
ELSEVIER Journal of Computational and Applied Mathematics 64 (1995) 247-268

JOURNAL OF
COMPUTATIONAL AND
APPUED MATHEMATICS

An improved iljak's algorithm for solving polynomial equations
converges quadratically to multiple zeros

J.A. Stolan

Chemical Systems Division, United Technologies, San Josb, CA 95148, USA

Received 1 February 1994; revised 26 April 1994

Abstract

~iljak's method provides a globally convergent algorithm for inclusion of polynomial zeros. The solution procedure is
formulated as a minimization process of a positive definite function involving the real and imaginary parts of the
polynomial, The main objective of this paper is to propose an improved version of ~iljak's algorithm, which exploits the
minimizing function to ensure a quadratic convergence to multiple zeros and, at the same time, determine their
multiplicity. Time comparisons with other standard zero inclusion methods are provided to demonstrate the efficiency of
the proposed improvement of the original algorithm.

Keywords: Polynomials; Zeros; Roots; Algorithms; Multiple zeros

1. Introduction

There are a large number of algorithms for inclusion of polynomial zeros. Each algorithm
exhibits a numerical superiority over the others depending on the nature of the zeros and their
configurations. By rule, however, all the existing algorithms have problems with convergence and
accuracy when multiple zeros are present. As Press et al. stated in [11]:

"Multiple roots, or closely spaced roots, produce the most difficulty for numerical algorithms. For
example, P (x) = (x - a) 2 has a double real root at x = a. However, we cannot bracket the root by
the usual technique of identifying neighborhoods where the function changes sign, nor will
slope-following methods such as Newton-Raphson work well, because both the function and its
derivative vanish at a multiple root. Newton-Raphson may work, but slowly, since large roundoff
errors can occur. When a root is known in advance to be multiple, then special methods of attack
are readily devised. Problems arise when (as is generally the case) we do not know in advance what
pathology a root will display."

0377-0427/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0 3 7 7 - 0 4 2 7 (9 4) 0 0 1 1 4 - 6

248 J.A. Stolan/dournal of Computational and Applied Mathematics 64 (1995) 247-268

Our objective is to propose an improved ~iljak's algorithm for solving polynomials, which
addresses this problem by converging quadratically to multiple zeros and, at the same time,
provides the information about the zero's multiplicity.

In his book on nonlinear systems, ~iljak [14] described an algorithm for computing zeros of
polynomials via a minimization process involving a function of the real and imaginary parts of
a given polynomial. A digital computer implementation of the algorithm has been devised by
Moore [8], and has appeared subsequently in several software packages. The Hewlett-Packard
version of the algorithm has been listed by Jamshidi and Malek-Zavarei [3], and has been
commercially available from Sierra Digital Research [15]. The most attractive feature of the
algorithm is its global convergence to a zero of a given polynomial, regardless of the configuration
and nature of the zeros. While the speed of convergence may vary depending on the multiplicity of
zeros, the monotonicity of the convergent process is ensured by its gradient character. Multiple
zeros, however, may slow down the convergence process considerably, thus rendering the original
algorithm unattractive or impractical.

In this paper, we propose to extract the information about the multiplicity of polynomial zeros
from the minimizing function and its derivatives during the convergent process. This information is
then used to determine a step-size which ensures a quadratic convergence to a zero being
approximated by the solution process.

Finally, we present how this method fits into the broad range of polynomial zero inclusion
methods. Comparisons are offered with conventional methods such as Laguerre's algorithm as
presented in Press et al. [11], the Jenkins-Traub method used in the IMSL library [4], simulta-
neous methods as presented in 1-10], and the eigenvalue method used by Matlab [7]. We shall
provide time comparisons of the new algorithm with the standard zero inclusion algorithms to
show that it is as fast or faster for general polynomial problems, and significantly faster for
polynomials with multiple zeros.

2. The optimization problem

Let us consider a polynomial

P(z) = ~ akZ k
k=O

with complex coefficients

ak = bk + iCk, a. v~ O.

By expressing the complex variable z as

z = ~ + ia),

we can compute the powers of z,

z k = Xk + iYk,

(2.1)

(2.2)

(2.3)

(2.4)

J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268 249

where X k = Xk(0., CO) and Yk = Yk(tr, co) are ~iljak's polynomials [14] defined by recursive for-
mulas,

X k = 20 .Xk-1 - (0 .2 + o)2)Xk-2, (2.5)

Yk = 20 .Yk-1 -- (0.2 + co2) y k _ z,

a n d X o = l , X l = a , Yo=0 , Yl=co.
By substituting (2.3) into (2.1) and using (2.4), we can split the polynomial P(z) into its real and

imaginary parts as

P = R + iI, (2.6)

where

R(0., co) = ~ (bkXk -- CkYk),
k = O

(2.7)

l(0. ,co) = ~, (CkXk + bkYk) .
k = O

Inclusion of zeros of P(z) was formulated in [14] as a minimization problem involving the
penalty function

V(0.,CO) = R2(0.,CO) + i2(0., co), (2.8)

which has the following properties:
(P1) V(0., co) is nonnegative everywhere.
(P2) V(0., co) is twice differentiable everywhere.
(P3) The zeros of V(0.,co) are located at the zeros of P (z) .
(P4) The zeros of V(0., co) are the only minima of V(0., co).

These properties make the minimization formulation attractive, because they guarantee global
convergence of the corresponding gradient inclusion algorithms.

In order to determine the minima of V(0., co) we compute its gradient

63o,63co = 2 R ~ + I~-~a, 6309 + ~-~ J ' (2.9)

where superscript T denotes transpose, and

63R 631 63R 631
630. - 63co' 63o9 - 630." (2.10)

To compute grad V, we use the relations

63X k 63X k
630. - k X k - 1, 63~ -- k Y k - l ,

63Yk 63Yk
00. - k Y k - 1, 6309 -- k X k - 1,

(2.11)

250 J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268

which follow from the formulas given in [14],

Xk(a,~o) = ~ (- 1) j ak-ZJo 2j,
j=0 2j

Yk(tr, O))- ~ (- 1) j-1 tr k - 2 j + l
j = l 2 j - 1

Then,

d R _ dl
- ~ k (bkXk-1- CkYk-1),

d ~ d(z) k = 1

(.D2j- 1

dR OI "
k(CkXk-1 + bkYk-1),

OO~ da k = l

which allows for
Relying on the

(2.12)

we can compute

.Algorithm 2.1.

