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Abstract 

Explicit solutions for the three-term recurrence satisfied by associated continuous dual q-Hahn polynomials are obtained. 
A minimal solution is identified and an explicit expression for the related continued fraction is derived. The absolutely 
continuous component of the spectral measure is obtained. Eleven limit eases are discussed in some detail. These include 
associated big q-Laguerre, associated Wall, associated Al-Salam-Chihara, associated A1-Salam-Carlitz I, and associated 
continuous q-Hermite polynomials. 

Keywords." Basic hypergeometric series; Contiguous relations; Continued fractions; Generating functions; Weight 
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1. Introduction 

I f  { p . ( x ) }  is a monic polynomial  sequence given by  the three-term recurrence 

Pn+l(X) -- (X -- an )pn (x )  + b2nPn_l(X) ---- O, n >1 O, P-1 z O, Po = 1, 

then the associated monic  polynomial  sequence {p~)(x)} ,  ~ = 1,2 . . . . .  is given by  

(~) 2 (~) 
pn+,(x)  (x  a,+~)p(n~)(x) 0, ~>0, P~I  P(0 ~) - -- + b n + , P n _ l ( X ) =  n = 0 ,  = 1. 

The particular case ~ = 1 yields the polynomials  o f  the second kind. I f  an and bn have an explicit 
n dependence,  then one has more  general associated polynomials  with a E ~ or C. In this paper  
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we consider associated continuous dual q-Hahn polynomials with general complex parameters and 
~EC. 

The discrete q-Hahn and the discrete dual q-Hahn polynomials were introduced by Hahn in [10] 
and [11], respectively. These are particular cases of polynomials introduced by Askey and Wilson 
and called q-Racah polynomials [3]. Askey and Wilson [3] have also considered continuous dual 
q-Hahn polynomials as a particular case of the Askey-Wilson polynomials. The objective of the 
present study is to generalize the continuous dual q-Hahn polynomials to the associated continuous 
dual q-Hahn polynomials. The q --~ 1 limit gives the case of associated continuous Hahn polynomials 
which have been studied by Ismail et al. [13]. It may be mentioned that in two earlier papers [7, 8], 
we have discussed the associated continuous Hahn (for continuous Hahn polynomials see [1]) and 
the associated big q-Jacobi polynomials, respectively. In both of these associated cases we made 
extensive use of contiguous relations for hypergeometric and q-hypergeometric functions. Although 
the use of  contiguous relations in connection with continued fractions goes back to Gauss [23], 
the importance of  contiguous relations in relation to the theory of orthogonal polynomials was first 
stressed by Wilson [25]. 

In Section 2, we obtain six solutions to the three-term recurrence relation satisfied by associated 
continuous dual q-Hahn polynomials. This is done with the help of  three-term contiguous relations 
satisfied by balanced 3~b2's. It is also demonstrated how an existing three-term transformation formula 
for balanced 3q~z's connects any three of  these solutions. By examining the large n asymptotics of 
the solutions and the associated second-order difference equation we show that one of  the solutions is 
a minimal [6, 16] solution. When one of the four parameters is equal to 'q',  another of our solutions 
reduces to the continuous dual q-Hahn polynomial solution [3]. 

In Section 3, the related infinite continued fraction is obtained. Following the procedure employed 
in several other cases (see [21-23]) we then derive the explicit weight function for the absolutely 
continuous component of the spectrum. 

Section 4 is devoted to obtaining a generating function and hence an explicit expression for the 
associated continuous dual q-Hahn polynomials. The method employed is the same as by Ismail and 
Libis [14] for big q-Laguerre polynomials. 

In Section 5, we examine four limiting cases of the original recurrence relation together with their 
solutions, related continued fractions and explicit polynomials. The first two limits are associated 
big q-Laguerre and associated Wall polynomials. These are at the 2q~l and l q~l levels, respectively. 
Two further limits are found at the 04)1 level. 

In Section 6, we consider seven additional limiting cases. These include the associated cases for 
A1-Salam-Chihara, A1-Salam-Carlitz I, and continuous q-qermite polynomials. 

In Section 7, we give the connection between solutions to the associated Askey-Wilson [15,9] 
and the associated continuous dual q-Hahn polynomial recurrence relations. 

The results in this paper are intended to complement the survey by Koekoek and Swarttouw [ 17] 
which gives the limiting cases for Askey-Wilson polynomials including those for the continuous 
dual q-Hahn polynomials. However they did not include results for the minimal solutions to the 
three-term recurrences, the corresponding continued fractions or the associated polynomial cases. 
By providing these additional results we have enlarged the class of explicitly solvable models. We 
believe this is more than just an interesting exercise. Explicit solutions are important. They have a 
habit of reoccurring in seemingly unrelated problems. 
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2. Three-term contiguous relations and solutions 

The recurrence relation satisfied by associated continuous dual q-Hahn polynomials can be ex- 
pressed as 

2 
Xn+ 1 - (z - an)Xn + bnSn_ 1 = 0,  

a, := a , ( z ;A ,B ,C ,D) ,  

( 1  1 1 1 )  q n ---- + ~ + ~ +  - ( l + q ) q  2"-1, (2.1) 

62. :=  b2.(z;A,B, C,D) 
_ q Aff-Ci) (1 - Aq n-1 ) ( 1  - Bq n-I ) ( 1  - Cq n-1 ) ( 1  - Dq n-1 ). 

The symmetry with respect to the parameters A, B, C, D is obvious. With this form of the recurrence, 
it is easy to take successive limits A,B,  C,D--~ c~. The limit D ~ c~ gives associated big q-Laguerre 
polynomials (see [14]) and a subsequent limit C ~ oo gives associated Wall polynomials (see [4, p. 
198]). Finally, B ~ e<z and then A ~ vc give additional cases. 

Note that in (2.1) the an can also be expressed as 

1 q 
a, = - ( 2 , + # , ) + ~ + ~ ,  

~, = (1 - Aq n)( 1 -- Bq ")lAB, 

I~, = q( 1 -- Cq n--1 )(1 -- Dq"-~ )/CD. 

This means that with a renormalization and a translation of  the coordinate z we may re-express (2.1) 
and the aforementioned limits as birth and death processes with birth and death rates 2, and /In, 
respectively [12]. A second family with/t0 : =0  should also be investigated. This has already been 
done in the more general case of  associated Askey-Wilson polynomials [15]. 

The solutions to (2.1) and its limit cases will be expressed in terms of  the basic hypergeometric 
functions 

( a l , a 2 , ' " ,  ar "~ 
rc~, \ b,,b2 . . . .  ,b, ; z )  

where 
O 0  

( a )~  = I-I(1 - aqJ- ') ,  
j = l  

m 

(a l ,a : , . . .  ,am), = 1--[(ak)n, 
k=l 

We will use the notation 

a,b,e 
4) :-- (p (a ,b , c ,d , e )=  3~b2 , 

d ,e  \ 

(aba2, . . . , a r )k  
Z-, 
k=0 (bl,b2,. ,bs, q)~ 

(a), = ( a ) ~ / ( a q ' ) ~ ,  

n integer or exp. 

[(--1)kqk(k-x)/2]l+S-rz k, IZl < 1, 

n integer, 

dSc) ; , < 1, (2.2a) 
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and its analytic continuation for Ide/abc I ~> 1 given by the following transformations [5, (III.9), 
(III.10), p. 241]: 

d,e 'abe (e, de/abc)~ 3(92, d, de/bc 
(2.2b) 

) ) d,e ' ~ c  (d,e, de/abc)~ 3(91 k, de/ab, de/bc ,b . (2.2c) 

To obtain solutions to (2.1) we use 3(92 contiguous relations and the usual notation 

(9(a ±)  = (9(aq+l,b,c,d,e), 

(9+ = (9 ( aq + ~ , bq ±1, cq ±1, d q ±1, eq ±1 ). 

Two such contiguous relations are [18]: 

(1 - b ) ( 1  - c )  c le  
(9 - ( 9 ( a + )  + (1 - a ) ( 1  - e ) a b c q  (9+ = 0, (2 .3)  

(e) 
(1 - d)(1 - e)(9 + (d - a)  1 - (9+(a - )  - (1 - a)  1 a~cq (9+ = 0. (2.4) 

Changing (a ,b ,c ,d ,e)  ~ (a,b/q,c/q,d/q,e/q) in (2.4) and then eliminating (9(a+) and (9+ from 
the resulting equation together with (2.3) and (2.4), we obtain 

( 1  - b ) ( 1  - c ) ( 1  - d / a ) ( 1  - e / a )  de 
- - ( 9 + ( a - )  

( 1  - d ) ( 1  - e )  bcq 

e de ( 1 - b ) ( 1 - c ) 1 ( 9  - I ( 1 - a ) ( 1 - a d c q ] + a ( 1 - d ]  ( 1 - ~ q q ]  +abcq  
J 

With the replacements b = Bq", c = Cq", d/a = Dq", e/a = A q  n, this becomes 

(1 - Bq")(1 - Cq")(1 - Dq")(1 - Aq")DAa 2 
- -  ( g n + l  (1 - aDqn )(1 - aAq" ) BCq 

+ a(1 - D q " - ~ ) ( 1  - A q  "-1) + ~ ( 1  - 8 q " ) ( 1  - 

+ (1 - Daq n-I )(1 - Aaq ~-1 )(9~-1 = 0, (2.6) 

where 

( a, Bqn, Cq" . D A a )  
(9, = 3(92 aDq",aAq"' BC J " 
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We write z = q/aDA + a/BC so that 

jz 4q) 
a = -~- z + 2 ABCD 

= BC2±, say. 

