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Abstract

We introduce new semilocal convergence theorems for Newton-like methods in a Banach space setting.
Using new and very general conditions we provide di4erent su5cient convergence conditions than before.
This way we introduce more precise majorizing sequences, which in turn lead to :ner error estimates and a
better information on the location of the solution. Moreover for special choices of majorizing functions our
results reduce to earlier ones. In the local case we obtain a larger convergence radius (ball). Finally, as an
application, we show that in the case of Newton’s method the famous Newton–Kantorovich hypothesis can
be weakened under the same information.
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1. Introduction

In this study we are concerned with the problem of approximating a locally unique solution x∗
of equation

F(x) = 0; (1)

where F is a FrCechet-di4erentiable operator de:ned on a closed ball FU (x0; R)={x∈X | ‖x−x0‖6R}
(R¿ 0) which is a subset of a Banach space X with values in a Banach space Y .
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A large number of problems in applied mathematics and also in engineering are solved by :nding
the solutions of certain equations. For example, dynamic systems are mathematically modeled by
di4erence or di4erential equations, and their solutions usually represent the states of the systems.
For the sake of simplicity, assume that a time-invariant system is driven by the equation ẋ = F(x),
where x is the state. Then the equilibrium states are determined by solving Eq. (1). Similar equations
are used in the case of discrete systems. The unknowns of engineering equations can be functions
(di4erence, di4erential, and integral equations), vectors (systems of linear or nonlinear algebraic
equations), or real or complex numbers (single algebraic equations with single unknowns). Except
in special cases, the most commonly used solution methods are iterative—when starting from one or
several initial approximations a sequence is constructed that converges to a solution of the equation.
Iteration methods are also applied for solving optimization problems. In such cases, the iteration
sequences converge to an optimal solution of the problem at hand. Since all of these methods have
the same recursive structure, they can be introduced and discussed in a general framework.

Newton-like methods

xn+1 = xn − A(xn)−1F(xn) (n¿ 0) (2)

have been used extensively to generate a sequence approximating x∗. Here A(x)∈L(X; Y ) the space
of bounded linear operators from X into Y and is an approximation to the FrCechet-derivative F ′(x) of
operator F . Rheinboldt [12] established a convergence theorem for (2) which includes the Newton–
Kantorovich theorem for the Newton method (A(x) = F ′(x)) as a special case [8]. A further gener-
alization was given by Dennis [6], Miel [9], Moret [10], Yamamoto [14], Chen and Yamamoto [5],
Argyros [1–4], Potra [11] and others (for a survey of such results see, e.g., [3,4]) have provided local
and semilocal convergence results under various assumptions. In particular, Chen and Yamamoto [5]
use conditions (3), (4) (see Theorem 1 that follows). Here motivated from this paper we provide
di4erent su5cient convergence conditions. In the special case of the Newton–Kantorovich method
we show that the famous Newton–Kantorovich hypothesis (see (46)) can be weakened (see (47)).

2. Semilocal analysis for Newton-like methods

We will need for simplicity the following version of the semilocal convergence theorem for
Newton-like methods due to Chen and Yamamoto [5, p. 40]: (The general case can be treated along
the same lines.)

Theorem 1. Let F :U (x0; R) ⊆ X → Y (R¿ 0) be a Fr4echet-di5erentiable operator and A(x)∈
L(X; Y ). Assume
(a) A(x0)−1 ∈L(Y; X ) and for any x; y∈ FU (x0; r) ⊆ FU (x0; R)

‖A(x0)−1(A(x)− A(x0))‖6 Fw0(‖x − x0‖) + Fb; (3)

‖A(x0)−1[F ′(x + t(y − x))− A(x)]‖6 Fw(‖x − x0‖+ t‖y − x‖)
− Fw0(‖x − x0‖) + Fc; t ∈ [0; 1]; (4)
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where Fw(r + t)− Fw0(r), t¿ 0 is a monotonically increasing function with Fw(0) = Fw0(0) = 0, Fw0(r)
is di5erentiable, Fw′

0(r)¿ 0, r ∈ [0; R], and constants Fb, Fc satisfy

Fb¿ 0; Fc¿ 0; Fb+ Fc¡ 1: (5)