(2.13)

fast computations of grad V via recursive formulas (2.5) for any fixed a and ~o.
straightforward computation of V, grad V, and the magnitude of grad V,

Ilgrad VII = ~ \ ~ - ~ j + \&oJ ' (2.14)

zeros of P(z) using the original ~iljak's algorithm:

Step 1: Pick a starnng point.
Step 2: Compute function V, grad V, and II grad V IL-
Step 3: Travel a distance 2V/[[grad V II along the gradient direction.
Step 4: Evaluate the value V at the new point. If the new value is less than the old proceed to

Step 5, otherwise reduce the distance along the gradient and try again.
Step 5: If the distance traveled is less than the desired zero tolerance, stop. Otherwise, set the

located point as the new starting point and go to Step 2.

Our objective in this paper is to improve this algorithm in an essential way by extracting
information from the penalty function regarding multiplicity of the polynomial zeros. Before we
address the multiplicity issue, we shall establish convergence properties of the solution process
using some well-known facts regarding gradient procedures and algorithms [-2].

3. Convergence

Let us form a gradient dynamic system

OV
S: # =

do-'

dV
d J -

&o"

(3.1)

J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268 251

By using (2.9), we can rewrite S in terms of the real and imaginary parts of the polynomial P(z) as

S: 6 = -- 2 R-~a + I-~a ,

(3.2)

(R ~R i OIl, - 2 \ +

which, in turn, can be expressed explicitly in terms of a and e) via Xk and Yk polynomials by relying
on (2.7) and (2.13). Consequently, we obtain right-hand sides of (3.2) as two-variable polynomials in
rr and o9.

Let us rewrite S further in a vector form

S: 2 = - f (x) , (3.3)

where x = (o-, ~o) T • ~2, and f : R 2 ~ R z is defined as f (x) = grad x V(x). We denote by x(t; Xo) the
solutions of (3.3) starting at t = 0 and Xo.

Each zero of P(z) is at an equilibrium x* of S, which is a stationary point of the minimization
process of V(x), and is a solution of

f (x) = 0. (3.4)

To characterize the minimization process, we consider V(x) as a Liapunov function 1-131 and
take the total time derivative

l?(x)~ = - grad r V (x) f (x) (3.5)

with respect to (3.3). Then, we have:

Theorem 3.1. 12(x), ~< 0 for all x • R 2, and f/(x)~ = 0 if and only if x = x*.

Proof. Combining (3.3) and (3.5), we get

~(x)s = - [I f (x) [I 2

for all x e Nz, where [[-[[denotes the Euclidean norm defined in (2.14). []

(3.6)

This theorem simply says that if a minimization process x(t;Xo) starts at a sufficiently large
Xo = (ao, COo) T it would converge to a bounded region containing the stationary points of V(x),
which are the equilibria of S. Once inside the region, the process x(t; Xo) would always descend
toward one of the zeros of V(x), since V[x(t; x0)] is a decreasing function o fx unless x(t; Xo) = x*,
where V(x*)= 0. The process x(t;Xo) cannot terminate at an equilibrium x* of S which is not
a zero of V(x), because it is not a minimum of V(x). Furthermore, the zeros of P(z) are the only
minima of V(x), as stated in (P4). We have:

Corollary 3.2. The zeros of P(z) are all and only asymptotically stable equilibria of S.

Proofi Obviously the function V(x) is a Liapunov function corresponding to a zero x* of P(z), that
is, in some neighborhood of x*, we have V(x) > 0, 12(x)s < 0 provided x ~ x*. []

252 J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268

We can further characterize the descent of x(t; Xo) toward the minima of V(x), that is, the zeros
of P(z). Let us determine the 2 × 2 Jacobian matrix J(x) = (dj~/dxj) at x* to get

J(x*) = - [_ ~x~-~xj J = - H(x*), (3.7)

which is the Hessian matrix H(x) of V(x) with the reversed sign. An important implication of this
fact is the following.

Theorem 3.3. The Jacobian matrix J(x) o f f (x) at any equilibrium x* of S has two neoative real
eigenvalues.

Proof. Matrix J (x) = - H (x) is a real symmetric matrix, and its eigenvalues are real. By
Corollary 3.2, each x* is asymptotically stable. Thus, negativity of eigenvalues follows. []

This theorem implies that solutions x(t;Xo) near minima of V(x) cannot exhibit oscillatory
behavior: no equilibrium x* of the linearized system

SL: ~ = J(x*)x (3.8)

can be either focus or center; nor can it be an improper node, because H(x) is diagonalizable (it has
two distinct eigenvectors). Therefore, the minimization process x(t;Xo) converges globally and
monotonically to a zero of P(z).

4. The improved method

Multiple zeros present problems to the original ~iljak method in much the same way they
do to most available zero inclusion methods. Our objective is to show how the minimization
surfaces can be used to obtain information about the multiplicity of zeros, and how this informa-
tion can be exploited to devise quadratic convergence to each zero. For example, three-dimensional
surface plots of the minimization function V(a,e~) have been obtained for the following
polynomials.

P x (z) = z - (l + i) : z x = l + i ,

P 2 (z) = z 4 - 1 : z x = l , z z = i , z 3 = - 1 , z 4 = - i , (4.1)

P 3 (z) = z 3 - (1 + i) z 2 : z i = l + i , z 2 = z 3 = 0 .

In order to make the zero locations more apparent, the corresponding minimizing functions have
been plotted using the log scaling along the V-axis by raising the function to the 0.2 power prior to
plotting.

Fig. 1 shows the result of plotting the surface corresponding to the distinct zero z, -- 1 + i of
P, (z). Fig. 2 shows the four distinct zeros of P2(z). The slopes of the surface close to the distinct
zeros are considerably sharper than the surface around the multiple zero z2 = 0 of P3(z) shown in
Fig. 3. This fact indicates that, in order to retain quadratic convergence when multiple zeros are
present, we must modify the original gradient scheme described in the preceding section.