After renormalization, (2.6) becomes (2.1) with a solution 

X(~ 1)'± = X(,O'i(z; A,B, C,D ) 

(2.7) 

(A,B,C,D) ,  ( BC2+,Bqn, Cq n ) 
(BCD2+, ABC2+ ), (2±)n 3 q52 . (2.8) = BCD2± q n, ABC2+ q n ; AD2± 

We shall show later that, with a suitable choice of  square root branch, Xn (1)'- is a minimal solution 
of  (2.1). Because of  the symmetry in (2.1) and the fact that the minimal solution is unique up to a 
constant multiple, the parameter interchanges A ~ C or B +--, D in the above solution must yield only 
an n independent multiple of  Xn (1)'-. Let us verify this. If we make the interchange A +-~ C, Xn (1)'± 
changes to 

(A,B,C,D)n 2 n \BAD2±qn,ABC2±q " ' {  BA2+'Bqn'Aq" "CD2+).  
~(n I)'± : (BA~,AB~±)n (±) 3(])2 (2.9) 

If  we apply the transformation (2.2b) to (2.9) we obtain 

(A,B,C,D) ,  ( 2±) , (AD2i ,BCD2iq" )~  
~i),+ = (BAD2±,ABC2±)n (BAD2±q n, CD2±)~ 

{ Bq",Cq",BC2+ ) 
x3d~2 \ ABC2±qn,BCD2+q, ;AD2± , 

which is clearly just a constant multiple of  X, (1)'+. 
In order to obtain a second solution of  (2.1) we start from a different three-term contiguous 

relation [18]; 

[de(a - b - c) + abc(d + e + q - a - aq)]¢ 

+ (1 - a)(de - abcq)dp(a+) + bc(d - a)(e - a)dp(a-) : 0. (2.10) 

Changing a---, aq n, we can write the above as 

[de(aq n - b - c) + abcqn(d + e + q - aq n - aqn+l)]Y, 

+(1 - aqn)(de - abcqn+l )Yn+ 1 + bc(d - aqn)(e - aqn)yn_l = O, 

where 

( aqn, b,c.  de -n'~ 
Y,=3492 d,e ' a~c q )"  

Writing 

Aq Aq q ( b  1 )  a = A ,  b=AB2+,  c = A B 2 _ ,  d = - c ,  e = - ~ -  and ~ + =z ,  
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and renormalizing we again arrive at Eq. (2.1) with a new solution 

X~2)_ (A,B), (Aqn,AB2+,AB2_ 1 _n+lX~ 
(A-B-~ 3¢2 k, Aq/C, Aq/D ;-Bq )" (2.11) 

From (2.11 ) we obtain additional solutions by parameter interchanges due to the symmetry of (2.1). 
However, we find that this is not true for the interchanges B ~ C or B ~ D. This can be seen by 
applying transformation (2.2b) to Xn ~2). We get 

x~z)= (A,B),,(q-n+1/D, Aq/B)~ 3¢2 {Aq",AD2-,AD2+.qD+I ) 
(AB)" (Aq/D,q-"+I/B)~ \ Aq/C, Aq/B ' 

_ (A,D), (Aq/B,q/D)~ 3¢2 fAqn'AD2-'AD2+" q - , + l )  
(AD) n (Aq/D,q/B)~ ~, Aq/C, Aq/B ' D ' (2.12) 

where the right-hand side is a constant multiple of the B ~ D interchange applied to X, (2). It is 
similarly seen that B ~ C does not yield a new solution. However, the interchanges A ~-* B, A ~-* C 
and A +-~ D do yield the following new solutions: 

Y (3) _ (A,B)n (Bqn,AB2+,AB2_. q-,+l) 
(AB)" 3¢2 \ Bq/C, Bq/D ' A ' ( 2 . 1 3 )  

Y (4)-(B'C)n (Cqn'BC)~+'BC'~-'qB+l)  (2.14) 
(BC)" 3¢2 ~ Cq/A, Cq/D ' -- ' 

X~ 5) - (B'D)n {Dq"'BD2+'BD2-" qB+I ) ( 2 . 1 5 )  
(BD)" 3¢2 ~, Dq/C, Dq/A ' " 

It can be shown that the three-term transformation formula [5, (III.33), p. 245] connects X~ 1) with 
any two of the solutions X~2),X~3),Xff ) and X~ 5). One such relation works out to be 

ABC2+,AC2_, q (A,A2_,AB2+, ooX (4) O' A)oo yn(1)'+ - ~ )  

A Aq BC2+, CD2+,ABD2+) 
C, C2_, C'  D ' oo. ,y(2 ) 

~ n  " 
(2.16) 

Another three-term contiguous relation satisfied by balanced 3¢2'S also yields solutions to (2.1). 
The required contiguous relation, which can be deduced from (2.3), (2.4) and (2.10), is 

(1 - a ) ( 1  - b ) ( 1  - c) de 
- - ( d e  - abcq)¢ 

(1 - d)(1 - e) abcq 

+ [ abc( d + e - q ) + de( l + q - a - b - c ) ] ¢ + abcq ( 1 -  d ) ( 1 -  q ) ¢_ = 0 .  (2.17) 
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Replacing (a, b, c, d, e) by (aq-", bq -n, cq-", dq-", eq-" ) and writing 

Zn = 34)2 ( aq-",bq-",cq-" de n N~ 

d q - ° , e q - "  ; )' 

we have from (2.17) 

121 

x~6~ = ( Cq/A, . . . .  Cq/D, Cq/B )~ X'.(4~ 
(C, C2+q, C2_q)o~ 

and thus X (6) is the same solution as Xn (4) except for a constant factor. 
We next show that continuous dual q-Hahn polynomials ([3, pp. 3, 28]) are obtained as a particular 

case of  the above solutions. This is true for the solution Xn (z) if C = q or Xn (6) if A,B or D = q. 
That is why our general case represents associated continuous dual q-Hahn polynomials. In order to 
show this for Y (2) we first apply the transformation formula [5, (III.34), p. 245], connecting 34)2's 
of  types I and II 

) d,e ; ~ c  -- (e,e/bc)~ s4)2 \ d, bcq/e,q 

(d/a, b, c, de/bc)~ ( e/b, e/c, de/abc 
-~ (d,e, bc/e, de/abc)oo 34)2 \ de/bc, eq/bc ;q/ " 

{ lqn+lqn I q-n-1  1 -~ 1 - Zn+l + + _ + + qn+l e e ~ ~ c  (qn - a - b - c )  Zn 

q~ ( l__ lqn )  ( l__~q~) ( l __ lqn )  ( 1 _  de n'~ 
+ a--~cqq ) l n_  l ~--0. (2.18) 

de ( l _ d q ~ )  ( l _ ~ q n )  

Choosing the parameters a = q/B, b = q/A, c = q/D, d = Cq2+ and e = Cq2_ and renormalizing we 
again obtain Eq. (2.1) with a solution 

-/n 

x34)2 ( q-"+l/B'q-"+'/A'q-"+l/D ) 
~, C2+q-~+1, C2_q-n+l ; Cq ~ (2.19) 

and three similar solutions obtained by parameter interchanges C ~-, A or C ~ B or C ~ D. However, 
the solution X~ 6~ and its C ~-~A, C~-*B or C ~-~D interchanges do not give new solutions. They are 
related to the solutions X(2),X(3),X (4) and X~ (5~ by the transformation formula (2.2c). For example, 
with the help of  this formula we find that 
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We have from (2.11 ) 

X(2) (A,B), [(AC2_,AC2+)oo 
-- (AB)" [ ( ~ q / D , ~  3dP2 (q-n+'/C'AB2+'AB2-'q)Aq/C, Bq/C ' 

(q-n+I/C, AB2+,AB2-,Aq/B)oo ( q-"+I/B, AC2_,AC2+ 
+ (Aq/C, Aq/D,B/C,q_n+I/B) ~ 3~)2 Aq/B, Cq/B 

When we write C - - q  in (2.20), the right-hand side becomes 

(A,B), (Aq2_,Aq2+)~ 
(AB)" (Aq/D,q/B)~ 

( q-",AB2+,AB2_ 
3~2 \ A,B ;qJ" 

;q/] (2.20) 

(2.21) 

In order to compare this with continuous dual q-Hahn polynomials we apply a transformation which 
1 will ultimately change the interval of  orthogonality from [ - l / a ,  I/a] when a - - ~ ~  is real, 

to [ -1 ,  1]. Take x -- ~z --- cos 0, u = e i0, which means u = 2a2+ = 1/2a2_. Thus, omitting constant 
factors we can write (2.21) as 

(2.22) 
(A, B)n 
(AB)" 

( q-',ABu/2a, AB/2au 
3(])2 \ A,B ;qJ' 

which except for a normalization factor of  (2a)-",  is the same as the continuous dual q-Hahn 
polynomials of  Askey and Wilson [3]. 