Set

‖A(x0)−1F(x0)‖6 �: (6)

De6ne functions

Fw2(r) = �− r +
∫ r

0
Fw(t) dt; (7)

Fw3(r) = Fw2(r) + ( Fb+ Fc)r (8)

and iteration

r0 = 0; rn+1 = rn +
Fw3(rn)− w∗

1− Fb− Fw0(rn)
(n¿ 0); r∗ = lim

n→∞ rn; (9)

where w∗ is the minimal value of Fw3 on [0; R], r∗ is the minimal point and r∗0 the unique zero of
Fw3 in (0; r∗].
(b)

Fw3(R)6 0: (10)

Then, Newton-like method {xn} (n¿ 0) generated by (2) is well de6ned, remains in FU (x0; r∗)
for all n¿ 0 and converges to a solution x∗ ∈ FU (x0; r∗0 ) which is unique in

Ũ =

{
FU (x0; R) if Fw3(R)¡ 0 or Fw3(R) = 0 and r∗0 = R;

U (x0; R) if Fw3(R) = 0 and r∗0 ¡R:
(11)

Moreover, the following error bounds hold for all n¿ 0:

‖xn+1 − xn‖6 rn+1 − rn (12)

and

‖x∗ − xn‖6 r∗ − rn: (13)

From now on we assume the more general conditions:

‖A(x0)−1[A(x)− A(x0)]‖6w0(‖x − x0‖) + b (3′)

and

‖A(x0)−1[F ′(x + t(y − x))− A(x)]‖6w(‖x − x0‖+ t‖y − x‖)− w1(‖x − x0‖) + c (4′)

for t ∈ [0; 1] and x; y∈ FU (x0; r) ⊆ FU (x0; R), where, w(r+ t)−w1(r), t¿ 0, w0(r) and w1(r), r ∈ [0; R]
are monotonically increasing functions with w(0) = w0(0) = w1(0) = 0.
Note that we are using a bar above functions and parameters introduced in earlier results (see

[5]) whereas no bar is used for our corresponding functions and parameters (see, e.g., (3′), (4′)).
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Moreover, we do not want to use functions Fw0, Fw in (3′) and (4′) instead of w0 and w, respectively,
since this approach limits our choices of functions and parameters (see also Remark 2).
We show a result concerning the convergence of majorizing sequences:

Theorem 2. Assume there exist �∈ [0; 1], parameters �, b, c and functions w0, w as in (3)–(6),
such that

2
∫ 1

0
w(��) d�− 2w1(0) + 2c + �b+ �w0(�)6 �; (14)

w0

[
2�

2− �

(
1−

(
�
2

)n+1
)]

+ b¡ 1 (15)

and

2
∫ 1

0
w

[
2�

2− �

(
1−

(
�
2

)n+1
)

+ �
(
�
2

)n+1

�

]
d�− 2w1

[
2�

2− �

(
1−

(
�
2

)n+1
)]

+ �w0

[
2�

2− �

(
1−

(
�
2

)n+1
)]

6 2
∫ 1

0
w(��) d�− 2w1(0) + �w0(�) (16)

for all n¿ 0.
Then, iteration {tn} (n¿ 0) given by

t0 = 0; t1 = �;

06 tn+2 = tn+1 +

∫ 1
0 {w[tn + �(tn+1 − tn)] d�− w1(tn) + c}(tn+1 − tn)

1− b− w0(tn+1)
(17)

is monotonically increasing, bounded above by

t∗∗ =
2�

2− �
; (18)

and converges to some t∗ such that

06 t∗6 t∗∗: (19)

Moreover, the following error bounds hold for all n¿ 0:

06 tn+2 − tn+16
�
2
(tn+1 − tn)6

(
�
2

)n+1

�: (20)

Proof. We must show

2
∫ 1

0
w[tk + �(tk+1 − tk)] d�− 2w1(tk) + 2c + �b+ �w0(tk+1)6 �; (21)

06 tk+1 − tk (22)
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and

w0(tk+1) + b¡ 1 (23)

for all k¿ 0.
Estimate (20) can then follow immediately from (21)–(23). Using induction on the integer k, we

get for k = 0

2
∫ 1

0
w[t0 + �(t1 − t0)] d�− 2w1(t0) + 2c + �b+ �w0(t1)6 �

w0(t1) + b= w0(�) + b¡ 1

by the initial conditions. But (14) gives

06 t2 − t16
�
2
(t1 − t0):