J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268 253

0.5

1.5
VA0.2

1

CO

C~ U

1 -1

2.5

Fig. 1. ~iljak function for a single isolated zero.

-2
-1

. 6.00

)

)

V~0.2

I

i

(Y

-1
(9

Fig. 2. ~iljak function value for four isolated zeros.

We start with expanding polynomial P (z) about a zero zl = al + icox of multiplicity m,

P (z) = a , . (z - 21) ra + arn+l(Z -- Zl) m+ l + O (z m + 2) , (4.2)

where ak = p ~ k) (Z l) / k ! The minimizing function can be expressed as

V(y) = II y II 2.. i~i II y - d~ II z (4.3)
k = m + l

254 J.A. Stolan/Journal o f Computational and Applied Mathematics 64 (1995) 247-268

2

-6

5

4

]

-1 (,0

V"0.2

Fig. 3. ~iljak function value for a double zero and an isolated zero.

where y e ~2 is defined as y = (a - o ' 1 , (_D - - (D 1) T, and dk = (a l - - ak , 091 - - 09k) ~. Using (4.2), we can
approximate function V (y) by a positive definite nondecreasing function

17(y) = ~ Ilyll 2m (4 .4)

throughout a sufficiently small neighborhood of the point (a~, 091), and ~,. = lain[2.
The approximation function Iv(y) provides an estimate of the distance IlY II between the trial

point (a, 09) and the zero location (ax, o91), as well as the multiplicity of the zero zl. To see this, let us
denote 0 = grad IV(y) and introduce the Hessian of IV(y),

£E .l
/-t ____- -~--y~ 63yi ay~ / 0 e/

ayl ay2 ay~ J
Then, we calculate

11011 = 2metro IlYll 2 ~ - 1 ,

Oa'HO = 2m(2m - 1)~m [ly[I 2m-2,
110112

and by direct computat ion show that

17 [1911 2 m ~ IlYl[4"-1
110112 - 17(07/70/110112) = 4m2ct 2 IlYll 4"-2 - 2m(2m - 1) ~ Ilyll 4m-2 = Ilyl[,

Similarly, we can estimate the multiplicity of zl by the following computation:

II 0 II 2 4 m 2 ~ 2 I1 y 114m- z
2(110112 - IV(0xH0/ [[0 [12)) = 2(4m20~ 2 Ilyll 4 m - 2 - 2 m (2 m -- 1)~ 2 IlYll 4 m - 2) = m.

(4.5)

(4.6)

(4.7)

(4.8)

J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268 255

To derive the improved algori thm and show quadrat ic convergence, we need to include
a higher-order term via a majorizing function

17(y) = am IlYll 2m + ~m+a IlYll 2m+1, (4.9)

where ~,,+ ~ = 21am II am+ 11- Again, this function is positive definite and nondecreasing in a neigh-
bo rhood of (al , ~ol).

To minimize 17(y) we use the following iterative scheme:

17 II~ll
Ily[I,+x = IlYlI,- ii~ll 2 - 17(~T/_7~/11 ~112), (4.10)

which is suggested by (4.7). In (4.10), 0 = grad 17 a n d / 7 is the Hessian of 17.

Theorem 4.1. The iterates LI y lit of(4.10) converge quadratically to zero, that is, there exists a constant
k such that

IlyIL,+I l i m ~ = k. (4.11)
t---~ o 0

Proof. By direct computa t ion indicated in (4.10), we obtain first

I1~11 = 2m~m IlYll =m-1 + (2m + 1)~m+l IlYll 2m,

I1~11
- 2m(2m - 1)Ctm Ilyll 2m-z + 2m(2m + 1)0~m+ 1 Ilyll =m-x,

(4.12)

and substitute these expressions in (4.10) to get

2me2m IlYll 4m-1 + (4m + 1)esgm+ 1 Ily[I 4m + (2m + 1)~2m+1 IlYll 4m+1
IlYlI,+X = IlYlI, -- 2 m ~ Ilyll 4m-z + 8mem~m+l IlYll 4m-1 + (2m + 1)~2m+ 1 IlYll 4m

Using (4.13), we arrive at (4.11) where

(4.13)

k = (4m - Dam+l
[] (4.14)

2m~m

Finally, we note that the improved algori thm offers not only the quadrat ic convergence to
a multiple zero (real or complex), but that it provides an estimate of the multiplicity as well.

5. The algorithm and implementation

Before presenting the final a lgori thm we shall discuss various practical aspects of the proposed
method. We recall the expression of the minimizing function V(y) in the ne ighborhood of a zero z,

256 J.A. Stolan /Journal of Computational and Applied Mathematics 64 (1995) 247-268

having multiplicity m, as

V(y) = Ilyll 2" f i I l y - dkll 2, (5.1)
k = m + l

where, as before, y = (a - a t , m - ~ot) T and dk (al -- ak, 0~1 -- Ogk). If the distance II y II between
the trial point (a, ~o) and the zero location (trl, o91) is sufficiently smaller than the distance dk from
the zero zl to any other zero Zk, k = m + 1, m + 2, . . . , n, then V(y) can be approximately expressed
a s

V(y) ~ fl II y II 2m, (5.2)

where fl is a positive constant representing the product of squares of the distance between zl and
zk's. We can use (5.2) to calculate the "average distance" as

a.., = a '/2`"-', (v (y)),<2(.-.,
= \ ~ / , (5.3)

which provides several practical insights for implementation of the improved algorithm.
We immediately note that the nearest zero is sufficiently close only if fl << flavg. Therefore, if the

returned multiplicity m by (4.8) is less than n - 1 and 2fl > flavg, we know we are not in
a convergence region of the corresponding zero. Also, in the interest of the rate of convergence, we
avoid carrying on the iterations if the value we estimate for rn is less than 1 or greater than n, where
n is the degree of the polynomial P(z). These facts can be given as a rule of thumb, which indicate
that we are not in a suitable region:

(i) m < 0.9,

(ii) m > n + 0.1,

V(y)
(iii) for m < n - 1: ilyll2, . < 2ft.