We now proceed to show that X ° ) ' -  is a minimal solution of (2.1) for a particular branch in the 
complex plane. This is done by evaluating the large-n asymptotics of X, (1)'± and Eq. (2.1). Applying 
the transformation (2.2c) to (2.8) i.e. to X (1) '± w e  obtain for n ~ oc 

(A,B, C,D)n n (Bqn,ACD2+qn,ABCD22' )~ 
X (  1 ),+ = 

(BCD2±,ABC2± )n (2+) (BCD2+qn,ABC2±qn,AD2+ )oo 
( CD2±,AC2±,AD2+ ; Bqnl 

x 3 c~2 ~ A CD2+q n ABCD22 / 

const. ()~+)n. 

On the other hand, asymptotics of the second-order difference equation (2.1) is given by 

q X, S n + l  - z X n  -~- A B ~  n-1 7__ O, 

from which we have for large n 

(2.23) 

(2.24) 

X, .-~ const. (2±)". (2.25) 

Choosing the square root branch for which 12-/)-+1 < 1, the minimal (or the subdominant) solution 
in terms of  the variable x = ~z is given by 

x ( m i n ) ( x )  7___ S(1) ,  - 

(A,B, C,O)n [ Bq", Cq",BC2_ . "~ 
= (2_)"(BCD2_,ABC2_), 3~b2 ~ BCD2_q',ABC2_q" ,AD2_}/ (2.26) 
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1v/ABCD/q, 2+ = ( 1 / 2 ~ ) ( x - t - v ~ -  1). Summarizing what we valid for zc~ = x E C \ [ -1 ,  1], e = 
have done so far, we have: 

Theorem 1. The functions X, (1),+, X, (k), k = 2,3,4,5 of  (2.8), (2.11), (2.13)-(2.15), respectively, 
are solutions to the recurrence relation (2 .1) for  associated continuous dual q-Hahn polynomials. 
These solutions are pairwise linearly independent. The minimal solution of  (2.1) is given, up to a 
multiplicative factor, by (2.26) with the square root branch chosen so that (2_/2+) n ---~0 as n--+ oe 
with z ~ = x E C \ [ - 1 , 1 ] ,  c~= ½ ~ .  

3. The continued fraction and measure 

The infinite continued fraction associated with (2.1) is 

C F ( z ) = z - a o  b2 b~ , b2n•O, n > O .  (3.1) 
Z - -  a 1 - -  z - -  a 2 . . . .  

Pincherle's theorem [6, 16] connects the minimal solution of (2.1) with the continued fraction (3.1) 
by the formula 

1 s0(min)(x) 1 
CF(z) b2y(_lin)(x) ' z~-=x, 0~=~ . (3.2) 

Therefore from Theorem 1, we obtain the continued fraction representation 

( BC2_,B,C ;AD2_) 
3 q ~ 2  ~ BCD2_,ABC2_ 1 ABCD2_ 

CF(z) ( 1 B C D 2 - ~ ( 1 A B C 2 - )  
q q / q 

We can also write (3.3a) as 

( BC2_,B/q,C/q ,4r~ "~" 
3 ¢2 \ BCD2_/q, ABC2_/q ; . . . .  ] 

1 1 
1 

CF(z) 2+ ( 1 - ~ )  (1 0 2 + )  

( BC2_,B,C ;AD2_) 3¢2 q/A2+, q/D2+ 
( BC2_,B/q, C/q . AD) ~ " 

3¢2 \ l/A2+, 1/02+ ' - - - - - ]  

(3.3a) or the alternative form (3.3b) are valid for 

z e = x E C \ [ - 1 , 1 ] ,  12_/2+ I < 1, e =  ½ ~ .  

(3.3a) 

(3.3b) 

In the particular case C = q (the case of continuous dual q-Hahn polynomials), (3.3a) reduces to 

1 ABD2_ ( Bq2_,B,q ) 
CF(z) -- (1 - BD2_)(1 - AB2_) 3~b2 DBq2_,ABq2_ ;AD2_ (3.4) 

which can also be written with the help of (2.2c) in the form 

1 ABD2_(q, ABD2_,ABDq2Z_)oo fBD2_,AB2_,AD2_ ) 
CF(z) -- (BD2_,AB2_,AD2_ )~ 3~b2 \ ABD2_,ABDq22_ ; q , (3.5) 
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with explicit pole terms given by the zeros of the denominator (BD2_,AB2_,AD2_)oo. These pole 
singularities and their residues determine the discrete component of the spectral measure of orthog- 
onality for continuous dual q-Hahn polynomials. 

We now determine the absolutely continuous part of the spectrum for the general associated case. 
If x = za E ( -  1, 1 ), then (2.1) has linearly independent solutions given by the boundary values of 

(2.26) as x approaches ( -1 ,  1 ) from above and below. With now 2+ = (1/2~)[x ± ix/q -xZ],  x = z~, 
we have the large n asymptotics 

(A, B, C, D),(ABCD2~ )o~ 
Xn(min)(x -~- iO) ~ (2_)n (BCD2_,ABC2_,AD2_)oo'  (3.6) 

and 

(A, B, C, D )n(ABCD22+ )oo 
x,(min)(x - i0) ~ (2+)n (BCD2+,ABC2+, AD2+)o~" (3.7) 

Since the minimal solution changes as we cross the line segment z~ = x c ( - 1 ,  1), we have the 
representation 

1 L co(t) dt 
CF(z) - z T t ~  + possible pole terms, ( 3 . 8 )  

Also co(x), x E ( - 1 ,  1) can be obtained by using the formula [21] 

1 W(X_(lin)(x -'~ iO),X(_~in)(x - iO))  

co(x) - 2 n i ~  b2X(_lin)(x n t- iO)X(_~in)(x -- iO) 

1 W(x(min)(x q- iO),x(min)(x - iO)) 
= 2ui~ lim : 2 h2h4lz(rnin)g'~ iO)X(~in)(x iO)' ~ blb2""u,,~o..-1 ~ +  - - 

(3.9) 

where 

W(X., I1.) = X.Y.+I - Xn+  Y.. 

Using (2.1), (2.26), (3.6) and (3.7) and simplifying we have 

= 
\u  /o~ 

2 n ~ ( 2 ~ , 2 ~  2~ 2~ 2~q 2~q "~ ~-u,  ,Au -Y u' -Y-du)o  

q' q ;AD2_ 3~o2 q q x 3~2 BCD2_ ABC2_ BCD2+ ABC2+ 

q q q q 

_ _  ; AD2+) 

--1 

(3.10) 
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In the particular case C = q this reduces to 

1 ( A ' B ' q ' D ) ~ ( ~ ' u 2 ) ~  (3.11) 

Taking the appropriate value of  the parameters from (2.22) we find that this weight function is the 
same as the one obtained by Askey and Wilson ([3, p . l l ,  Theorem 2.2 in the special case d = 0]) 
for continuous dual q-Hahn polynomials. Summarizing the above we have 

Theorem 2. The associated continuous dual q-Hahn polynomials Pn(X/~) given by (4.12) of  the 
next section are orthogonal with respect to a measure with absolutely continuous component given 
by the weight function (3.10) on ( -1 ,  1). In the particular case C : q  this absolutely continuous com- 
ponent reduces to (3.11 ) and the discrete spectrum is given by the zeros o f  (BD2_,AB2_,AD2_)~ 
where 2_ = (x q: ~ - 1 )/2~ for x > 1 and x < - 1, respectively. 

The q ---+ 1 limit of continuous dual q-Hahn polynomials yields the case of continuous dual Hahn 
polynomials. The corresponding results of this Section for associated continuous dual Hahn polyno- 
mials with q = 1 are given by Ismail et al. [13]. 

4. Generating function 

The associated continuous dual q-Hahn polynomials Pn(z;A,B, C,D) satisfy the second-order dif- 
ference equation (2.1) i.e. the equation 

1 1 Xn+l- [ z -  (A q-~ q--~-k-1) qn + (l + q)q2n-l] xn 

1 Aq n-1 Cq~-I + 4-~5~z (1 - )(1 - Bq"- ' ) (1  - )(1 -Dq"-~)X,_1 = 0 .  (4.1) 

A renormalized form of (4.1) is, with x = ~z, ~ = ½ ~ ,  

[ ( 1  1 1 1 )  q n 1(" (1 -Aqn) (1 -Dqn) (n+ ~ -  2 x - 2 ~  + ~ q - ~ q -  +2ct(lq-q)q :n-1 

q- (1 - -  gq n-1 ) (1  - Cq n-1 )~n--1 = 0. ( 4 . 2 )  

This is satisfied by the polynomials 

(2~)"Pn (z; A, B, C, D) 
~,(x;A,B,C,D) = 

(A)n(D)n 
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Let the generating function of the polynomials ~n be 

~o (2o~)npn(z;A,B,C,D) t n 
G(x,t) = ~ (A),(D). 

n=O 

= ~ ~,(x;A,B, C,D)t". (4.3) 

In (4.4) we put 

¢ 2~tq'] 
G(x, t ) -- \-A--DJoo (tu)~ f(t)  

to obtain 

( 1 - t )  f ( , ) - ( A + D q  2~,B ~')-- f(tq) 

+ ~ - - ( 1 -  tuq)f(tq 2) - q)  - q )  ( 2 ~  

\AD Jo¢ 

l, l ° + ( 1  AD ) 1 - ~  -~-G(x, tq2) -- - q )  - q ) .  