Assume (21)–(23) hold for all k6 n+ 1. Using (14)–(16) we obtain in turn

2
∫ 1

0
w[tk+1 + �(tk+2 − tk+1)] d�− 2w1(tk+1) + 2c + �b+ �w0(tk+1)

6 2
∫ 1

0
w

[
2�

2− �

(
1−

(
�
2

)k+1
)

+ �
(
�
2

)k+1

�

]
d�

− 2w0

[
2�

2− �

(
1−

(
�
2

)k+1
)]

+ 2c + �b+ �w0

[
2�

2− �

(
1−

(
�
2

)k+1
)]

6 2
∫ 1

0
w(��) d�− 2w1(0) + 2c + �b+ �w0(�)6 � (by (16) and (20)):

Moreover, we must show

tk6 t∗∗; (24)

t0 = 06 t∗∗; t1 = �6 t∗∗ and t26 �+
�
2
�=

2 + �
2

�6 t∗∗:

Assume (24) holds for all k6 n+ 1. It follows from (20):

tk+26 tk+1 +
�
2
(tk+1 − tk)6 tk +

�
2
(tk − tk−1) +

�
2
(tk+1 − tk)

6 · · ·6 �+
�
2
�+

(
�
2

)2
�+ · · ·+

(
�
2

)k+1

�

6
1− ( �2)

k+1

1− �
2

�6
2�

2− �
= t∗∗:
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Hence, sequence {tn} (n¿ 0) is bounded above by t∗∗. Furthermore, sequence {tn} (n¿ 0) is
monotonically increasing by (17) and as such it converges to some t∗ satisfying (19).
That completes the proof of Theorem 2.

Remark 1. Conditions (3′) and (4′) reduce to (3) and (4), respectively, if we choose Fw(r) = w(r),
Fw0(r) = w0(r) = w1(r) for all r ∈ [0; R], Fb = b and Fc = c. Moreover our conditions (3′) and (4′)
allow more Sexibility in the choice of functions. Note also that conditions (14) and (15) are of the
Newton–Kantorovich-type hypotheses (see also (46)) which are always present in the study of
Newton-like methods.

We provide the main result on the semilocal convergence of Newton-like methods.

Theorem 3. Assume hypotheses of Theorem 2 hold and

FU (x0; t∗) ⊆ FU (x0; R): (25)

Then Newton-like method {xn} (n¿ 0) generated by (2) is well de6ned, remains in FU (x0; t∗)
for all n¿ 0 and converges to a solution x∗ ∈ FU (x0; t∗) of equation F(x) = 0.
Moreover, the following error bounds hold for all n¿ 0:

‖xn+1 − xn‖6 tn+1 − tn (26)

and

‖xn − x∗‖6 t∗ − tn; (27)

where iteration {tn} (n¿ 0) is given by (17). The solution x∗ is unique in FU (x0; t∗) if∫ 1

0
[w((1 + t)t∗)− w1(t∗)] dt + w0(t∗) + b+ c¡ 1: (28)

Furthermore, if there exists R0 such that

R0 ∈ (t∗; R] (29)

and ∫ 1

0
[w(t∗ + t(t∗ + R0))− w1(t∗)] dt + w0(t∗) + b+ c6 1; (30)

then the solution x∗ is unique in U (x0; R0).

Proof. We must show estimate (26). For n= 0, (26) is obvious, since

‖x1 − x0‖= ‖A(x0)−1F(x0)‖6 �= t1 − t0 (by (6)):

Suppose (26) holds for n= 0; 1; : : : ; k + 1; this implies in particular that

‖xk+1 − x0‖6 ‖xk+1 − xk‖+ ‖xk − xk−1‖+ · · ·+ ‖x1 − x0‖
6 (tk+1 − tk) + (tk − tk−1) + · · ·+ (t1 − t0) = tk+1 − t0 = tk+1:
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We show that (26) holds for n= k + 2. Using (3) and (15) we get