(5.4)

Another practical matter is the calculation of the Hessian of (4.3). Like the gradient, it can be
computed in terms of the polynomials Xk and Yk. We only derive the formulae

82V F 82R (cSR'~21 [-82I (c~/~ 2]
~,~-21_R~-~+\~,~ / / + 2 L / ~ + \ ~ , ~ / ,

d2V ~92V _2JR ~92R (dRy(dRy] 2FI ~21 (01)(~31~I '

r (aRV] r (a 2 l
a~,~ - 2LR~- J + ~ ~ / + 2 1 1 ~ + \ ~ , / j

(5.5)

J.A. Stolan/Journal o f Computational and Applied Mathematics 64 (1995) 247-268 257

and use (2.5) to compute

0ZR
-- 02R 021 -- 02I - ~ k (k - 1)(bkXk-2 -- CkYk-2),

0(72 00) 2 009 017 017 00) k = 2

021 021 02R 02R n
Off 2 - - 009 -----~ -- OC00tr OtrOco ~ k (k -- 1) (b k Y k - 2 - - ¢ k X k - 2) .

k = 2

(5.6)

A final issue concerns the handling of the saddle points of function V. While the local minima are
all at the zeros of the minimizing function V, the other (unstable) stationary points may exist, where
the gradient of V goes to zero. Then, the value of V is used to indicate that we are at or near these
points, and to move away from them. A good practical test for the points is that the magnitude of
the gradient is always less than the magnitude of the function. The opposite is true for the actual
zero locations.

We now have in hand an algorithm which can accurately estimate the distance to single and
multiple zeros. Although the algorithm may perform poorly in nonconvergent regions or around
saddle points, we also have a test to determine when these situations occur.

Algorithm 5.1.
Step 1: Pick a starting point.
Step 2: Calculate the function value V, the gradient g and the Hessian H.
Step 3: Derive the estimated distance d to the zero cluster from

VIIgll
Ilgll 2 - V(gTHg/IIgll 2)

and the estimated order of the zero cluster from

Ilgll 2
2(II g II z _ V(gTHg/II g II 2)-

Step 4: If the estimated distance and zero order pass the criteria defined in Eq. (5.4) then
travel a distance d in the direction of the gradient. This is the case where a dominant zero
or zero cluster generates a good estimate of distance and direction using the improved ~iljak
method.

If this condition does not hold, but the magnitude of the gradient is greater than the function
value, then we are in a region which is not dominated by a zero cluster, but in which it is safe to
perform a Laguerre iteration [9].

If neither of these conditions hold, then we are in a region which is not dominated by a single
zero or zero cluster and we are in a region which is close to a saddle point and may not be
convergent for the Laguerre method. In such a case we use the gradient to determine the direction
of travel, and the function value V 1/(zn) where n is the polynomial order, to get the distance. There is
a risk that the latter distance will be in error, so we evaluate the function value V at the new point
to verify that V has decreased. If not, then the distance is reduced until the new point shows
a decrease in V.

258 J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268

S t e p 5: If the distance travelled is less than the desired zero tolerance, go to Step 6. Otherwise set
the new point as the trial point and go to Step 2.

S t e p 6: Evaluate the multiplicity of the included zero by calculating

Ilgll 2
2(IIg II = - V(gTHg/[lg 1 1 2)) '

and rounding to the nearest integer value.

This strategy optimizes the algorithm used. When the estimated zero is in a region which is
dominated by a zero or zero cluster then the superior ~iljak algorithm is used. Otherwise the
Laguerre method is used, giving better results in regions not dominated by a zero or zero cluster.
Convergence is enhanced by a prior check on the gradient and function value, ensuring that the
Laguerre algorithm is used only in regions away from saddle points. It is useful to note that the first
and second derivatives of the polynomial needed by the Laguerre algorithm are already calculated
by the recursive equations used by the ~iljak algorithm.

The strategy in Step 4 will converge to a zero in nearly all cases, but one special case must be
checked in order to ensure global convergence. Since there is no verification that the function value
V decreases for the ~iljak and Laguerre steps, there are a few cases where the zero estimate may
oscillate between two points without converging (in processing hundreds of polynomials, the
author has found two). Since this is rare, and since the algorithm usually converges to zeros within
three to six iterations, the solution is to begin checking the points for decreasing values of V after
a reasonable number of iterations have passed without convergence. The author used ten iterations
for algorithm timing tests.

The improved ~iljak algorithm retains the global convergence property of the original algorithm,
converges quadratically to zeros of any order, returns the order of each included zero, and
converges rapidly for poor initial estimates. In addition, it correctly handles regions where rapid
convergence is not guaranteed, greatly enhancing the speed of the overall method. By verifying that
the trial point is in a convergence region, it is no longer necessary to check the new point for
a reduction in the value of the minimization function, again enhancing the algorithm speed. These
enhancements result in an extremely fast algorithm, comparable in speed to Laguerre's method (a
method which is not globally convergent). It is significantly faster than other globally convergent
algorithms.

In the rest of this section, we will use examples to illustrate the performance of the improved
algorithm in four different cases, when the trial point is

(i) close to a distinct zero,
(ii) close to a multiple zero,

(iii) far from all zeros,
(iv) in a potentially nonconvergent region.

The performance will be compared with standard zero inclusion methods.

Example 5.2. Let us consider the polynomial

P (z) = z 5 - z 4 - z + 1, (5.7)

J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268 259

which has distinct zeros at i, - i and - 1, and a double zero at 1. If we use the Laguerre [9], Halley
[1], Newton [12] and improved ~iljak algorithms to isolate the single zero at - 1, we may
construct Table 1.

As expected, all four algorithms converge quickly to the isolated zero, improving from two digits
of accuracy to better than six digits in three iterations or less.

Example 5.3. If we use the same polynomial P(z) in (5.7) but want to compute the double zero at 1,
we obtain Table 2.

In this case we clearly see that the improved ~iljak algorithm is superior to the other methods for
the multiple zero case. The improved ~iljak converges to the multiple zero in only three iterations,
compared to nine iterations for the second best method. We note that the convergence is indeed
quadratic for this multiple zero example.