( t )  ( 2~tq)(A D 2o~t 2~t) 
( 1 - u t )  1-  G(x,t)- 1 - ~  J q +  q B C G(x, tq) 

(4.4) 

(4.5) 

(4.6) 

In the left-hand side of (4.6) we write f ( t )=  ~n~=ofnt" and on the right-hand side we use the 
q-binomial theorem to replace (tuq)~o/(2atq/AD)oo by 

( ADu'] 

n=0 (q), \ AD } 

If we now equate coefficients of t" on both sides, we obtain the first-order difference equation 

(1-Aqn-i)(1-Dq"-l)fn = ul (1 _ 2~u__ff_q n--lX~) (1 _2~zu__C_ qn-1 ) fn--1 
{Aou  

(2~qy (1 A (1 D \ 2a J. (4.7) 
+ \AD)  - q )  - q )  (q), 

n=0 
An explicit form for the generating function may be obtained by employing the procedure given in 
[14]. First multiply (4.2) by t n and sum up the resulting equations from n = 0 through n = ~ .  Using 
the initial conditions for the polynomial solutions of the first kind, we obtain 
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2019 n 
-) AD u n (3. (P).E3 

(f). ($)“ki 
the general solution of (4.7) is 

(4.8) 

(4.9) 

where E is a constant which by the boundary conditions may be taken as 0. Consequently, we have 
the generating function 

M (2a)“J’n(z;A,B, CD) c n 

n=O (AMD)n t 

-n+jtn 

3 (4.10) 

where z =x/a and x = cos 8, u = eie. If we interchange C t) D in (4.10) and write C = q we obtain, 
with a = 2a/B, b = 2~10, c = 2a/A, 

c Oc, (2a)“~nkAA C), 

n=O (AMq)n 

(4.11) 

This gives the generating function result for the continuous dual q-Hahn polynomials (see [ 13, 
(3.3.7), p. 551). 
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By comparing coefficients of  t" on the left- and right-hand sides of  (4.10) we obtain an explicit 
expression for our monic associated continuous dual q-Hahn polynomials. 

P,(z) = P,(z;A,B, C,D) 

(A ( U ) n 'O'AOu/ln ~ 

= ~ (q)" e=0 

{ ( _n 2~U 2~U'~ 
k, q ' B'--C--Je ( AD ~ e 
~--~-q-",A,D)~ 

} \q q 2o~ Jj (2o~uqy 
× \ A D  / ' 

t,q' 3 '  
(4.12) 

~= ½ ~ ,  x= ½(u+ 1/u), z=x/ct. 

Note that Pn(z) is of  course symmetric in the parameters A,B, C,D. The symmetry under the inter- 
changes A ~ D  or B ~ C  is obvious from (4.12). However, the symmetry under the interchanges 
A ~ B,A ~ C,D ~ B or D ~ C is hidden. P,(z) is also symmetric under the interchange u ~ u -1 . 
Again this is not apparent from (4.12). Applying any one of  these hidden symmetry interchanges to 
(4.12) gives us a type of  transformation formula. 

A different expression for Pn(z) is obtained in Section 7. It is derived from the associated Askey-  
Wilson polynomial formula of  Ismail and Rahman [15]. In order to contrast (7.3) with (4.12) we 
repeat it here as 

P,(z;A,B, C,D) - - -  (B,C)~ 
(BC)" k=0 

{ (q-,, B/-B~u ,/ff-Cq l ~ 
V ' V --Zff u h 

(q,B,C)k 

qk 

(A D'qk+l'qk-n)J" ) 1  n-k ' BCq J 
× ~ (q, Cqk,Bqk, q-n)j (-A-D- • 

j=0 

(4.13) 

This formula also does not reveal the full symmetry with respect to A,B,C,D. However, it does 
make explicit the u ~ u -1 symmetry. 

5. Four limiting cases 

We now take successive limits D ~ c~, C --+ c~, B --. oo, A --. c~. 
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5.1. Associated bi9 q-Laguerre (D ~ co) 

The recurrence relation (2.1) becomes 

1 + q )q2.- 1 ] L. 

n 

- L C ( 1  - Aq"-l)(1 - Bq "-~ )(1 - Cqn-~)L,-t = 0. (5.1) 

If  we write A = aq, B = bq, C =-abq/s and z = t/abq, and renormalize with a factor (abq)", (5.1) 
gives Eq. (4.3) of  Ismail and Libis [14] for associated big q-Laguerre polynomials in monic form. 

The solutions of  (5.1) are obtained as D ~ oc limits of  solutions of  (2.1). We have 2+ ~ z and 
,~_ ~ q/ABCDz and consequently from (2.8) 

L~I)(z;A,B,C) = lim X(.I~'-(z;A,B,C,D) 
D---* o c  

qn(,+l)/2 (A,B,C)n 24)1 {Bq",Cq" q ) (5.2) 
=(-1)n(ABCz)° ( q ) \ qn+'/AZ; 8--CZ ' 

T z .  

and from (2.12) 

L(2~(z;A,B,C) _ (q/B)~ lim X(,2)(z;A,B,C,D) 
(Aq/B)~ D~o~ 

/A  n q [ q'B z = (-1)"q"("-')/Z(A),A-" 24)2 ~ Aq Aq ;Azq -n+l). (5.3) 

k B ' C  
Interchanging A +--,B and A ~ C in (5.3) yields the limits of  solutions X~ (3), X, (4). We have 

" ACz ) Bq . Bzq-,+l , L(~3)(z;A'B'C) = (-1)nq"("-~)/2(B)"B-n24)2 ~ Bq Bq ' (5.4) 

\ -d ' 

and 

" q'A-Bz ) { Cq ; Czq -n+ ' . (5.5) L(,a)(z;A,B, C ) =  (-1)"qn("-~)/2(C),C-njp2 ~ Cq, 

Limits of  X, (6) given by (2.19) and its parameter interchanges will be in terms of  24)1 and these 
three limits will simply be transforms of  L(2), , L(3)n and L(, 4). We write below one of  these limits 

L(~5~(z;A,B, C) = lim X(~6)(z;A,B, C,D) 
D ---* o o  

( q-n+l/A'q-"+l/B'cq"). (5.6) = z"(1/Cz). 24)1 \ Czq_.+~ , 
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Next we take the D ~ oo limit of the explicit expression (4.12) for the polynomial solution to get 

P~nl)(z;A,B, C) = lim P,(z;A,D, C,B) 
D--* cx~ q) { ,B, ~-B-~z 

= Z n n 

(q)" t=0 

ABCz ~ (_l)/qt(d_l)/2 q-n, q /e 

(ABzq-",A, B )¢ 

J . .  )} t \ q  q / J ,  , . j  -m-1)/2 (Cq J 
× Y~ - ~ - - j B ~  t--l)  q - ~  • (5.7) 

j = 0  - - - ~ ,  q 

Note that before taking limit D ~ oo of (4.12) we have made the parameter interchange B~--~D in 
(4.12). 

The minimal solution of  (5.1) is L(n 1) and we therefore have the continued fraction representation 

. q f s,c, 
1 b~ b~ 2(])1 \q/Az 

z - - a o - - z - - a l  - -z--a2 . . . .  ( B/q, C/q . q ) '  
z(1 - 1/Az)2¢1 \ 1/Az 'B-Cz 

1 1 1 n an = ( ~ -b -~ + ~ )q -- (1 + q )q2,- i , 

n 

b2n = - ~  C ( 1  - Aq"-l)(1 - Bq"-l)(1 Cqn-l). 

The associated orthogonality is discrete and only explicit in the case A,B or C = q. 

(5.8) 

5.2. Associated wall ( C,D ~ c~ ) 

With C---~ c~ the recurrence relation (5.1) changes to 

q 2 n -  1 
Wn+l-- [ z -  ( l + l )  qn+(X+q)q2n--1] Wn+- -~ - ( l -Aqn -1 ) (1 -Bqn-1 )Wn_ l=O.  

Solutions are 

(5.9) 

W~I)(z;A,B) = l im L~I)(z;A,B,C) 
C--'~ ~ 

q n m 
= (A-B-zz)qn(n l)(A,B)n ( Bq n .qn+l'~ 

1~)1 ~ q n + l / A z ,  --~Z J '  (5.10) 

W~Z~(z;A,B) = lim L~2~(z;A,B,C) 
C ""+ ~:~ 

=(-1)nqn(n-1)/2(A)nA-nl~l(Aqq/B;Azq-n+l), (5.11) 
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W ( n 3 ) ( z ; A , B )  --- lim L~3)(z;A,B,C) 
C ---~ ocJ 

= (-1)"q"(n-l)/2(B),B-" ldpl ( Bq" 
Bq/A k 

which is just A ~ B interchange of  (5.11 ). 
Also from (5.6) 

W(~4)(z;A,B) = lim L(,5~(z;A,B, C) 
C----~ o ~  

_-- zn2~bo ( q -n+I/A, q -"+I/B., - -  
k 

; Bzq-n+l ) ,  (5.12) 

q2n-1)Z " (5.13) 

The series representing the above 2(b0 converges only when it terminates. The relevant terminating 
cases are when A ---- q or B = q. 