‖A(x0)−1[A(xk+1)− A(x0)]‖6w0(‖xk+1 − x0‖) + b6w0(tk+1) + b¡ 1: (31)

It follows from (31) and the Banach Lemma on invertible operators [8] that A(xk+1)−1 exists and

‖A(xk+1)−1A(x0)‖6 1
1− w0(‖xk+1 − x0‖)− b

6
1

1− b− w0(tk+1)
: (32)

By (4) we obtain

‖A(x0)−1F(xk+1)‖6 ‖A(x0)−1{F(xk+1)− A(xk)(xk+1 − xk)− F(xk)}‖

6
∫ 1

0
‖A(x0)−1[F ′(xk + t(xk+1 − xk))− A(xk)]‖ ‖xk+1 − xk‖ dt

6
∫ 1

0
{[w(‖xk − x0‖+ t‖xk+1 − xk‖)

−w1(‖xk − x0‖)] dt + c}‖xk+1 − xk‖: (33)

Hence, by (2), (32) and (33) we get

‖xk+2 − xk+1‖6 ‖A(xk+1)−1A(x0)‖ · ‖A(x0)−1F(xk+1)‖

6

∫ 1
0 {[w(tk + t(tk+1 − tk))− w0(tk)] dt + c}(tk+1 − tk)

1− b− w0(tk+1)

= tk+2 − tk+1: (34)

Note also,

‖xk+2 − x0‖6 ‖xk+2 − xk+1‖+ ‖xk+1 − x0‖6 tk+2 − tk+1 + tk+1 − t0 = tk+26 t∗:

Hence, we obtain xk+2 ∈ FU (x0; t∗). It follows from (34) that {xn} (n¿ 0) is a Cauchy sequence in
a Banach space X and as such it converges to some x∗ ∈ FU (x0; t∗) (since FU (x0; t∗) is a closed set).
By letting k → ∞ we obtain F(x∗) = 0. Moreover, estimate (27) follows from (26) using standard
majorization techniques [4,8]. Furthermore, to show uniqueness, let y∗ be a solution of equation
F(x) = 0 in U (x0; R0). It follows from (2)

‖y∗ − xk+1‖ = ‖y∗ − xk + A(xk)−1F(xk)− A(xk)−1F(y∗)‖

6 ‖A(xk)−1A(x0)‖
∣∣∣∣
∣∣∣∣
{∫ 1

0
‖A(x0)−1[F ′(xk + t(y∗ − xk))− A(xk)]

∣∣∣∣
∣∣∣∣ ‖y∗ − xk‖ dt

6

∫ 1
0 {[w(‖xk − x0‖+ t(y∗ − xk))− w1(‖xk − x0‖)] dt + c}

1− b− w0(‖xk − x0‖) ‖y∗ − xk‖

¡

∫ 1
0 [w(t∗ + t(t∗ + R0))− w1(t∗)] dt + c

1− b− w0(t∗)
‖y∗ − xk‖: (35)
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Hence, we have

‖y∗ − xk+1‖¡ ‖y∗ − xk‖ (k¿ 0): (36)

That is by letting k → ∞ in (36) we get

lim
k→∞

xk = y∗:

But we already showed

lim
k→∞

xk = x∗:

Hence, we deduce x∗ = y∗. The :rst part of uniqueness uses (28) instead of (30).
That completes the proof of Theorem 3.

Remark 2. Condition (16) holds in many interesting cases. Assume

F ′(x) = A(x); (37)

‖F ′(x0)−1[F ′(x)− F ′(y)]‖6 ‘‖x − y‖; (38)

and

‖F ′(x0)−1[F ′(x)− F ′(x0)]‖6 ‘0‖x − x0‖ (39)

for all x; y∈ FU (x0; r) ⊆ FU (x0; R). Then we can set

Fb= Fc = b= c = 0; (40)

Fw(r) = w1(r) = Fw0(r) = w(r) = ‘r; (41)

and

w0(r) = ‘0r (42)

for all r ∈ [0; R], and some ‘¿ 0, ‘0¿ 0 with

‘06 ‘: (43)

That is we consider the Newton–Kantorovich method [8]. We must show

2
∫ 1

0
‘

[
2�

2− �

(
1−

(
�
2

)k+1
)

