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Abstract

This paper establishes several results on oscillation of a class of second neutral differential equations with
distributed deviating arguments.
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1. Introduction

The study of the oscillatory and asymptotic behavior of the solutions of neutral differential equa-
tions, besides its theoretical interest, is important from the viewpoint of applications. For example,
neutral differential equations arise frequently in many applications such as population growth mod-
els, distributed networks with lossless transmission lines, control problem (see [4]). There have been
many results on the oscillatory and asymptotic behavior of second-order neutral differential equations,
refer to the monographs of Bainov and Mishev [1] and Erbe et al. [3]. Several papers concerning
neutral equations with distributed deviating arguments have appeared recently, refer to Yu and Fu
[7], Liu and Fu [5], Bainov and Petrov [2] and Wang and Yu [6] and their references cited therein.
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In this paper, we consider the following second-order neutral differential equation with distributed
deviating arguments:

b
[x(¢) + e(O)x(t — 1)]" + / (4, Ox[g(1,&)]da(<) =0, (1)
where © > 0 is a constant; ¢(¢) € C([ty,00),[0, 1]); p(¢t, &) € C([ty,00) X [a,b],Ry), and p(t, &) is not
eventually zero on any [f,,00) X [a,b], t,>1t), R = [0,00); g(t,¢)e C([tg,00) X [a,b],R),
g, &) <t, E€la,bl; g(t,¢) is nondecreasing with respect to ¢ and &, respectively, and lim, .,
infecpap {9(2, &)} = 00; a(&) € ([a,b],R) is nondecreasing, the integral of Eq. (1) is a Stieltjes one.

We restrict our attention to proper solutions of Eq. (1), that is, to nonconstant solutions existing
on [T,00) for T >ty and satisfying sup, r [x(¢)| > 0. A proper solution x(z) of Eq. (1) is called
oscillatory if it does not have the largest zero, otherwise, it is called nonoscillatory.

The objective of this paper is to obtain some general oscillatory criteria of solutions of Eq. (1)
by introducing parameter function and using integral averaging technique. By choosing different
H(t,s), we can obtain various corollaries, namely various conditions under each of which Eq. (1)
has oscillatory solution. The results generalize and improve some known results. For example, in
[7], the following oscillatory criteria of Eq. (1) were obtained.

Theorem A. If

) b
/ / (s, {1 = clgls O} do(&)ds = oo, 2)

then every solution of Eq. (1) is oscillatory.

Theorem B. If there exists a(d/dt)g(t,a) and ¢(t) € C'([ty,0),(0,00)) such that

@ (s)

do(s)g sy | & )

[e’) b
/ [q)(s) / p(s, {1 — elg(s. )]} da(&) —

then every solution of Eq. (1) is oscillatory.

2. Main results

The following theorems provide sufficient conditions on oscillation of solutions of Eq. (1).
Theorem 1. Assume that there exist (d/dt)g(t,a) and function H(t,s) € C'(D;R), h(t,s) € C(D;R),
in which D ={(t,s)|t = s > ty} satisfying

(Hy) H(t,t) =0, t = ty; H(t,s) >0, t > s = to;
(Hy) H/(t,s) =0, H!(t,s) <0, and —H!(t,s) = h(t,s)\/H(t,s), (t,5)€E€D.
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then every solution of Eq. (1) is oscillatory.

Proof. Assume the contrary, then there exists a nonoscillatory solution x(¢) of Eq. (1) on [#, c0),
such that x(¢) # 0 on [fy, 00). Without loss of generality, assume that x(¢) > 0, ¢ > #,. Then, from
lim, o0, infecpq ) {9(2, £)} = 00, there exists a T >t such that

x(t)>0, x(t—7)>0 and x[g(t,&)] >0, t=Ty E€]a,b]
Set

y(t) = x(1) + c(t)x(t — 1), (5)

then, we have that y(z) > x(t) >0, y"(¢) <0, t > Ty, and we can claim that y'(z) >0, ¢t > T,. In
fact, assume that it is not true, then there exists a #; = T, such that y(#;) < 0. According to the
fact of )/(¢) is decreasing, there exists a #, > #; such that y'(x,) <0 and y'(t) < y'(,) <0, t > t,.
Integrating from #, to 7, we have y(¢) < y()+ V'(t2)(t — t2). Thus, we conclude that lim,_,, y(¢)=
—o0, this contradicts y(¢) > 0. From (1) and (5), we obtain

b
0= (1) + / (1, Exlg(,E)] da(E)