A limit C ~ cx~ of  (5.7) gives the explicit expression for associated Wall polynomials 

P(n2)(z;A,B) = lim P(nl)(z;A,B, C) 
C.-.-* o o  

= ( ~  ~=o (q-nABz, A'B)~ 

× ~_, (A/q'B/q'ABzh z-Jq -j(J-1) . (5.14) 

j=0 (q)] 

The minimal solution of  (5.9) is given by (5.10) and therefore we have the associated continued 
fraction representation 

1 b~ b 2 lq5~ q/Az;-~z 
z - - a o - - z - - a l  - - z - -a2  . . . .  

where 

z(l  -1 /Az) '¢~  ( B/q ; B--~) 

a, = ( l + l )  q " - ( l  +q)q  2"-~, 

(5.15) 

b =, q2n- 1 

= A--- f f - (1-Aq"-l ) (1-Bqn-l) .  

When A or B =-q, (5.15) has associated with it an explicit discrete orthogonality for P(n=)(z). We 
note here that our associated Wall polynomials given by (5.9) reduce to the Wall polynomials when 
B = q. In fact, if  we make the substitutions A ---- aq, B = q, z = x/aq in (5.9) and renormalize, the 
equation can be written in the form (see [4]) 

qn(1 -- aqn+l) p,,+l(X) -- [q"(1 -- aq ~+1) + aqn(1 -- q") --X]pn(X) + aq"(1 -- q") p , - l (x )  = 0 



132 

with 

D. P. Gupta et al. / Journal of Computational and Applied Mathematics 68 (1996) 115-149 

pn(X) = pn(X;a)= ( - l  n -n(n-1)/2(aq)nw(2) ( x q (aq)n ~q, aq, q) 

where we use solution m (2) from (5.11). From (5.28) we obtain the standard expression for Wall 
polynomials (see [17, (3.20.1), p. 83] and [4, p. 198]) 

pn(X;a) = 241 ( q-n'O ) \ aq ;qx . 

5.3. Limit wall (B, C,D ~ ~ )  

The three-term recurrence now becomes 

qn ] q3n-2 
Un+ 1 - z -  - -~  + ( 1  + q ) q 2 n - 1  Un __ ~ ( 1  - A q n - 1 ) U n _  1 = 0 .  (5.16) 

Using (5.10), (5.11) and (5.13), we have the solutions 

and 

U~I)(z;A) = lim W~nl)(z;A,B) 
B.--+ cx~ 

=(-1)"  q "q3.(.-w2 (A). oCb~ qn+~/Az; 
(q)Az  z '  

U(n2)(z;A) = lim W(~Z)(z;A,B) 
B---* oo 

= (--1)nqn(n-1)/2(A~)nl~)l (Aqn;Azq-n+l)  
A n 

q-.+l/A,O q2.-1 ) 
U~3)(z;A)= lim W(4)(z;A,B)=zn2~b o " , 

B ----~ c~ Z 

(5.17) 

(5.18) 

(5.19) 

P(3)(z;  A)  --  q,2 (A), ( -  1)~q-/(e-1)/Z(Az)t 
An (q)n t=0 

x Z (A/q)JM(J-1)/2tT"---4-, q t-- Az~-Js • 
j=0 t q )j 

(5.20) 

where Un (3) converges when it terminates with say A = q. 
A direct limit of  (5.14) i.e. P(,2)(z;A,B) as B ~ c~ leads to an indeterminate form. However, we 

can obtain the explicit form of the polynomials by applying the method of  Section 4 ab initio to 
Eq. (5.16). The result is 
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The minimal solution of (5.16) being (5.17) we have the related continued fraction 

1 b~ b~ 1 °491 ( q ~ z  ;q  ) 

z - - a o - - z - - a l  - - z  -- a2 . . . .  

where 

q" q )q2n-1 an - -  (1 q- 
A 

bZ~ _ q3n-2 
A (1 - Aq~-l)" 

z (1 - 1/Az)o491 1/Az; 

11 1(  
z1491 (A0/q;~) ' 

(5.2•) 

The second expression on the right-hand side of (5.21) comes from the transformation 

( - )  1 ( ; )  
• cz - 1491 ;c , 049, c ' 

which can be derived from (5.30) by letting a = 0. Note that when A # q, the right-hand side of 
(5.21) is a meromorphic function of z. When A-- ,q  the singularities coalesce at z = 0 to produce 
an essential singularity. 

5.4. A fourth limit (A,B,C,D---+oo) 

The three-term recurrence is now 

V,+I - [z + (1 + q)q2n-1]V, + q4n-3 Vn_ 1 = O. 

Using (5.17) and (5.19) we have the solutions 

(o V(n')(Z) = lim U(nI)(z;A)= qZ,(n--l) 0491 ; - -  
A --+ o o  

V~2)(z) = lim U(n3)(z ;A)=z"2490 ; . 
A ----+ cx) Z 

q2n+lz / ' 

(5.22) 

(5.23) 

(5.24) 

The solution V~ (2) is divergent and is thus only a formal solution. The associated polynomials are 
given by 

P~(a)(z) = lim p(n3)(z;A) 

---- (--1)"q"2q'(n-l)/2 ~ (q-n)~q-~(e-1)z~ Z ~ j  (qz) J . (5.25) 
(q)" e=o j=o 
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The minimal solution of (5.22), being given by (5.23), yields the associated continued fraction 

( )  1 b 2 b 2 1 0(~1 0 ;q/z 
z - - a o - - z - - a l - - z - - a 2  . . . .  (- )' Z 0t~l 0 ; 1/qz 

where 

an = - (1 + q )q2n- 1, 
b2n = q4n--3. 

We can also write (5.26) more explicitly as 

1 q q5 

z + ( 1  + q)q-1 - z + ( 1  + q ) q - z + ( 1  +q)q3 . . . .  

Using (5.22), (5.23) and (5.26) we have the following: 

(5.26) 

q n2 2-  n 
1 ~n=O (q)n 
Z oo q n2-2n 

z - n  
~n=0 ( q ) n  

(5.27) 

Corollary. I f  0 < q < 1 and n is an integer, then 

fn(Z)  ~ Ot~l ( 0  qT) 
has only real simple negative zeros which interlace those o f  fn+l(z). 

Proof. If  0 < q < 1 then (5.26) is a completely convergent positive definite J-fraction which can 
be represented as a Stieltjes transform of  a unique positive discrete measure [21]. This means 
that (5.26) can have only simple pole sigularities on the real axis with positive residues. Hence 
we must have simple real intertwining zeros for f o ( z )  and f_l(Z) .  From the series representation 
f n ( z )  = ~ = o  (qk(k-1)/(q)k)(q2n+l/z)k we see that the zeros of f_ l (Z)  and f o ( z )  must be negative. 
This establishes the result for n = - 1. The proof for other values of  n is the same if one starts from 
the continued fraction 

2 
1 bn+ 2 __ 1 f n + l ( Z )  [] 

Z -- an+l -- z -- a,+2 . . . .  z f , ( z )  

Note  1. There are similar corollaries associated with the positive-definite cases for the continued 
fractions (5.8), (5.15) and (5.21). These require special parameter conditions. See also the remarks 
after (6.18), (6.28), (6.33) and (6.63). 
Note  2. The identities 

(c,z)oo 2q~l az ;b , (5.28) 

(a'cb ; z )  ( a ,  c/b; bz )  2c~1 _ (a z )~  2d?2 , (5.29) 
( z ) ~  c, az / 
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(z)~ j p l ( a O ; z  ) ( a ) 
'c = 14 2 c, az  ; c z  

, ( z )  
- (c)~ ldpl az;C (5.30) 

can be used to relate some of  the above solutions. For (5.28) and (5.29) see [5, (III.1), (III.4), p. 
241]. (5.30) follows from b---~ 0 in (5.28) and (5.29). 

6. Additional limits 

There are other less obvious limiting cases which we can obtain from (2.1) and its solutions. 
These may also be re-expressed as birth and death processes. In the cases of  Sections 6.4 and 6.5 
there are processes based seperately on the even and odd approximants with z 2 replaced by z [7, 
Section 4]. We begin with 

6.1. Associated Al-Salam- Chihara 

In (2.1) we put D = 6C, multiply by C, replace zC by z and renormalize and let C ~ 0 to get 

q 
Q,+I - (z - (1 + 6-1)q")Qn + ~-~--~(1 - A q " - l ) ( 1  - B q n - 1 ) Q , _ l  = 0 (6.1) 

with 

Q, = lim C"Xn (z/C;A,B, C, C6). (6.2) 
C---,O 

This can be recognized as the recurrence relation for associated AI-Salam-Chihara polynomials given 
in [2,(3.54) with a = (1 + 72b) / j  if we make the replacements 

(A,B, 6-~,z) ~ (by/e, 7q, b?2, x) (6.3) 

and renormalize (see also [20]). 
If  A = q or B = q then (6.1) becomes the recurrence for monic AI-Salam-Chihara polynomials 

[2]. For other references to this case see [17, p. 63]. 
We record here the solutions to (6.1) based on (6.2) and the solutions we obtained for Xn in 

? = 2 ( q / A B e )  1/2. 