Example 5.4. One additional feature of the new algorithm is that it is extremely efficient for poor
initial estimates. The case of a poor estimate may be viewed as solving a problem with all zeros in

Table 1
Convergence to single zero

Halley Laguerre Newton ~iljak

Start (- 1.050000, 0.050000) (- 1.050000, 0.050000) (- 1.050000, 0.050000)
Iteration 1 (-0.999562, 0.000555) (- 1.000054, -0.00006) (- 1.000907, 0.008896)
Iteration 2 (- 1.000000, 0.000000) (- 1.000000, 0.000000) (-0.999844, 0.000035)
Iteration 3 (- 1.000000, 0.000000)

(- 1.050000, 0.050000)
(-0.989201, -0.00090)
(-0.999764, 0.000000)
(- 1.000000, 0.000000)

Table 2
Convergence to double zero

Halley Laguerre Newton ~iljak

Start (1.050000, 0.050000) (1.050000, 0.050000) (1.050000, 0.050000)
Iteration 1 (1.016650, 0.017521) (1.013785, 0.013238) (1.025081, 0.026789)
Iteration 2 (1.005544, 0.005938) (1.003793, 0.003607) (1.012520, 0.013888)
Iteration 3 (1.001847, 0.001990) (1.001044, 0.000990) (1.006248, 0.007073)
Iteration 4 (1.000616, 0.000665) (1.000287, 0.000272) (1.003120, 0.003569)
Iteration 5 (1.000205, 0.000222) (1.000079, 0.000075) (1.001559, 0.001793)
Iteration 6 (1.000068, 0.000074) (1.000022, 0.000021) (1.000779, 0.000899)
Iteration 7 (1.000023, 0.000025) (1.000006, 0.000006) (1.000390, 0.000450)
Iteration 8 (1.000008, 0.000008) (1.00~01, 0.000002) (1.000195, 0.000225)
Iteration 9 (1.000003, 0.000003) (1.000000, 0.000000) (1.000097, 0.000113)
Iteration 10 (1.000001, 0.000001) (1.000049, 0.000056)
Iteration 11 (1.000000, 0.000000) (1.000024, 0.000028)
Iteration 12 (1.000012, 0.000014)
Iteration 13 (1.000006, 0.000007)
Iteration 14 (1.000003, 0.000004)

(1.050000, 0.050000)
(0.996145, -0.000163)
(0.999989, 0.000000)
(1.oooooo, o.oooooo)

260 J.A. Stolan /Journal of Computational and Applied Mathematics 64 (1995) 247-268

a single cluster. In such cases, our initial assumpt ion treats the cluster as a single zero, and trivially
that zero is the nearest since there are no other zeros.

Hansen and Patr ick [1] have demons t ra t ed that the Laguerre a lgor i thm provides excellent
convergence behavior when the initial zero est imate is poor. Below we quote two of their
polynomials , confirming their results, then adding the per formance of the new algori thm.

Fo r the first po lynomia l we see that when it is solved star t ing with a poor estimate, the Laguerre
a lgor i thm does much better than Halley. The Laguerre est imate reduces the initial error from
almost 1000 to less than 3 in the first step. W h e n the results for the improved ~iljak are added to
Hansen and Patr ick 's result we see that it does even better, reducing the error from 1000 to less
than 0.01 in a single step! When the est imate is selected closer to the zeros, there is essentially no
difference in performance. Results for the second po lynomia l are very similar. When star t ing with
a poor initial estimate, the improved ~iljak a lgor i thm is consistently better than the Laguerre
algori thm.

The first po lynomia l is

P (Z) = Z 6 - - 6z 5 + 50z 3 - 45z 2 - 108z + 108, (5.8)

which has zeros at 1, - 2, - 2, 3, 3, 3. Table 3 shows the results s tar t ing at the initial point at
tr = 1000 and co = 0, and at the start ing point tr = 0 and 09 = 0.

Fo r the second polynomial ,

P (z) = z 6 - 4z s + 190z 3 - 666z 2 + 944z - 600, (5.9)

which has zeros at - 6, 2, 1 + i, 1 - i, 3 + 4i, 3 - 4i. Table 4 shows the results s tar t ing at the initial
point a = 1000 and 09 = 0, tr = 100 and 09 = 100, and at the s tar t ing point tr = 0 and 09 = 0.

Table 4 shows a distinct difference between the rapid convergence for poor initial est imates of
Laguerre and ~iljak on the one hand, and Hal ley on the other. Since Hansen and Pat r ick list
Laguerre as being the best a lgor i thm for poor initial estimates, the per formance of the new
a lgor i thm is quite impressive.

Example 5.5. Let us once again consider the po lynomia l

P (z) = z 5 - z 4 - z + 1,

which has single zeros at - i, + i and - 1, and a double zero at + 1.

(5.10)

Table 3
Convergence at varying distance from a zero

Starting point Method First iteration Convergence behavior

(1000, 0) Laguerre zl = 5.97 3.000006 in 17 iterations
Halley zl = 715 3.000007 in 36 iterations
New ~iljak zl = 1.009 1.000000 in 3 iterations

Laguerre zx = 0.74 1.000000 in 3 iterations
Halley z~ = 0.705 1.000000 in 4 iterations
New ~iljak z~ = 0.74 1.000000 in 4 iterations

(0, O)

J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268

Table 4
Convergence at varying distance from a zero

Starting point Method First iteration Convergence behavior

(1000, 0) Laguerre Zl = 4.97 1.00 + 1.00i in 6 iterations
Halley z~ = 714 2.000000 in 20 iterations
New ~iljak z~ = 0.674 1.00 - 1.00i in 5 iterations

(100, 100) Laguerre Zl = 4.54 + 0.54i 2.00000 in 6 iterations
Halley z~ = 71.6 + 71.4i 3.00 + 4.00i in 14 iterations
New Siljak z~ = 0.68 - 0.1 li 1.00 - 1.00i in 5 iterations

(0, 0) Laguerre zl = 1.3 + 1.8i 1.00 - 1.00i in 4 iterations
Halley zl --- 1.15 2.000000 in 8 iterations
New ~iljak z~ = 1.3 + 1.8i 1.00 - 1.00i in 5 iterations

261

2 _ 5 _ _

!
4 -~ ct 2 4

Fig. 4. Identification of region which does not converge on first iteration.

