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Abstract

We will provide a short introduction to the calculus on a time sdala order to make the reader familiar with
the basics. Then we intend to have a closer look at the so-called “cylinder transfpmtiich maps a positively
regressive functiop : T — R to another functiorp : T — R. It will turn out that, under certain conditions, this
cylinder transform acts as an isometry between two normed spaces. Therefore, we obtain a two-fold generalization
of the well-known Banach and Hilbert spaces of functions in continuum analysis. Finally, we shall give some
examples concerning this structure of corresponding spaces—for instance an example of orthogonal polynomials
on equidistant lattices. In order to achieve this, we shall state a theorem on how to take orthogonality theory over
from a Hilbert space to its corresponding Hilbert space.
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1. Motivation of the subject

In order to solve analytic Schrédinger difference equations, the concept of unitary linear lattices was
introduced in7]. Let us briefly refer to the results which we had prepared thel@]Jnve focussed first
onregular latticesby which we understand sefsc R such that there exists a bijective mapz — T.

For abbreviation, we have defined:= y(n), n € Z.
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Let moreover(e, ),z be an orthonormal basis fof(7) and let

ﬁ@y:{Feﬂ@)

o
F= )" ltapr—tal"2f t)en, f:T—><E},

n=—0oo

where the scalar product iﬁl(Z) is induced by the standard onel#(Z). There is a one-to-one corre-
spondence betweéﬁ(l) and the space of all square integrable functions on theTgrid

L%mz{fw:+@

Z [tn1 — tul f (&) f(t0) < OO} .

n=—0oo

The induced scalar product for any two element&3dT) is

o0

(fr8) =Y ltnp1 —tal f1)g(ta).

n=—oo

As for the corresponding!-space, we had chosen

3 |zn+1—zn||f<tn>|<oo}.

n=—0oo

ﬁqy:bwvec

As for L?(T), we define shift operatokéresp W on their maximal definition range®(V) ¢ L?(T) and
D(W) C L*(T) by

V@) = fta-1),  (WHW) = ftay1) Vn € Z.
Let nowT be a regular lattice. The uniquely defined functionT — T, fixed by
U(ty) =tyy1, U “(tny1) =t, Vn€Z,

was referred to iff7] as generating function of the lattide Moreover, we calll’ a unitary lattice if the
adjoint V* of V and the operatdd fulfill

Vio=pWo=pV 1o

for any functione : T — C with compact supporf > 0 denoting a universal constant.
In [7], a characterization property of unitary lattices could be stated: L& — T be the generating
function of aregular lattic&. The latticeT is unitary if and only if there exists a constant 0 such that

lu(x) —x|=plx — u_l(x)| Vx e T.

The structure of unitary linear lattices turns out to be quite sophisticated. However, these lattices and the
spectral theory of the linear difference operators behind can still be generalized. They are based on the
g-linear grids and equidistant lattices from the related “quantum calculus”.

Investigations on discrete Schrodinger equations in context dititergraduate Research Program
AbiTUMathhave led to the question of how to extend Schrodinger theory to discrete structures which
are even more general than those of unitary linear lattices. From the level of difference operators, this
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means moving the classical Askey—Wilson divided difference operator setting to a more general type of
difference operators. An essential key to this understanding lies in the so-called time scale analysis. In
the sequel, we will deal with the concept of corresponding Banach spaces on time scales.

The organization of this article shall be as follows: a short introduction to time scale calculus is provided
in Section 2. The concept of exponential functions and positive regressivity is referred to by Section 3. In
Section 4, we interpret the so-called cylinder transform as an isomorphism. A two-fold Banach structure
is elucidated in Section 5. Some concrete examples are presented in Section 6.

2. A short introduction to time scales calculus

A time scaleT is any closed (nonempty) subset of the real numbers. Frequently considered examples
of time scales are the real numbérsthe integers or theg-linear gridgZ where O< g < 1. Those time
scales lead to different types of “calculus”, for instance continuum calculus, difference calculus and the
already mentioned quantum calculus. (An introduction to quantum calculus can for instance be found in
[6].) However, all those different calculi can be summarized under the gdireeascale calculus-or
a thorough introduction to this special field of analysis, the reader is referred to the [Bg@lkStefan
Hilger, the author of the fundamental arti¢tg, initiated the research on time scales in 1988. A major
advantage of the time scales point of view is that, no matter what strange lattice or strucRiomelis
given, one can apply quite general concepts. Therefore, let us now revise the basic ideas behind the time
scale approach.

Given a pointx on a time scal&’, we state the following fundamental

Definition. The “right-shift” ¢(x) and the “forward graininesgi(x) are given by
cx)=inf{r e T|t>x}, ux)=oa()—x.

Similarly, the “left-shift” p(x) and the “backward graininess{(x) are defined by
px)=supreT|t<x}, vx)=x—p).