Sections 2 and 4. 
Using (2.8) we have 

Q(n')'+ (z;A'B'6) = c~oliI CnX(nl)'- ( c;A'B'  C'6C) 

(A,B), \{ BA+'Bq n ) 
-- (ABA±)n(A+ )"2dpl ;A6A+ , (6.4) 

A± = 5 , (6.5) 
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Also from (2.14), (2.15) and (2.19), respectively, we similarly obtain 

BA+, BA_ ) Q~Z)(z;A'B'3) = (O)nB-n2491 q/3 ;q-"+l/B ' 

( B3A+,B3A_ _n+l/B) ' Q~n3)(z;A'B'3) = (B)n(3B)-n2491 ~ q3 ;q 

Q(4)(z; A, B, 3) = ( -  q/AB3 )n q- n(n - -  1 )/2 

× (AB3 A+/q, ABf A_/q ),2492 \( A+qq-n+l /A' q-n+l A_q -"+' ; q/6) , 

with Q~4) proportional to Q(2) via (5.28) and (5.29). 
Using (4.12) we obtain the explicit polynomial formula (first make the interchange B~--~D) 

(6.6) 

(6.7) 

(6.8) 

Qn(z;A,B, 3) = lim Cnpn(z/C;A, 3C, C,B) 
C---,O 

= (17u)n(A'B)n 
( q ) .  

× { ~ (q-n'2u/73'2U/]))t ( ,)tU-2'qn~q-¢(l-1)/2 
d=O ~ ,,-- 1 

t 1 )Ju2jq j(j+l)/2 (A/q,B/q)j(- 
x ~ (q, 2u/73, 2u/7)j j '  

j=0 
(6.9) 

z = 17(u + u -1), 7 = 2(q/AB3) m. 

With the choice of  square root branch chosen so that [A_/A+[ < 1 for x=z/y E C \ [ -1 ,  1], we have 
the minimal solution to (6.1) given by (6.5). As a consequence we may give an explicit expression 
for the corresponding continued fraction and the absolutely continuous component of  the measure 
which gives its representation as a Stieltjes transform. The calculations proceed as in Section 3 and 
yield the following. For z/7 = x E  C \ [--1, 1] and [A_/A+[ < 1, 

1 b~ b~ AB6A_ 
z - - a o - - z - - a l  - -z  -- a2 . . . .  

with 

) 
(BA_,B/q "A3A_) q(1 - ABA_/q) 2491 \ ABA_/q ' 

fog(t)dt  + possible pole terms, 
i z - T t  

(6.10) 

x ) = 
1 (A,B, 1/uZ, u2)o~ 

2re x/1 - x 2 (a 6~u/2, A 6y/2u, AByu/2q, ABT/2qu)~ 

ABA_/q ; . . . . .  ] 249, k. ABA+/q (6.11) 
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Note that (6.11) agrees with the weight function derived in [2,(3.64) with a = q(1 + 8-1)/B,b = 
qZ /B2 8, c = q/ABS, y = B/q and x 2 replaced by X2/4C]. 

6.2. Associated Al-Salam- Carlitz I 

We take the B ~ ~ limit of  (6.1) and its corresponding solutions to obtain the case of associated 
A1-Salam-Carlitz I. The recurrence becomes 

n 

Rn+l - [z  - (1  -+- 8-1)qn]R n - ~ - ~ ( 1  - Aqn-1)gn_l ~- O, ( 6 . 1 2 )  

with solutions from (6.5)-(6.8) given by 

R~nl)(z;A,6) = lim Q~I)'-(z;A,B, 6) 
B---+ ~ 

_ _  { q/Az6 ) _ (A), (_q/ASz),q,(,_l)/21C~l \q,+l/zf;q"+l/zj (6.13) 
(q/SZ)n 

R~2)(z;A,8) = lim Q~n 2) 
B----~ ~ 

( q/Az8 ;zq --n+l) = (--1)nq'("--1)/21(01\ q/8 (6.14) 

R~3)(z;A,8) = lim Q~3) 
B - - +  cx~ 

{ q/Az ) = (--8)-nqn(n-1)/21~)l ~ q8 ;Szq-"+l ' (6.15) 

R~4)(z;A, 8) ---- lim Q~n 4~ 
B---~ ~x~ 

= (I /z) ,  Z"l~bl zq_n+ 1 ;q/8 , (6.16) 

with R~ 4) proportional to R(~ 2) via (5.29) and (5.30); namely 

,~(c~;bz)-(bz)~(c)~ 14)1 (bz'Z'c)" (6.17) 

The minimal solution to (6.12) is given by (6.13). Using Pincherle's theorem we obtain the continued 
fraction representation 

1 q(1 - A)/A8 q2(1 - Aq)/A8 
z -  (1 + 6 -1 ) + z -  (1 + 8-1)q + z -  (1 + 8-1)q 2 +. . .  

{ q/AzS;q/z) 
1 14)1 ~ k q/z8 

-- ( q/Az8 )" (6.18) 
z(1 - 1/&)14 1 \ 1/z8 ;1/z 

This is a positive definite J-fraction in the case when 0 < q < 1 and A < 1, A8 < 0. We may then 
deduce that the zeros of the l(kl'S in the numerator and denominator on the right-hand side of  (6.18) 
are real and simple and interlace. See for example the Corollary in Section 5.4. 
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When A = q, the pole singularities in (6.18) become explicit, since we may then use (6.17) to 
obtain 

1 (1 - q)/6 q(1 - q2)/8 
z -  (1 + 6 -1 ) + z -  (1 + 6-1)q + z -  (1 + 8-1)q 2 + . . .  

_ (q/6z)~ 1/z6 
-- z(1/z)oo(1/zS)ooldPl ( q/zS"q/z) 

~ {  qn q, } 
=,=0 ( z -  qn)(q)n(6q)n(6-a)o~ + (Z-- qn/6)(q),(q/6)n(6)~ " (6.18') 

In the last equality we have assumed that 6 ~ q-m, m an integer. The explicit polynomial solution 
to (6.12) can be obtained from the B---~ oe limit of  (6.9). We get 

Rn(z;A,6) = lim Qn(z;A,B, 6) 
B ----~ oo 

= ( - q / A S z ) n ~ q  "(n-~)/2 

e=0 (A)l 1/z)eq-e(e-1)(A6zZ/q)eqne ~-' (A/q)JqY(A6za)-J (6.19) 
j=0 (q, 1/zS, 1/z)j  " 

When A = q, the expression for R,(z; q, 6) must be equal to R(,4)(z; q, 6) given by (6.16), since they 
are both monic polynomial solutions. Equating these two expressions we obtain 

R,(z;q, 6) = (- -8z)- -nqn 'n--1) /23~90 (q-n' 1/Z8,__ 1/Z., 6z2qn) 

) = zn(1/Z),lC~ zq_n+ 1 ;q/8 . (6.20) 

The above connection between a terminating 3~0 and a terminating 1~bi appears to be new. Note 
that (6.20) differs also from the standard expression in [17, (3.24.1) with a = 6 -1 and x replaced by 
z] which gives 

Rn(z; q, 8) = (-8)-n qn(n-1)/22c~l ( q-n~-l ; qzS) 

q--n 
~ zn(1/ZS)n l~)l (q_n+lZS;q8) . (6.21) 

For the last equality we have used (5.29) with c - - 0 .  

6.3. Limit Al-Salam-Carlitz I 

We now take the A ~ c~ limit of  (6.12) and its corresponding solutions. The recurrence becomes 

q 2 n - 1  

Sn+l - [z - (1 + 6-~)qn]Sn + ~ S n - 1  = 0 (6.22) 
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with solutions 

S(nl)(z; 8) = lim R(~l)(z;A, 3) 
A ---~ o ~  

( ) q 0 
= (q/SZ)n(6z)nl~)l qn+l/z8 ;qn+l/Z , 

S(n=)(z; 8) = lim R(,2)(z;A, 8) 
A --* o o  (o ) = (--1)~qn(~--l)/21~ l q/3;zq -~+1 , 

S~(3)(Z; 8) = lim R(~3)(z;A, 8) 
A--*oo (q0 

S~4)(z; 3) = lim R~4)(z;A, 3) 
A---*oo (0 ) 

= (1/Z)nznl~)l zq_,+ 1 ;q/8 . 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

Note that 8 (4) is proportional to Sn (2) via the transformation (6.17) which yields the identity 

1~)1 ( ~ ; Z ) =  (Z)~z~ "h ( ~ ' C ) .  (6.27) (C)c:x:~ I tY1 , 

The minimal solution to (6.22) is S(nl)(z; 6). Using Pincherle's theorem we then obtain the evalu- 
ation of  the continued fraction associated with (6.22). Namely, 

1 q/8 q3/8 
z - ( l + 8 - l ) -  z - ( l + 8 - 1 ) q  - z - ( l + 3 - 1 ) q :  . . . .  

( 0 )  
1 1 Ct~1 q/z8 ; q/z 

= (6.28) 
z ( 1 - 1 / 3 z ) ' ~ l  ( 0 ;q/z) " l / z 3  

This is a positive definite J-fraction if 0 < q < 1 and 8 > 0 and we may then deduce that the zeros 
of  the l~bl'S on the right of (6.28) are real, simple and interlacing. See the Corollary in Section 5.4. 