=y"(t)+ /ab p(t, O{ylg(t, O] — clg(t, Oxlg(t &) — 71} da(). (6)
Using »'(t) > 0, and y(t) > x(¢), t > t1, we have y[g(¢,&)] = y[g(t, <) — 1] = x[g(¢,<) — 1], thus
V() + /ab p(t, {1 = clg(t, O} ylg(1,)]1da(E) <0, ¢ =n. (7)
Furthermore, using ¢(#, ¢) is nondecreasing with respect to &, we have y[g(t,a)] < y[g(+, &)], thus
V(1) + ylg(ta)] /ab p(t.O{1 —clg(t, O]} da(&) <0, t>1. (8)
Let
()= 0 ©)

Then z(z) > 0. According to the fact that there exists a (d/dt)g(z,a), we obtain y'[g(t,a)] =
(dy/dg)(d/dt)g(t,a), and noting that g(¢, &) is nondecreasing with respect to ¢, g(z, &) < ¢ for € € [a, b],
we obtain y/(¢) < y'[¢(t,a)]. Thus
Jny= 20 YOylgtalytae)
ylg(t,a)] yg(t,a)]

b
<- / PO — elg(t, N} (&) — (L), 1> 1. (10)
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Integrating by parts for any 7 > T > ¢;, and using properties (H;) and (H,), we have

t b
[ ) [ 01— clos. 1 da@)ds
T a
— / t H(t,5)Z'(s)ds — / t H(t,5)g'(s,a)z*(s)ds
T T
— / t H(t,s)dz(s) — / t H(t,5)g'(s,a)z*(s)ds
T T

=H(t,T)z(T) — /Tt h(t,s)\/H(t,s)z(s)ds — /Tt H(t,5)g (s,a)z*(s) ds

t

—H(t,T)z(T) — /

T

2
; h(t,s) L)
[ H(t,5)g'(s,a)z(s) + 2\/@] ds +/T 4g/(s,a) »

which implies that

) ] i

[ ) [ pts. o001 = tats. mpaster - 125

t

2
; : h(t,s)
[\/H(t,s)g (s,a)z(s) + 2\/@] ds

Furthermore, according to (Hy), for #; >y, we have H(t,t;) < H(t, 1), thus

WA(1,5)
49’(S,a)] as

<H(t,T)(T) — /

T

t b
/ [H(m) / p(s. {1 — clgls, ) do(&) -

2
<H(t,t1)2(t1)—/[ H(t,s)g/(s,a)z(s)Jrz%] ds

< H(t,1)z(t) < H(4,00)z(11),

1
H(t: tO ) fo

44'(s,a)

- B hz(t,s)]
H(HO) U / HH(rs) / P, 1 = clo DN} da@) — e | ds

" H(t,s)
H([, tO) a

t b 2
[H(t,s) / (s, {1 — clg(s, ) do(&) — 23 } ds

<Z(t1) +

0]

p(S, {1 = clg(s, O} da(&) ds

5l b
<)+ / / s, {1 — clgls, )T} da(&) ds,

(1)

(12)
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which implies that

1
lim su
t—>oop H(t’ ZO)

t b h2
/to {H(t,s)/a p(s,i){l—c[g(s,é)]}da(@_4g,((i,’sa)) s

1 b
<zt [ [ .01 - clgts 00} do(e)ds < .
fo a
this contradicts (4). Therefore, the proof of Theorem 1 is completed. [

According to the proved process of Theorem 1, we have the following corollary.