+ �
(
�
2

)k+1

�

]
d�− 2‘0

[
2�

2− �

(
1−

(
�
2

)k+1
)]

+ �‘0

[
2�

2− �

(
1−

(
�
2

)k+1
)]

6 2‘
∫ 1

0
�� d�+ �‘0�;

or

3�− 2
2− �

[
1−

(
�
2

)k+1
]
6 1;
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which is true for all k¿ 0 by the choice of �. Hence we showed (16). Note also that (14) becomes

w0

[
2�

2− �

(
1−

(
�
2

)k+1
)]

=
2‘0�
2− �

(
1−

(
�
2

)k+1
)
6

2�‘0
2− �

:

Function Fw3 reduces to

Fw3(r) = �− r + ‘
∫ r

0
t dt = �− r +

‘r2

2
: (44)

Hence we obtain

w∗ = 0; r∗0 = R= r∗ =
1−√

1− h
‘

(45)

provided that

h= 2‘�6 1 (‘ 
= 0); (46)

which is the famous Newton–Kantorovich hypothesis [8]. However our condition (14) gives for
�= 1:

h0 = (‘0 + ‘)�6 1: (47)

Note that

h6 1 ⇒ h06 1 (48)

but not vice versa unless if ‘0 = ‘. However (43) holds in general. Moreover ‘=‘0 can be arbitrarily
large.

Example 1. Let X = Y = R, x0 = 0 and de:ne function F on R by

F(x) = c0x + c1x + c2 sin ec3x; (49)

where ci, i = 0; 1; 2; 3 are given parameters. It can easily be seen by (49) that for c3 large and c2
su5ciently small ‘=‘0 may be arbitrarily large. That is (47) may hold but not (46).

Example 2. Let X = Y = R, FU (x0; R) = FU (
√
2; 1) and de:ne function F on FU by

F(x) =
1
6
x3 −

(
23=2

6
+ 0:23

)
: (50)

It can easily be seen by (50) that

�= 0:23; ‘ = 2:4142136; ‘0 = 1:914213562;

h= 1:1105383¿ 1 and h0 = 0:995538247¡ 1:

That is there is no guarantee that Newton’s method starting at x0 converges to x∗ = 1:614507018
since (46) is violated. However since (47) holds our results guarantees limn→∞ xn = x∗.



178 I.K. Argyros / Journal of Computational and Applied Mathematics 157 (2003) 169–185

Furthermore, notice that

t∗ ∈ [�; 2�] (51)

and under the hypotheses of Theorem 1,

t∗ ∈ [�; r∗]: (52)

In the next two results we show that our error bounds (26) are more precise than (12).

Theorem 4. Under hypotheses of Theorems 1, 3 and the choices of Remark 2 the following error
bounds hold:

tn+1 ¡rn+1 (n¿ 1); (53)

tn+1 − tn ¡ rn+1 − rn (n¿ 1); (54)

t∗ − tn6 r∗ − rn (n¿ 0); (55)

t∗6 r∗; (56)

06 tn+1 − tn6  2
n−1

(rn+1 − rn) (n¿ 0);  =
1− ‘�
1− ‘0�

∈ [0; 1) (57)

and

06 t∗ − tn6  2
n−1

(r∗ − rn) (n¿ 1): (58)

Moreover, we have tn = rn (n¿ 0) if ‘ = ‘0.

Proof. We use induction on the integer k to show (53) and (54) :rst. For n= 0 in (17) we obtain

t2 − �=
‘�2

2(1− ‘0�)
6

‘�2

2(1− ‘�)
= r2 − r1

and

t26 r2:

Assume

tk+1 ¡rk+1; tk+1 − tk ¡ rk+1 − rk (k6 n+ 1):

Using (17) and (9) we get

tk+2 − tk+1 =
‘
2 (tk+1 − tk)2

1− ‘0tk+1
¡

‘
2 (rk+1 − rk)2

1− ‘rk+1
= rk+2 − rk+1

and

tk+2 − tk+1 ¡rk+2 − rk+1:
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Let m¿ 0, we can obtain

tk+m − tk ¡ (tk+m − tk+m−1) + (tk+m−1 − tk+m−2) + · · ·+ (tk+1 − tk)

¡ (rk+m − rk+m−1) + (rk+m−1 − rk+m−2) + · · ·+ (rk+1 − rk)

¡rk+m − rk : (59)

By letting m → ∞ in (59) we obtain (55). For n= 1 in (55) we get (56).
Finally, (57) and (58) follow easily from (17) and (9). Note also that (57) holds as a strict

inequality if n¿ 2.
That completes the proof of Theorem 4.