The monic polynomials are given explicitly by 

S.(z; 3)  = l im R.(z;A, 8) 
A --* o o  

(Z8)-nqn2 { n 
-- ~ Z ( q  -n, 1/zS, 1/z)~(--8)eq -3t(t-O/2 

d=o 
t z_2j(_8)_jq3j(j_l)/2 } 

XZ2~q~(n-1) Z 
j=0 (q, 1/zf, 1/z)j 

(6.29) 
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A simpler expression is obtained if one applies the generating function method of Section 4 directly 
to (6.22). This results in 

Sn(Z; 3 )  - -  
~-nqn(n+l)/2 { n 

(q)n Z(q-n)t(l/z)t(--3z)tq-t(e-1)/2 
d=0 

(_zr)-jqj(j-1)/2 } 

× Z (l/z)j(q)j j=O 
(6.30) 

6.4. Associated continuous q-Hermite 

If we multiply (6.1) by B 1/2, replace Z81/2 by z, renormalize and let B -~ 0, we get the recurrence 

H,+~ - zHn + A~(1 - Aq"-~)H,_~ = 0. (6.31) 

This will become the continuous q-Hermite case if we set A =q.  The solutions to (6.31 ) are obtained 
as limits of  the solutions to (6.1). They are 

H~n~)'+(z;A, 6) = lim Bn/2Q(nl)'+(z/B1/2;A,B , 3) B---~O 

= (A)n(J2+)nl~)l (aqn;a~#2),  

H(n2)(z;A,~)=(l~_)n2(9o(q-n+l__/A'O;qn/(~#2__), 

where 

(6.32) 

(6.33) 

(6.34) 

To derive (6.32) we first made the transformation (5.28) before taking the limit and the transfor- 
mation (5.30) in the form 

(z) 
°~D1 C ;CZ -- (C)oo141 0 ;c (6.35) 

after the limit was taken. 
To derive (6.33) we transformed either Q(2) or Q~3) using an iterate of  (5.28), discarded factors 

which were n-independent, multiplied by B "/2 and then let B---~ 0. Note that (6.33) is only a formal 
solution unless it terminates by having 'say' A = q. 
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For the general polynomial solution we take the limit of (6.9) to obtain 

Hn(z;A, 8) = lim B"/2Qn(z;A,B, 8) 
B--,O 

. ,  , , , , . ( A ) . f  (h- t . - I  = ( , u / z ,  ( - ~ , ~  ~e=0 (q-n) t (  ")eu-2eqne 

' I 
(A/q ) j ( -  1 ) J u2J q j(j+ l )/2 

xq -e('e-1)/2 ~ (q)j ' 
j=O 

(6.36) 

z = ½7'(u + u- ' ) ,  ?' = 2(q/AS) '/2. 

Note that when A = q, the expressions (6.33) and (6.36) become equal. 
For z = 7'x, x E C \ [ -1 ,  1] and with the square root branch chosen sothat  [P-/#+I < 1, we have 

H~I)'-(z;A, 6) as a minimal solution to (6.31) and hence the continued fraction representation 

1 q ( 1 - A ) / A 6  q ( 1 - A q ) / A b  q (1 -Aq2) /A6  
Z - -  Z -- Z -- Z 

q 1~bl (Ao/q ; A~/t2__) 

_ _ f l  og(t)dt 
1 Z - -  7't 

- -  + possible pole terms. (6.37) 

Repeating the method of Section 3, we find that 

- 
1 (A, u=, u -2)~ 

27~v/-f - x2 ,dp, ( A/Oq ; u2/q) 1dp1( A/oq 

z l  ; = x = ½(u + u-'). 

; 1/u2q (6.38) 

When A ----q the denominator l~bl's in (6.37) and (6.38) become equal to 1 and there are no pole 
terms. This is then the continuous q-Hermite case. See [17, p. 88], for a list of references. 

6.5. Limit q-Hermite 

We take the A ~ c~ limit of the results in the previous Section 6.4. This gives the recurrence 
relation 

qn 
Tn+I - zT, - --~ Tn-1 = 0, (6.39) 



142 D.P. Gupta et al. / Journal of Computational and Applied Mathematics 68 (1996) 115-149 

with minimal solution 

T,(1)(z; 8) = lim H(~1)'- (z; A, 8) 
A---* ~ 

= (--l  )nqn(n--1)/2(q/Sz)no(91( o ;qn+2/SZ 2) 

and the polynomial solution 

Tn(z; 8) = lim Hn(z;A,8) A ---* c~ 
(--z)-nqn(n-1)/2 { 

= (q), (q/8)" 
n 

Z ( q - n ) t  
d=O 

d 

j=O 

z-2JS-Jqj 2 
(q)j }" 

(6.40) 

(6.41) 

= 3  z ±  

71 = 2 ~ / A .  

(A,B),  { A A , , A q ' .  K, ) C~l),+(z;A,a) 
(ABA~+)n (A~' )"Jpl \ ABA~q n ' a 

/ 

, n (AA'i~Aqn ~ )  
= (A),(A+) 2~bl ; , 

(6.45) 

Using the minimal solution we get the continued fraction result 

1 q/6 q2/6 I ° ( P l ( O  ;q2/8z2) 
(6.42) / - -  ) " 

z +  z + z + z oq51 i o ; q/Sz2 

This is a positive definite J-fraction if 0 < q < 1 and 8 < 0 and one then has simple real interlacing 
zeros for the 0q51 's on the right of  (6.32) (see the Corollary in Section 5.4). 

6.6. Associated continuous big q-Hermite 

In (6.1) let 8 = 1laB and then let B---~ 0 to get the recurrence 

Cn+, - (z - qn)C n + 7 ( 1  - A q  n-1)Cn_l = 0. (6.43) 

The solutions to (6.43) may be obtained from the solutions of  (6.1) by using 

Cn(z; A , a) = lim ° Qn(z; A,B, 1laB). (6.44) 

First making the parameter interchange A ~ B in (6.5), then writing 8 = 1laB and taking limit B--~ 0 
we obtain the solution 
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Also from (6.2) we similarly obtain 

C 2 (z;A,a) = O(n2 (z;8,A, 1/a ) 

( q-'+l/A'O ) 
= const. (A+)n(AA ' /aq), 2q~1 , _-,+1 ;AA' (6.46) 

- A + q  - ' 

which is a polynomial solution when A = q. 
In (6.7) we first apply the transformation [5, (III.2), p. 241], write 6 = 1laB, B = qm and let 

m ~ co. We obtain the solution 

C~3)(z;A,a) const. (A+)n2~o ( q-n+l/A'A+/a A2A~qn-2) = ; , (6.47) 
- a 

which is again a polynomial solution for A = q. Using (6.8), transformation (5.30) and taking limits 
we have the solution 

/ ,,1-n+l/A 0 \ 
C~n4)(z;A,a) = const. (A+)"(AA'_/aq), × 2(t)1 ~"/ , --n+lC, ,=~-'aA' ~ . (6.48) A+q -J 

Also from (6.9) we obtain the explicit polynomial solution 

Cn(z;A,a) ~--1Bimoan ( z ; A , B , - ~ )  

(A) ,{  ~ (qn,_2u/71)e,(_l)eu_2,qneq_t(e_ll/2 

(A/q )j( - 1 )Ju2j q j(j+l ~/2 (6.49) 
× Z (q, 2u/71 5 ' j = 0  

71 = 2~/ r~A.  

If  in (6.43) we write z -- Xyl = 2(aq/A)l/2x, and renormalize, we obtain the recurrence for the 
associated continuous big q-Hermite polynomials (see [17, (3.18.4)]) viz., the relation 

Cn+l - -  (2x - bqn)¢n + (1 -Aqn-1)¢n_l = O, (6.50) 

with b = (A/aq) m. Writing A = q in the renormalized solution given by (6.47) yields continuous big 
q-Hermite polynomials [ 17, (3.18.1 )]. 

Choosing, for x =z/7~ E C \ [ -1 ,  1], the square root branch for which IA_/A+I < 1, the minimal 
solution of  (6.43) is given by (6.45). Consequently, we have the continued fraction representation 

1 b 2 b E ; A ' / a )  

z -ao  - - g - - a l  - - z  --a2 -- . "~ , A " / a  ) 

AA, 2d~ ( A'AoA~- 

oq 

= f l  ~o(t)dt 
--1 Z - -  7 1 t  

- -  + possible pole terms, (6.51) 
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with 

1 (A)~(1/u2,u2)~ [ ( A / q , A A "  
~(x )  = 2roy"-( - x 2 (71u/2a, 71/2au)~ JPl ; - -  

where 

x = ½(u + u -1), 

~1 = 2(aq/A)l/2, 

an = qn,  

b2n = ~ ( 1  - A q n - 1 ) .  

In the particular case A = q, 
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5+)] - 2~bl ; , (6.52) a 

1 (q)~(1/u2, u2)~ 
~(x )  = 2~v/- ( _ x 2 (U/v/d ' 1/Uv/-d) ~ . (6.53) 

This weight function agrees with the form given in [17, (3.18.2)] with b in (6.50) replaced by 1/x/-a 
and taking into consideration the normalization factor (A/aq) n/2= a -"/2= b n used in (6.50) and also 
that x is replaced by bx. 