Corollary 1. If condition (4) of Theorem 1 is replaced by

. 1 t b
lmsup s [ ) [ p o1 - clgts 01 doe)ds = . (13)
lim sup ILAGD NN (14)

—oo H(tto) Jy 9'(s,a)
then every solution of Eq. (1) is oscillatory.
Remark 1. From Theorem 1 and Corollary 1, we can obtain various oscillatory criteria by means of
the choices of weighted function H(t,s). For example, choosing H(t,s) = (t —s)"" !, t > 5 > ty, in

which m > 2 is an integer, then A(t,s)=(m — 1)(t —s)" 32 t > s > t;. According to Corollary 1,
we have

Corollary 2. If there exists a(d/dt)g(t,a) and an integer m > 2 such that

1 t b
imsup g [ =57 [ p(s {1 - elo(s: ) do@)ds = . (15)
Ot _ eyn—3 ‘
1122213”1_1 /t (tg,(ss’)a) ds < oo, (16)

then every solution of Eq. (1) is oscillatory.
Example. Consider the neutral differential equation
2
() + (1 —e Wt — D] + / e Mt + &) dE=0, 1> 1, (17)
1

where t=1, a=1, b=2, c(t)=1—e"", g(t,E)=t+ & p(t,&) =e**<. By choosing m = 3, then
t

b
lim sup tm%l (t—s)y""! / (s, O{1 — c[g(s, &)} da(&) ds

t—00 to a

1 t
= lim sup p / e’ (t —s5)* ds = oo,
1

—00

then, from Corollary 2, every solution of Eq. (17) is oscillatory.
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Theorem 2. Assume that there exist (d/dt)g(t,a) and function H(t,s)€ C'(D;R), h(t,s) € C(D;R)
such that (Hy) and (Hy) hold. If there exists a function p(t) € C'([ty,00),(0,00)) satisfying

" [h(t,5)p(s) — /H(L,5)p'(s)] ds

W0 SUP 7, 0) o) (5,) <0 (1%)
im sup H(t / H(t,5)p(s) / p(s. 1 — elg(s, )T} do() ds = oo (19)

then every solution of Eq. (1) is oscillatory.

Proof. Assume the contrary, then there exists a nonoscillatory solution x(¢) of Eq. (1) on [#,00).
Without loss of generality, assume that x(¢) > 0, ¢ > #;,. Then from proof of Theorem 1, there exists
a t; =ty such that

b
Z(1) < —/ Pt O{1 = elg(t, )]} da (&) — ¢ (r,a)2 (1), 1> n. (109

Thus
t b
[ o) [ pt.6){1 = elats. 20} oty ds
— /l H(t,s)p(s)Z'(s)ds — /1 H(t,5)p(s)g'(s,a)z*(s) ds
ZH(I,ll)p(ll)Z(tl)—/ VH(8)[h(t,$)p(s) — /H(L,5)p'(s)]z(s) ds

— /t H(t,5)p(s)g'(s,a)z*(s) ds. (20)
Furthermore, we conclude that
t b
[ ) [ w601 = clats. 20} oty ds

< H(t,t)p(t)z(t1)

- ‘ / g [A(t,s)p(s) — \/IWP’(S)]Z
/tl {W(S)g O oo G0 } ’

" [h(t,$)p(s) — /H(t,5)p'(s)]
4 f p(s)g'(s,a)

"t s)p(s) — \/H(t,s)p (S)]2 21
" p(s)g'(s,a)

ds

< H(t,t1)p(t)z(t1) +
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From (21), for ¢ > ¢, > fy, we obtain that

d b
H(1,1) / H(f,S)p(S)/ p(S,é){l—c[g(s’é:)]}do-(é)ds

H(t f0) |:/ /:| |:H(t S)p(S)/ p(s f){l — c[g(_g f)]} do'(f)ds

< [ 0 [ o1 - ot 0 ao(@) 8
(1) e s)pts) — VAP OP
FHG " S P9 5,a) .