If we app ly the rule of t h u m b given in (5.4) we can evaluate any given po in t to de te rmine whe ther
it is in a conve rgen t region. If we pe r fo rm this eva lua t ion over a grid of poin ts we can c o m p u t e the
c o n t o u r plot shown in Fig. 4. The white X-shaped area in the center is the region which is de tec ted
by (5.4) to be nonconve rgen t . F o r every poin t in this area at least one of the test cr i ter ia in (5.4)
failed. The c o n t o u r p lo t for the rest of the g raph indicates the a m o u n t of i m p r o v e m e n t in the
V es t imate for a single ~iljak step s tar t ing at the poin t in quest ion. Every poin t on the char t was
ei ther de tec ted as being poten t ia l ly nonconvergen t , or showed a reduc t ion in the ~iljak funct ion
value.

This shows tha t the rule of t h u m b prov ides an i m p o r t a n t eva lua t ion for improv ing the speed of
the a lgor i thm. While no t p resen ted as a r igorous proof , it is ap p a ren t tha t any trial po in t which
passes the convergence cri ter ia given in (5.4) will a lmos t cer ta in ly be in a convergence region. As

262 J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268

such, we need not perform Step 4 of Algorithm 2.1. Note that this step has been eliminated from
Algorithm 5.1, greatly enhancing the speed of the algorithm once it enters a convergence region.

6. Comparison to modern methods

There is a huge volume of literature relating to polynomial zero inclusion. McNamee [-6]
has published a bibliography listing over 3000 references to this subject. We would like to
clearly show how this method compares to other methods described in this enormous subject
area.

The traditional approach to polynomial zero evaluation is to use a selected method to isolate
a zero of the polynomial. The polynomial is then "deflated" by performing synthetic division. The
polynomial is divided by the zero location. This reduces the order of the polynomial by one, and
removes the included zero from the polynomial. This process is repeated until all of the zeros have
been found. However, as noted in Press et al. [-11]:

"Deflation must, however, be utilized with care. Because each new root is only known with finite
accuracy, errors creep into the determination of the coefficients of the successively deflated
polynomial. Consequently the roots become more and more inaccurate. It matters a lot whether
errors creep in stably (plus or minus a few multiples of the machine precision at each stage) or
unstably (erosion of successive significant figures until the results become meaningless). Which
behavior occurs depends on just how the root is divided out. Forward deflation, where the new
polynomial coefficients are computed in the highest power ofx down to the constant term ... turns
out to be stable if the root of smallest absolute value is divided out at each stage."

There have been many different methods devised to eliminate this deflation instability. Among
the most successful is the Jenkins and Traub [4] method which uses a rigorous procedure which
ensures zeros are isolated in the proper order, thus avoiding deflation instability. This method
has become one of the standard methods since it is the zero finder used in the IMSL
library. A whole class of algorithms have been devised which isolate the zeros in a parallel
scheme [10]. These methods are best used as a zero "polishing" step since they are not globally
convergent. The most common method is to "polish" the zeros by using the locations found in the
original procedure as initial points for a new set of inclusion steps using the original undeflated
polynomial.

The method which we propose rests firmly in the traditional method. As each zero of the
polynomial is isolated, the location is stored as a tentative zero location, and the polynomial is
deflated with the location. Once all of the tentative zero locations have been identified, each zero is
polished by using it as a starting point for an inclusion step with the original undeflated
polynomial. The overall speed of the algorithm is comparable to the best of the traditional
methods, and, as shown in Section 3, it is globally convergent. In addition, the new method has
three distinct advantages over previous methods:

(1) As noted in the introduction, nearly all methods have significant problems converging to
multiple zeros. As shown in Section 4, the proposed algorithm converges quadratically to zeros of
any multiplicity.

J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268 263

(2) The proposed method automatically identifies the multiplicity of each isolated zero. Thus,
as multiple zeros are identified, the polynomial may be deflated by several orders at the same
time.

(3) One of the most annoying problems with deflation instability occurs when two or more
tentative zero locations converge to the same value under polishing. It is not a trivial task to
determine if the polishing algorithm has correctly identified a multiple zero, or if deflation
instability has caused enough error to place two tentative zeros within the compass of an isolated
zero. Since our proposed algorithm returns the multiplicity of each zero, it is easy to determine
which of these conditions has occurred.

In order to demonstrate these advantages we have performed time comparisons of the
new algorithm with three of the best modern methods. The Jenkins and Traub algorithm (see
above for discussion) is one of the standard zero inclusion algorithms. It is the method used by
the IMSL library. Another common method is used by Matlab, one of the most popular of the
available numerical analysis software packages. The zero inclusion method utilized by this
program solves the eigenvalues of a diagonal matrix formed by placing the coefficients
of the polynomial into the diagonal matrix. The eigenvalues are the zeros of the polynomial.
Finally, Press et al. [11] recommend Laguerre's algorithm used in conjunction with a traditional
deflate and polish algorithm. This algorithm has the virtue of being extremely fast, especially
when the zero estimate is far from the actual zeros, but it is not globally convergent [12].
(It is interesting to note that Matlab version 6.0 implemented a version of this algorithm as a
faster alternative to their eigenvalue method, but removed it, probably because of convergence
problems.)

In order to perform the time comparisons, the improved ~iljak algorithm, the Jenkins and
Traub algorithm and the Laguerre algorithm were programmed in the "C" language. The
program included a timing algorithm accurate to 1 ms. The Matlab program was run directly,
entering the polynomial in and then solving using the "roots" function. Timing in this case was
limited to 0.05 s resolution. Three classes of polynomials were evaluated:

(1) Polynomials with isolated zeros: Each program was timed in its ability to isolate the zeros of
the polynomial z" - l = 0, with the value of n ranging up to 40. This provided a set of n zeros, all
distributed evenly around the unit circle. This ensures that the zeros are isolated from each other by
the same amount.