Theorem 5. Assume

w0(r)6 Fw0(r)6w1(r); w(r)6 Fw(r); r ∈ [0; R] (60)

and

�b− w∗¿ 0: (61)

Then, under the hypotheses of Theorems 1 and 3 the following error bounds hold for all n¿ 0:

tn+1 ¡rn+1; (62)

tn+1 − tn ¡ rn+1 − rn; (63)

t∗ − tn6 r∗ − rn (64)

and

t∗6 r∗: (65)

Proof. We use induction on the integer k to show (50) and (51). For n = 0 in (9) and (17) we
obtain t1 ¡r1 by (61). Moreover, we have

t2 − t1 =

∫ 1
0 {w[(t0 − t0) + �(t1 − t0)] d�− w1(t0 − t0) + c}(t1 − t0)

1− b− w0(t1 − t0)

¡

∫ 1
0 {w[(r0 − r0) + �(r1 − r0)] d�− w0(r0 − r0) + c}

1− b− Fw0(s1 − s0)

=
Fw3(r1)− Fw3(r0) + (1− w0(s0)− b)(r1 − r0)

1− b− Fw0(r1 − r0)

=
Fw3(r1)

1− b− Fw0(r1 − r0)
= r2 − r1

and

t2 ¡r2:
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Assume

tk+1 ¡rk+1 (66)

and

tk+1 − tk ¡ rk+1 − rk (67)

for all k ¡n.
Using (9), (17), (66) and (67) we obtain in turn:

tk+2 − tk+1 =

∫ 1
0 {w[tk + �(tk+1 − tk)] d�− w1(tk) + c}

1− b− w0(tk+1)
(tk+1 − tk)

¡

∫ 1
0 {w[rk + �(rk+1 − rk)] d�− w0(rk) + c}

1− b− Fw0(rk+1)
(rk+1 − rk)

=
Fw3(rk+1)− Fw3(rk) + (1− w0(rk)− b)(rk+1 − rk)

1− b− Fw0(rk+1)
= rk+2 − rk+1

and

tk+2 ¡rk+2;

which shows (66), (67) for all n¿ 0.
Let m¿ 0, we can have

tk+m − tk = (tk+m − tk+m−1) + (tk+m−1 − tk+m−2) + · · ·+ (tk−1 − tk)

¡ (rk+m − rk+m−1) + (rk+m−1 − rk+m−2) + · · ·+ (rk+1 − rk)

= rk+m − rk : (68)

By letting m → ∞ in (68) we obtain (64). Finally, set n= 1 in (64) to obtain (65).
That completes the proof of Theorem 5.

Note that Theorems 4 and 5 justify the claims made at the introduction.

Remark 3. Conditions (15) and (16) can be replaced by the stronger but easier to check:

w0

(
2�

2− �

)
+ b¡ 1 (69)

and

2
[∫ 1

0
w
(

2�
2− �

+
���
2

)
d�− w1

(
2�

2− �

)]
+ �w0

(
2�

2− �

)

6 2
∫ 1

0
w(��)− 2w1(0) + �w0(�) (70)
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Remark 4. (a) The results obtained here can be extended to include non-di4erentiable operators.
Indeed, consider the Newton-like method

xn+1 = xn − A(xn)−1(F(xn) + G(xn)) (n¿ 0); (71)

for approximating solutions x∗ of equation

F(x) + G(x) = 0; (72)

where F is as before but the di4erentiability of G : FU (x0; R) → Y is not assumed. Suppose

‖A(x0)−1(G(x)− G(y))‖6 q(r)‖x − y‖ (73)

for all x; y∈ FU (x0; r) ⊆ FU (x0; R), q(0) = 0, and q a monotonically increasing function with q(0) = 0
on [0; R]. Simply add the terms:

∫ r
0 q(t) dt in (7); 2q(�) at the left-hand side of (14) and the

right-hand side of (16); 2q[2�=(2−�)(1− (�=2)n+1)] at the left-hand side of (16);
∫ tn+1

tn
q(t) dt at the

numerator in (17), and q(t∗), q(t∗ + R0) at the right-hand side of (28), (30) respectively to obtain
the corresponding results in this case.