noting that H/(t,s) < 0, which implies that

im sup 77— / H(t5)0(5) / p(s, {1 = elg(s, )} do(E) ds
[h(1,5)0(5) — VAE)P ()P
<L glmsu ro)/ p)g5.a) & 22

where L= p(t, )z(t1)+ftt‘ p(s) f p(s, {1 —c[g(s, &)]} da(&) ds. Thus, according to condition (18),
we conclude that

/ H(15)p(s) / (s, {1 — clgls, )} do(E) ds < oo,

lim su
i H( 10)

which contradicts (19). Therefore, the proof of Theorem 2 is completed. [
Remark 2. In Theorem 2, by choosing p(s) = 1, we can obtain Corollary 1.

In the case of

lim su
b H( 0)

/ (t — )" p(s) / p(s, 1 — clg(s. )]} da(&) ds < oo, (23)

we have the following result.

Theorem 3. Assume that there exist (d/dt)g(t,a) and function H(t,s)€ C'(D;R), h(t,s)€
C(D;R) such that (Hy) and (Hy) hold. If H](t,s) is nondecreasing, and there exists a function
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o(t) € C([ty, ), R) satisfying

) ) 1 t b
imint s [ G [ pts, 0 - elats. 0 dot)
/ 2
- [A(t,5)p(s) — \/H(t,5)p'(5)] ds = o(u), u =1, (24)
4()9/(s.0)
o CH(ts)g (s )@’ (s) _
M) , o ST o) =max{e(s),0h (25)

then every solution of Eq. (1) is oscillatory.

Proof. Assume the contrary, then there exists a nonoscillatory solution x(¢) of Eq. (1) on [fy,0).
Without loss of generality, assume that x(¢) > 0, ¢ > ty,. Then proceeding as Theorem 2, there exists
a t; > u =ty such that

t b
/ H(t,5)p(s) / (5. )1 — clg(s, 1} do(&) ds

t h , _ H , / 2 ,
<H(t,u)p(u)z(u)+% (2. ) (?(S)gv, T C(lt)s)p O 4 1)

Furthermore, for ¢t > u > 7, we have

1 ¢ b
. fo)/u !H(t,s)P(S)/a (s, E{1 = c[g(s, &)} da(é)
(s, s)p(s) — VH(,5)p'(5)] N
4p(s)g'(s,a)
H(t,u)
S H(t, to)p(u)z(u). (26)

According to (24) and (H,), we conclude that

1 t

_U)p(s) — VHEHI P |
4p(s)g'(s,a)

b
H(t,5)p(s) / p(s. {1 — clg(s T} do(?)

< H(t,u)

S HG. to)p(u)Z(u) < p(u)z(u), (27)
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which implies that

@’ (u) < p*(w)z*(u).
Let

u(t) = H(ll ) VH(t,8)[h(t,5)p(s) — /H(t,5)p'(s)]z(s) ds,

t

W(t):H(t,to) ’ H(1,5)p(s)g/(s,@)z*(s) ds,

then, according to (20), we have

B0 o)

(1) +w(t) < H(t.1o)

H(t - / Ht,9)0(s) / PG5, {1 — clgls, )1} do(E) ds,

from (24), we have

t b
imint 7 / H(t.5)p(s) / p(s. {1 = clgls, O} da(E) ds > (),

furthermore, we obtain

lim sup / H(t,5)p(s) / P51 — elgls. O} do(&)ds
t—00 H( ZO)
t _ ‘H 2
liminf [A(2,5)p(s) V/ (t,5)p'(5)] ds > o(1)).
i—oo H(t,10) Jy, 4p(s)g'(s,a)
According to (30) and (23), we conclude that
t _ 172
lim inf (A1, 5)p(s) — \/H(4,5)p'(s)] ds < oo,
i—oo H(t,t9) J, 4p(s)g'(s,a)
Thus, there exists a sequence {z,}{° in [#;,00) such that lim,_ t, = oo and satisfying
o L[ ) — VGO
n—oo H(ty, ) 4p(s)g'(s,a) ’

which implies that

lim sup {v(¢) + w(t)} < p(t1)z(t1) — 11m mf

—00

1 t
TS / H(t,)p(s)

b
< / p(s. {1 — clg(s, O} do(&) ds

< p(t)z(h) — o(t) 2 M.