(2) Polynomial with multiple zeros: Each program was timed in its ability to isolate the zeros of
the polynomial, with the value ofn ranging up to 8. This provides a set ofn zeros, n - 1 of which are
all located at the location 1 + 0i. In addition to timing, each algorithm was evaluated on its ability
to accurately isolate the multiple zero.

(3) A set of difficult polynomials as specified in [5]: Each algorithm was evaluated on its ability to
accurately isolate the zeros of the polynomials.

A good benchmark task for evaluating polynomial zeros is to determine the zero locations for
a polynomial which has a number of isolated zeros. Ideally the zeros will not be clustered, and
consist of problems with real and imaginary components. A good sample problem is to solve the
polynomial z" - 1 = 0, where n is the order of the polynomial. Although this polynomial is very
simple, once a complex zero is found, synthetic division will produce an intermediate polynomial of
greater complexity and possessing complex coefficients. The success of the algorithms is very easy
to judge for this polynomial, since the resultant zeros are spaced evenly around the unit circle.

264 J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268

T h i s p r o b l e m w a s s o l v e d u s i n g e a c h o f t h e a l g o r i t h m s for p r o b l e m s o f o r d e r 1 t o o r d e r 40. T h e

r e s u l t s a r e t a b u l a t e d in T a b l e 5.

Table 5
Convergence time for isolated zeros

n Improved ~iljak Laguerre Jenkins Matlab

1 0.004 0.004 0.011 0.05
2 0.013 0.014 0.042 0.05
3 0.038 0.035 0.083 0.11
4 0.046 0.05 0.143 0.11
5 0.073 0.078 0.193 0.16
6 0.108 0.107 0.403 0.22
7 0.134 0.143 0.311 0.22
8 0.195 0.181 0.353 0.28
9 0.216 Fails 0.726 0.33

10 0.275 Fails 0.543 0.44
11 0.324 Fails 1.403 0.60
12 0.471 Fails 0.701 0.72
13 0.566 Fails 0.852 0.80
14 0.531 Fails 0.953 0.87
15 0.602 Fails 1.065 0.91
16 0.572 Fails 1.233 1.030
17 0.717 Fails 1.392 1.06
18 0.816 Fails 1.667 1.09
19 0.970 Fails 1.729 1.130
20 0.950 Fails 2.008 1.35
21 1.012 Fails 2.050 1.31
22 1.223 Fails 4.152 1.48
23 1.105 Fails 5.002 1.52
24 1.252 Fails 4.373 1.620
25 1.442 Fails 4.847 1.74
26 1.579 Fails 5.679 1.77
27 1.464 Fails 5.892 1.93
28 1.783 Fails 5.785 2.21
29 1.932 Fails 8.121 2.30
30 2.316 Fails 8.158 2.49
31 2.299 Fails 8.249 2.71
32 2.638 Fails 8.533 2.87
33 2.428 Fails 10.402 3.00
34 2.716 Fails 9.924 3.32
35 2.613 Fails 13.102 3.45
36 3.192 Fails 11.003 3.79
37 2.772 Fails 14.407 3.98
38 3.251 Fails 18.321 4.10
39 3.416 Fails 17.100 4.18
40 3.258 Fails 15.196 4.19

J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268 265

The Laguerre and improved ~iljak algorithms are the fastest of the algorithms, being very close
in calculation time. However the Laguerre algorithm fails badly for this problem unless the starting
point is very close to a zero location. The selected starting point for this problem was 2 + i.

Several other observation may be made from the results:
(a) The Laguerre algorithm fails badly for this problem because the search algorithm tends to

converge on regions where P'(X) and P"(X) approach 0. This is not typical, and Laguerre will
usually converge with times competitive with the improved ~iljak.

(b) While not causing large error, the lack of a polishing step in the Jenkins-Traub algorithm
does affect the overall accuracy. For the higher-order problems, Jenkins-Traub typically exhibits
9-10 decimal digits of accuracy compared to 14-15 digits for the other algorithms.

One of the most difficult tasks in evaluating polynomial zeros is the case of multiple zeros. As
discussed previously, many of the algorithms exhibit linear convergence for zeros of multiplicity
higher than one. If it is known in advance that certain zeros are multiple, then special action can be
taken. This is not generally the case.

Two of the algorithms tested do not share this problem. The Jenkins-Traub method uses three
stages of polynomial evaluation. The third and final stage exhibits quadratic convergence to
multiple zeros. This is possible because special tests are used to ensure that the algorithm will
converge prior to entering the third stage. The improved ~iljak algorithm estimates the zero
multiplicity at the sampling point as part of its operation. It uses the estimate to ensure quadratic
convergence to the zero.

To test performance for the algorithms the polynomial (z + 1)(z - 1) n = 0 was evaluated for
orders 1-8. The results are summarized in Table 6.

The results depict two separate effects of the multiple zeros on performance. As previously
mentioned, some of the algorithms will not converge well on multiple zeros. In addition, the
multiple zero will cause the polynomial value, P(z), to approach the lower bound on numerical
accuracy at a significant distance from the zero. For example, a distance 0.001 away from
a seventh-order multiple zero will have a polynomial value P(z)= D (0.001) ~, where D is the
complex distance to the other zeros. If D --- 1 then P(z) will be le - 21, which is less than the
accuracy of the double precision arithmetic. This results in round-off error which may cause
a considerable increase in calculation time.

Table 6
Time comparison for multiple zeros

Order Improved ~iljak Laguerre Jenkins Matlab

1 0.010 0.010 0.039 0.05
2 0.024 0.060 0.062 0.28
3 0.040 0.113 0.114 0.33
4 0.078 0.298 0.154 0.44
5 0.084 0.500 0.219 0.60
6 0.102 2.843 0.263 0.86
7 0.119 4.002 0.348 0.90
8 0.113 4.730 0.424 0.94

266 J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268

A summary of the algori thm performance may be deduced from the table:
(1) The improved ~iljak algori thm is the best of all for these problems. The zero estimate process

ensures quadrat ic convergence to multiple zeros. For cases where round-off error may be a prob-
lem, the algori thm automatically switches to a me thod which is globally convergent. Accuracy for
the eighth-order problem was better than 3 decimal digits, which was within the computa t ional
tolerance of the machine.