(b) Finally, our results can be extended to the more general case considered in [5], where the
convergence of the Newton-like method

y0 ∈U (x0; R); yn+1 = yn − A(yn)−1(F(yn) + G(yn)) (n¿ 0) (74)

is studied under conditions (3), (4), (73) (with x0 replacing x0) to solve Eq. (52). However we
leave the details to the motivated reader.

Remark 5. The conclusions of Theorem 1 hold if (4) is replaced by the more general condition:

‖A(x0)−1[F ′(x + t(y − x))− A(x)]‖6 Fw(‖x − x0‖+ t‖y − x‖)− Fw1(‖x − x0‖) + Fc0; (75)

where function Fw1 and Fc0 have the properties of Fw0 and Fc respectively, provided that

Fw0(r)6 Fw1(r) r ∈ [0; R]; (76)

and condition (3) by (3′). If Fw1(r) = Fw0(r), r ∈ [0; R] and Fc0 = Fc, condition (75) reduces to (4).
Moreover, if strict inequality holds in (76) we obtain more precise error bounds. Indeed, let us
denote by {sn} the sequence using (75). That is {sn} is given by

s0 = r0 = 0; s1 = r1; sn+1 − sn

=
u(sn)− u(sn−1) + (1− Fw′

1(sn−1)− Fb)(sn − sn−1)
g(sn)

(n¿ 1): (77)

It can easily be seen using induction on n (see also the proof of Theorems 4 and 5) that

‖xn+1 − xn‖6 sn+1 − sn ¡ rn+1 − rn (n¿ 1) (78)

and

‖xn − x∗‖6 s∗ − sn6 r∗ − rn (n¿ 0); sn ¡ rn (n¿ 2); s∗6 r∗; s∗ = lim
n→∞ sn: (79)

Furthermore, condition (75) allows us more Sexibility in choosing the functions and constants. As
an example let us consider the Newton–Kantorovich method and assume (37)–(39). Then we can
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choose: w0(r) = ‘0r, Fw(r) = Fw1(r) = Fw0(r) = ‘r, r ∈ [0; R] and Fb = Fc = Fc0 = 0. Assuming that (46)
and (47) hold we have

rn+1 = rn +
‘(rn − rn−1)2

2(1− ‘rn−1)
and sn+1 = sn +

‘(sn − sn−1)2

2(1− ‘0sn−1)
(n¿ 1): (80)

Condition (76) becomes ‘06 ‘, and in case ‘0 ¡‘ estimates (78) and (79) hold (see also the proof
of Theorem 4).

3. Local convergence of Newton-like methods

In order to cover the local case, let us assume x∗ is a simple zero of Eq. (72), A(x∗)−1 exists
and for any x; y∈ FU (x∗; r) ⊆ FU (x∗; R):

‖A(x∗)−1[A(x)− A(x∗)]‖6 v0(‖x − x∗‖) + (; (81)

‖A(x∗)−1[F ′(x + t(y − x))− A(x)]‖6 v(‖x − x∗‖+ t‖y − x‖)
− v1(‖x − x∗‖) + ); t ∈ [0; 1] (82)

and

‖A(x∗)−1[G(x)− G(y)]‖6 v2(r)‖x − y‖; (83)

where, v0, (, v, v1, ), v2 are as w0, b, w, w1, c, q, respectively. Exactly as in (35) but using (81)–(83)
we can show the following local results for Newton-like methods:

Theorem 6. Assume there exists a minimum solution  ∈ [0; R] of equation

f(h) = 0; (84)

where

f(h) =
∫ 1

0
[v((1 + t)h)− v1(h)] dt + v2(h) + v0(h) + ( + )− 1: (85)

Then, Newton-like method {xn} (n¿ 0) generated by (71) is well de6ned, remains in FU (x∗;  ) and
converges to a solution x∗ of Eq. (72), provided that x0 ∈U (x∗;  ).