415

(28)

(29)

(30)

3D

(32)
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Then, for any sufficiently large n, we have
ulty) + v(t,) < M, (33)
where M| > M, M and M, are constant. According to definition of w(¢), we have

W/(t) _ /t (Ht/(t’S)H(ta ;(—31)2(: Zg(t’ tO)H(t:S)) p(s)g’(s,a)zz(s)ds,

from H/(t,s) is nondecreasing, and (H,), we have w/(¢) >0, thus, w(z) is increasing, and
lim, .., w(t) = [ exists, where [ is finite or infinite. In the case of / = oo, then lim,_, w(Z,) = oo,
which implies that from (33)

lim v(¢,) = —00 (34)
and

U(tn) | < Ml ,

w(ty) w(ty)
thus, for any 0 < ¢ < 1 and sufficiently large n, we have

In
W) <o, (35)
w(ty)

On the other hand, by using the Schwartz inequality for # > #;, we obtain

2
0 <o’(t,) = m {/ VH(t,s) [h(ln,S)P(S) — VH(ty,5)p (S)} Z(S)dS}

2
< { T / H(ty5)p(s)g (s, @)z (s)ds}

" 1 /’" [A(tns 5)p(s) — /H (tn 5)p’ (S)]2 ds
H(ty, 10) J,, p(s)g'(s,a)

1 " [A(tn, $)p(s) — /H (ta, 5)p (S)]2

) ) ), ()9 (s.a)
Then
1) _ / [t $)0(5) — /A0 0P o)
S i) H(rn,zo) o()g/(s,a) s

It follows that from (31)

0 < lim V() < 00. (37)

w00 w(ty)
According to (35), we have
u(t,) _ 5 v’(tn)

n— 00 W(tn) n—o0 W/(t )

e—1<0,
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then

P 2000

=00 W(tn) n—0o0 W/(tn)

=2 lim v(t,)(e—1)=00
n—oQ

which contradicts (37). Thus, we have lim;_.., w(¢) =/ < co. Furthermore, according to (28), we
conclude that

lim 1 H(t S)g (s, a)(P+(S)
t—oo H(t,ty) p(s)
< ILOO H(Z %) / H(t,5)p(s)g'(s,a)z*(s) ds = 11rn w(t) < oo, (38)

which implies that

lim ! " H(t,5)g'(s, a)<P+(S)
(=00 H(t: tO) p(S)

o 1 T[T Hts)g (s, a)<p+(S)
=M H ) [/ +” o(5)

"H(t,5)g' (s, @)@ (s)
t p(s)

which contradicts (25). Therefore, the proof of Theorem 3 is completed. O

~

ds 4+ lim w(?) < oo,
—00
Remark 3. In Theorem 3, by choosing p(¢) = 1, we have the following result.
Corollary 3. Assume that there exist (d/dt)g(t,a) and function H(t,s) € C'(D;R), h(t,s) € C(D;R)

such that (Hy) and (Hy) hold. If H/(t,s) is nondecreasing, and there exists a function ¢(t)€
C([ty,0), R) satisfying

W(1,5)
h}Eg{}fH(’o)/ [ (« S)/ pls, {1 —clg(s, 5)]}d0(é)—m ds = o(u), (39)
lim s / H(5) (5 ) (5 ds =00, :(5) = max {g(5), 0}, (40)

then every solution of Eq. (1) is oscillatory.
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