(2) The Jenk ins -Traub algori thm was a clear second. The third stage process eliminated the
linear convergence properties of the other algorithms. Overall accuracy was also 3 decimal digits.

(3) The Laguerre and Mat lab algori thm's performance was poor for this problem. Convergence
was linear, limiting the accuracy to 1 or 2 decimal digits, and slowing the performance. In addition,
the round-off error increased calculation times dramatically for multiplicities greater than five.

We now compare the performance of the five algori thms in resolving zeros of difficult problems.
These polynomials have been selected from examples given by Acton, Jenkins, and Traub. For each
problem we show the polynomial , its zeros, and give a brief discussion of why it is difficult to
resolve. We then present an evaluation of the performance of the various techniques.

Example 6.1.

P (z) = (z - 1)(z - 1.01)(z - 0.99)(z - 1 + 0.01i)(z - 1 - 0.01i).

This problem tests an algori thm's ability to isolate five closely spaced zeros in a cluster separated
by less than 0.01.

All of the algori thms were able to isolate the zero cluster, except that the original giljak failed due
to deflation instability at one starting point. The performance times are summarized in Table 7.
The results show that the improved ~iljak algori thm was slightly slower than Laguerre's a lgori thm
for this problem.

Example 6.2.

P (z) = (z - 1)(z - 1.01)(z - 0.99)(z - 1 + 0.01i)(z - 1 - 0.01i)(z - 5)(z - 6).

This problem tests an algori thm's ability to isolate five closely spaced zeros in a cluster separated
by less than 0.01 when the polynomial also possesses other zeros away from the zero cluster.

Table 7
Performance for difficult problems

Polynomial Improved ~iijak Laguerre Jenkins Matlab

Example 6.1 0.108 0.088 0.134 0.05
Example 6.2 0.108 0.145 0.179 0.16
Example 6.3 0.161 0.294 0.283 0.22
Example 6.4 0.037 0.089 0.075 0.05
Example 6.5 0.041 0.056 0.091 0.05

J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268 267

All of the algorithms were able to isolate the zero cluster without error. The performance times
are summarized in Table 7. The results show that the improved ~iljak algorithm was the fastest
overall.

Example 6.3.

P (z) = (z - 1)(z -- 1.01)(z -- 0.99)(z - 1 + 0.01i)(z - 1 -- 0.01i)(z - 5)(z - 5)(z - 6).

This problem tests an algorithm's ability to isolate five closely spaced zeros in a cluster separated
by less than 0.01 when the polynomial also possesses additional zeros away from the cluster. This
problem further complicates the problem by increasing the multiplicity of the additional zeros. The
results show that the improved ~iljak algorithm was the fastest overall.

Example 6.4.

P (z) = (z - 1)(z - 1)(z - 2)(z - 2).

This problem tests an algorithm's ability to isolate two sets of double zeros.
All of the algorithms were able to isolate the double zero. The performance times are sum-

marized in Table 7. The results show that the improved ~iljak algorithm was the fastest overall by
a significant margin.

Example 6.5.

P (z) = (z - 1)(z - 1)(z - 2 + 0.01i)(z - 2 - 0.01i).

This problem tests an algorithm's ability to isolate a zero cluster and a double zero.
All of the algorithms were able to isolate the zero cluster and multiple zero. The performance

times are summarized in Table 7. The results show that the improved ~iljak algorithm was the
fastest overall.

7. Conclusions

We have presented an improved technique for using ~iljak's zero finding algorithm. We have
shown that this algorithm retains the global convergence property of the original technique while
providing quadratic convergence to zeros of any multiplicity. In addition, the algorithm provides
a simple method of determining the multiplicity of each zero as it is included. By performing
a simple test to determine the convergence region of the trial point, a significant speed increase is
achieved, resulting in an algorithm which is much faster than other globally convergent methods.
Time trials with standard methods from IMSL, Numerical Recipes and Matlab have been
included.

References

[1] E. Hansen and M. Patrick, A family of root finding methods, N u m e r . M a t h . 27 (1977) 257-269.

268 J.A. Stolan/Journal of Computational and Applied Mathematics 64 (1995) 247-268

[2] M. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra (Academic Press, New York,
1974).

[3] M. Jamshidi and M. Malek-Zavarei, Linear Control Systems: A Computer-Aided Approach (Pergamon Press,
Oxford, 1986).

[4] M. Jenkins and J. Traub, A three-stage variable shift algorithm for polynomial zeros and its relation to generalized
Rayleigh iteration, Numer. Math. 20 (1970) 252-263.

[5] M. Jenkins and J. Traub, Principles for testing polynomial zerofinding programs, Proc. Math. Software II, Purdue
Univ. (1974) 84-107.

[6] J. McNamee, A bibliography on roots of polynomials, J. Comput. Appl. Math. 47 (1993) 391-394 (including
diskette).

[7] Matlab Reference Guide (August 1992) 424-425.
[8] J. Moore, A convergent algorithm for solving polynomial equations, J. Appl. Math. 14 (1967) 324-328.
[9] H.J. Orchard, The Laguerre method for finding the zeros of polynomials, IEEE Trans. Circuits and Systems 36

(1989) 1377-1381.
[10] M. Petkovi6, Iterative Methods for Simultaneous Inclusion of Polynomial Zeros, Lecture Notes in Math. 87

(Springer, New York, 1989).
[11] W. Press, B. Flannery, S. Teukolsky and W. Vetterling, Numerical Recipes, The Art of Scientific Computing

(Cambridge Univ. Press, Cambridge, 1986) 259-269.
[12] A. Ralston and P. Rabinowitz, A First Course in Numerical Analysis (McGraw-Hill, New York, 2nd ed., 1978).
[13] N. Rouche, P. Habets and M. Laloy, Stability Theory by Lyapunov's Direct Method (Springer, New York, 1977).
[14] D.D. ~iljak, Nonlinear Systems (Wiley, New York, 1969).
[15] ~iljak's polynomial root finder, Educalc 42 (1988) 94.