Moreover the following error bounds hold for all n¿ 0

‖x∗ − xn+1‖6pn+1; (86)

where

pn+1 =

∫ 1
0 [v((1 + t)‖xn − x∗‖)− v1(‖xn − x∗‖)] dt‖xn − x∗‖+ )‖xn − x∗‖+ ∫ ‖xn−x∗‖

0 v2(t) dt
1− ( − v0(‖xn − x∗‖) ;

(87)

(n¿ 0).
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Remark 6. Note that Theorem 6 can be proved using the weaker conditions

‖A(x∗)−1[F ′(x + t(x∗ − x))− A(x)]‖
6 Fv(‖x − x∗‖(1 + t))− Fv1(‖x − x∗‖) + F); t ∈ [0; 1] (88)

and

‖A(x∗)−1[G(x)− G(x∗)]‖6 Fv2(r)‖x − x∗‖ (89)

for all x∈ FU (x∗; r) ⊆ FU (x∗; R), instead of (82) and (83), respectively, where Fv, Fv1, F), Fv2 are as v,
v1, ), and v2.

Remark 7. As an application let us again consider Newton’s method, i.e., F ′(x) = A(x), G(x) = 0,
and assume

‖F ′(x∗)−1[F ′(x)− F ′(x∗)]‖6 q0‖x − x∗‖ (90)

and

‖F ′(x∗)−1[F ′(x)− F ′(y)]‖6 q‖x − y‖ (91)

for all x; y∈ FU (x0; R).
Then we can set

( = )= 0; v2(r) = 0; v0(r) = q0r; v(r) = v1(r) = qr; r ∈ [0; R]: (92)

Using (85) we get

 =
2

2q0 + q
: (93)

Local results were not given in [5]. However, Rheinboldt [13] showed that under only (90) the
convergence radius is given by

q1 =
2
3q

: (94)

Since in general

q06 q; (95)

we conclude

q16  : (96)

The corresponding error bounds [13] are:

‖xn+1 − x∗‖6 �n; (97)

‖xn+1 − x∗‖6 �1n; (98)

where

�n =
q‖xn − x∗‖2

2[1− q0‖xn − x∗‖] (99)
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and

�1n =
q‖xn − x∗‖2

2[1− q‖xn − x∗‖] : (100)

That is,

�n6 �1n: (101)

If strict inequality holds in (95) then (96) and (101) hold as strict inequalities also (see also Example
3 that follows).

Remark 8. As noted in [1–4,7,15] the local results obtained here can be used for projection methods
such as Arnoldi’s, the generalized minimum residual method (GMRES), the generalized conjugate
residual method (GCR), for combined Newton/:nite-di4erence projection methods and in connection
with the mesh independence principle in order to develop the cheapest mesh re:nement strategies.

Remark 9. The local results obtained here can also be used to solve equations of the form F(x)=0,
where F ′ satis:es the autonomous di4erential equation [4,8]:

F ′(x) = T (F(x)); (102)

where T :Y → X is a known continuous operator. Since F ′(x∗) = T (F(x∗)) = T (0), we can apply
the results obtained here without actually knowing the solution x∗ of Eq. (1).

We complete this section with a numerical example.

Example 3. Let X = Y = R, D = U (0; 1), G = 0, A(x) = F ′(x), and de:ne function F on D by

F(x) = ex − 1: (103)

Then it can easily be seen that we can set T (x) = x + 1 in (102). Hence we set q = e. Moreover
since x∗ = 0 we obtain in turn

F ′(x)− F ′(x∗) = ex − 1 = x +
x2

2!
+ · · ·+ xn

n!
+ · · ·

=
(
1 +

x
2!

+ · · ·+ xn−1

n!
+ · · ·

)
(x − x∗)

and for x∈U (0; 1), ‖F ′(x) − F ′(x∗)‖6 (e − 1)‖x − x∗‖. That is, q0 = e − 1. Using (90) and (91)
we obtain, respectively,

q1 = 0:245252961

and

 = 0:254028662¿q1:

That is, our convergence radius  is larger than the corresponding one q1 due to Rheinboldt [13].
This observation is very important in computational mathematics (see also Remark 8).
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