6. 7. q-Bessel order 

The limit A ~ c~ of  the recurrence (6.43) gives 

Bn+l - ( z  - q n ) B  n - aqnBn_l = 0. (6.54) 

It is clear that (6.54) will give real orthogonal polynomials only for 0 < q < 1, a < 0. The solutions 
of (6.54) can be obtained by taking A ~ c~ limits of  (6.45)-(6.48). We have 

B(nl)(z;a)= lim C(nl)'-(z;A,a)=(-aq/z)nqn(n-l)/21q~a (aq/Z;qn+l/z  ~ (6.55) 
A----~ oo \ u / 

= ( - - a q / z ) n q n ( n - 1 ) / 2 ( q n + l / z ) ~  041 ( -- " a-n+2/z2~ q,+l/z , q / j ,  (6.56) 

using the transformation (6.35). Also 

( 0,0 ) 
B~Z)(z; a) = A--.~lim C~2)(z;A, a) = const, z"(1/z) , jpl  k.zq_,+ 1 ;aq/z , (6.57) 

B~3)(z;a)= lim C~3)(z;A,a)=const.  zn2C~o (O'z /a;aqn/z2] ,  (6.58) 
A ---* oo \ /  

lim C~4)(z; A, a) = const. B~2)(z; a). (6.59) 
A----* oo 
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Using (6.49) we obtain the explicit polynomial 

B , ( z ; a )  = lim C n ( z ; A , a )  
A ----~ ~ 
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n 

-- (--a/z)n~n(n+l)/2f d~..o(q--n 1/Z)f 

j=0 ( q ) j ( 1 / z ) j  " 

We now demonstrate the relationship of the above solutions with Jackson's q-analogues of  Bessel 
functions (see [5, Exercise 1.24, p. 25]). Using the notation of  [5] and writing 

1 2 aq/z ,  q V = z - t ,  - ~ x  = 

we find from (6.57) and (6.56) that 

/---7, ~ n~-v (qZ/z ) ,  D(:),_ 
J_(1) v , (2 i (aq / z ) l / : ;  q) -- const. ( -  1)"q-'('+4)/:vfz ( _ - :~XlZlal i--q'-7"-i'-i'-i~--ix'On ~Z;U)--~ (6.61) 

- - /  ~I/Z)n 

and 

/ f"----\, n+v 1 )nq-n (n -1 ) /2 (Z /aV/q )n~ i~a / z )  B(n )(z;a). (6.62) J~+,(2ffaq/z)(2) • l/2;q)__const. ( - 1  x/~ 

This shows that (6.54) is connected with the recurrence for q-Bessel functions with z appearing both 
in the arguement and the order of the q-Bessel function. Thus we choose to call this the q-Bessel 
order case. The continued fraction representation obtained with the help of the minimal solution of  
(6.54) given by (6.55) is 

1 aq aq z 1 ° q ~ l l ~ z ; a q 2 / z 2  ) 
. . . . .  (6.63) 

z - -  l + z -- q + z -- qZ --b (z  -- 1) 0q~1 ; aq/z2 

This is a positive definite J-fraction if 0 < q < 1 and a < 0 and the zeros of  the 0q~l'S on the right 
are then real, simple and interlacing. 

A q ~ 1 limiting case is due to Maki [19] (see also [21]). 

7. Limit Askey-Wilson 

In this section we give the connection between solutions to the associated Askey-Wilson and the 
associated continuous dual q-Hahn polynomial recurrence relations. The associated Askey-Wilson 
polynomial recurrence relation in monic form is given by 

pn+l(x)  - (x  - a , ) p , ( x )  + b2nPn_l(X) = O, 

a 1 
an~- - -An  -- On-}- -~ q- ~a , 
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b 2 =An_lBn,  (7.1) 

( 1 - abcdq n+~- 1 )( 1 - abq n+~)( 1 - a c q  n+~ ) (  1 - adq n+~) 
An ~ 2a( 1 - abcdq 2~+2~- 1 )( 1 - abcdq 2~+2~) 

a(1 - q~+~)(1 - bcqn+~-l )(1 - bdq~+~-l )(1 - cdq n+~-t ) 
Bn ~" 

2(1 - abcdq 2n+2~-2)( 1 - abcdq 2~+2~- 1 ) 

When ~ = 0, (7.1) reduces to the nonassociated monic Askey-Wilson case [3]. If one further puts 
d = 0, one has the monic continuous dual q-Hahn case [3, pp. 3, 28]. Our associated dual q-Hahn 
case may be obtained from (7.1) by multiplying (7.1) by k -  1 = 2 v/q/ABCD, replacing (a, b, c, d, q~) 
by (2kq/AD,2kq/AC, 2kq/AB, O,A/q) and renormalizing to monic form. Note that 'k'  is now used to 
denote the '~' of  previous sections so as to avoid confusion with the '~' in (7.1). 

There are two papers [15, 9], which deal with the associated Askey-Wilson polynomial case. We 
now indicate how our associated dual q-Hahn recurrence solutions in Section 2 are connected with 
the solutions in [15] and [9]. 

Using the solutions to (7.1) which Ismail and Rahman have given in [15], we have the following 
limiting cases: 

Pn(z;A'B' C'D)= lim (B' ~ P" (x; AD'2kq Ac'2kq 2kqAB, d,A/q), (7.2) 

where 

p.(x)= p.(x;a,b,c,d,q~) - ...1.n p(~)(x) 
tza) 

and p~)(x) is given explicitly in [15, (4.15)]. The calculation yields 

Pn(z;A,B,C,D) - (B,C)n ~k=o (q-"' ~ u '  B, C)k qk 

n-k } 
(A/q,D/q, qk+l,q~-")j (BCq y (7.3) 

× ~ (q, Cq k,Bq k,q-')j \ AD J " j=O 

Ismail and Rahman have also obtained nonpolynomial solutions r.+~(u) and s.+~(u) which correspond 
to p(.~)(x). Using [15, (1.12), (1.13)] we obtain 

n-i- (B, C)n 
X,~1)'+(z; A,B, C,D) = lim C' 1 - -  ((BC2±)-~sn+~(u ±1)) d---*O (BC) n 

where 

(A, D, BC2± )~ 
C~ = (BCD2±,ABC2+,AD2± )~ ' 

and 

X ( f ( z ; A , B ,  C,D) = ( ) 

(7.4) 

(7.5) 
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where 

C 5 = 
( C, AD2+, Dq2_, ABC2+/q )o~ 

(B, C, q/B, Dq/C)~ 

In [9], the parameters (a,b,c,d,q ~) of [15] are replaced by (~,fl, y,f,e). The solutions X, (r) to 
(7.1) in [9] will now be denoted by X~r). The 6 ~ 0 limits of some of these solutions are given 
below in terms of the solutions X(1)n 'X(2)n ,X-(4)n , X(5)n and Xn C6) of  Section 2. We have 

l im X,}6)(u +1 ) = Di6knX(.')"4-(z;A,B, C,D), 
6---+0 

(BCD2+,AD2+,ABC2+ )o~ 
Oi6 = (A, B, C, D, q/u ±2)o~ ' 

(7.6) 

~imoX(~5)(u ) = DsknX(~5)(z; A,B, C,D ) + D~k"X(.2)(z; A,B, C,D ), 

0 5 = 

Au2 q2 q,AC2_,AB2_,Dq q)  
q ' ~ u 2 ' D  C ' B  

(ABqC 2+ ABDq 2+,ACDq 2+,CqJ._,Bq)._,~)o ° 

1 

, Dq2_, AD2+ 
O 0  

D;= 

°q) qZ q,Aq2_,BD2_, CD2_, ~--~ o~ U2~ A u  2 

(A:C 2+,ABD 2+,ACD 2+,Cq2_,Bq)~_,_~)o ° 
q q 

X 

( °q) q2 q Aq 2 k  

B ' C  D 

) Dq2_, ' Au' 2k ' q ' ,Aq2_,AD2+ oo 

~im0X(2)(u ) = O z k n y ( 6 ) ( z ;  C,B,A,D), 

0 2 = 
2 (AZq2+,Aq2_)~ 
u(A__ff Aq Aq BCD2_] ' 

' C ' D '  q ./o~ 

(7.8) 
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= +Dlk X~ (z,A,B,C,D), ~imo2(n,)(u ) Dlk.X(5)(z;A,B,C,D) , .  ( 1 )  . 

(q/e, BCDq +/A, Dq/C)  (7.9) 
D1 = (D, Cq/A, Bq/A, Dq2+, ABC2_/q, AD2_ )~' 

(q  BCq 2k ~ ~ 2k)  
2k ' BC' , BD2+, CD2+, 2+, BCD2_, -~ 

' k 

( Dq Cq Bq q uqZ A,D2+) 
B,C,D, A ' A '  A'U'u' A 'uq 

Parameter interchanges in [9] in some of the cases yield new solutions of (7.1). For example an 

interchange of 6 +-~/3 in solution X.(~)(u) gives a new solution .~(.~)(u) for which we have 

lim )~(nl)(u) , , .  (4) =Dlk X~n (z;A,B,C,D), 
6----,0 

D~' = 
( q/B, Cq/D 

(C, Cq2+,AC2_,ABD2_/q)~" 

(7.10) 

If we instead make the interchange ~ ~ 6 in solution X~(1)(u), then the 6--~ 0 limit would be pro- 
portional to knX(nS)(z;A,B, C,D ). 
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