 with equal probability 1/(2n - 3). We can now 
formulate a conditional expectation: 

qxn 1 %I-11 =~2~3(Xn_~+2Xi+l)=Xn_~+1+~2~3xj* - 
j-l 

- 
j-l 

But the remaining sum is the external path length of T, _ 19 i.e., 

2n - 1 
E[Xn I9J = EXn_, + 1. - (4) 

Taking expectations of the last relation we get the following recurrence on expected external 
path length: 

2n - 1 

which can be easily solved under the initial condition E[X,] = 1 to yield 

E[ Xn] = (2n - l)a&? 

The average external path length is asymptotically equivalent to n In n, twice as much as the 
asymptotic average internal path length. 

Theorem 4. There exists a limiting random variable X such that 

Xn-n In n 

2n 
+ X, 

almost surely and in L*. 

Proof. We prove this theorem by showing that 

Z Xn -Wnl = n 2n - 1 

is a martingale over the sequence of fields {9n}I=, with uniformly bounded second moments. 
Absolute integrability of the sequence {Z,}I= 1 is guaranteed by the existence of the mean of Xn 
for each n. Furthermore, by (4) and (5), 

E[Z, I qz-l] = Kz-* -- 
2n-3 

wn1 - 1 
2n - 1 

=2,-p 

We conclude that the sequence {Zn}:= 1 is a zero-mean martingale. 
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TO compute the second moment of Zn we formulate a recurrence for it as follows. Replace 

Xn bY &-1 -t 20, + 1 in the definition of Zn and write 

X 
zm= n- 

,+20,+1-E[X,_,+20,+1] 

2n - 1 

2n-3 
= 2n_1Z,-,+ &(D. - E[Dnl)e 

Squaring the latter relation, then taking expectations yields 

z 
Ek I =- R ( 

2n-3 * 4 
2n 1 E[Z,2-*I + 

- 
1 

(2 
2 w 41 

n - 1) 

+ ;;nn:l;! Ek-*(D#Z - Wnl)l l 

In the last term we need only to find 
For the required term we compute 

E[Z,_ 1 D,,] since the component E[Z,, _ 1 E[ DJ is zero. 

E[&-@n] =E[E[Z,_A I %-,I] =E[LE[QI 1 %-~I] l 

Aopment, But according to the algorithmic deve 

(6) 

E[Z,-Al =E[C*l* 

Plugging this relation into (6) we arrive at the recurrence 

E[Z,Z] = (2n -s,r:;: %[Z;_,] + 4 
(2 (2 n - 1) 

2 wQz1 l 

The substitition Qn = (2n - l)E[Zz]/(2n + 1) linearizes this recurrence into the simple recur- 
rence 

4 
e,=e,-,+ (2 n - 1)(2n + 1) 

Var[ Dn]. 

By the relation for the variance of Di, the solution to the last recurrence gives E&f] as 

4(2n + 1) n E[Z,Z] = 2pz 1 c (y:‘l -@l 
- 

j=2 (2j - 1)(2j + 1) . 

The sum in E[Zz] clearly converges; the variance of Zn is O(l), i.e., E[Zi] is bounded 
uniformly in IL Convergence almost surely and in L* follows from the martingale convergence 
theorem [6]. q 

The standard deviation of the external path length of plane-oriented recursive trees is 
relatively small compared to the mean value, since the variance of Xn is E[(2n - l)*Zi], i.e., 
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the standard deviation is O(n) while E[ XJ - n In n, as n + 00. (This is to be compared with [3] 
and [8] where the authors independently obtained an 0(n2) bound on the variance of the 
internal path length in the usual recursive trees.) A standard argument based on Chebychev’s 
inequality shows that X,&z In n) + 1 in probability. The external path length is asymptotically 
twice as much as the internal path length with high probability. 
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