Points fulfilling u(x) = 0 are calledight-denself u(x) > 0, x is said to beight-scattered If moreover
v(x) = 0, x is calledleft-denseotherwisdeft-scattered
According to this definition, we can meet the upcoming four essentially different scenarios:

e Xisdenses= p(x) =x = a(x).

e Xis left-dense and right-scattereg= p(x) = x < a(x).

e Xis left-scattered and right-dense= p(x) <x = a(x).

e Xisisolated<= p(x) <x <a(x).

Remark. All the above expressions are well defined because the time Bdaldefined to be alosed
subset of the real numbers.

Now, given a functionf : T — R, we want to define a@erivative—generalizing the continuum
derivative f'(x) on T = R and the difference operatarf (x) = f(x + 1) — f(x) on T = Z. This is
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achieved by the so-calletklta-derivative

) fl) = if u(x) =0,
i) =1 flol) — fx) it ju(x) > 0. (1)
p(x)
In an analogous way, one can defineadbla-derivativeby
v f1(x) if v(x) =0,
)= { J @) = flp(x) if v(x) > 0.
v(x)

generalizing the “backward” difference opera¥f (x) = f(x) — f(x —1) on T = Z. To become more
familiar with these derivatives, let us consideg-near grid.

Example 1. Let T = R, = {£¢" |n € Z}, where O<¢q < 1. Then the nabla-derivative of a function
f Ry — Ris computed via

flgx) = f(x)

P if x>0,

Ve =1 fx) if x=0,
flg™) — fx) .

I if x<O,

hence equal to the usugbifference operator o . On the negative part of this time scale, theifference
operator coincides with the delta-derivative.

Remark. In the above, we understand by

P = tim L9 =IO
y—x xX—=y
a generalized continuum derivative. Hence, the delta-derivative exists at a right-dense point provided the
function f : T — R is “differentiable” at this point, i.e., the above limit exists. For the existence at a
right-scattered point we must guarantégcontinuous at that point. (And analogous conditions hold for
the existence of V.)

To see where the differences to the continuum calculus arise, let us, e.g., formulptedhet rule
for derivatives.

Proposition 2. Let f, g : T — R be differentiable function@n the time scale senséfhenfg : T — R
is differentiable satisfying

(f9)?(x) = fA(x)g(x) + f(a(x))g” (x),
(f9)V ) = fYx)gx) + flp(x)g" (x).

Note that some shifts in the argument appear, like in the classical equidistant Gasefbeing of
course a special case of our general considerations.
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From now on we will concentrate on the calculus involving the delta-derivative, the so-delted
calculus

Having defined derivatives, the next question is how to defitegrals The easiest way of doing this
is just to “invert” the derivative operation. Therefore we define the (Caudélya-integralof f : T — R
via

X A
(/ f(t)At) = f(x) VxeT. )

But when does the integral exist? This “primitive” integral can be shown to exist provided the fuhction

is rd-continuousi.e.,f is a regulated function and continuous at right-dense points. (“Regulated” means
that, at each point € T, right-hand and left-hand limits exist and are finite.) However, there have already
been some deeper investigations concerning the theory of integration on time scales. In fact, one can
define bothRiemanrandLebesguentegrals on general time scales, see [B}.in particular the whole
corresponding continuum theory is preserved.

3. Exponential functions and positive regressivity

Let us consider thdynamic initial value problem

A =p)f(x) V¥xeT, f(xo)=1, (3)

wherep : T — Ris a given function. If2] it is shown that (3) has a unique solutigiix) = e, (x, xo)
if the functionp is rd-continuous andegressivei.e.,

1+ u(x)p(x) #0 Vx eT. (4)

Under these conditions the solution is explicitly given by

ep(x, xp) = ef?o DA Vx €T,
where thecylinder transforn,(p) = p is defined as follows:

) JID(X)l if u(x) =0,
&u(p)(x) = 1 1og(d + u(x) p(x)) if 1) > 0. (5)
u(x)
(Here logz) denotes the principal logarithm ot~ 0.) Sincee, (x, xo) generalizes the continuum solution

Fiay =i P

of (3), the functione, (x, xo) is calledexponential functionin the special casp = 1 we obtain the
generalization of the “ordinary” exponential functiofié°.

Having a close look at the definition of the cylinder transform, we recognize that the regressivity
condition (4) is not only sufficient, but also necessary. Concerning the oscillation behayjaioko),
one can easily prove the following:
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Proposition 3. Ifwe havel+up > 0onT, then the exponential functionis positive., e, (x, xo) >0 Vx €
T. If contrarily 1 + up <0 on T, then the time scal@ is isolated and the exponential function changes
sign at every point(In general we havee,(x, xo) # 0onT.)

Although the proof for this statement is quite simple, e.g., given in the [joket us rather illustrate
it.

Example 4. LetT = Z. Then the constant functignx) = Aisregressive iff. # —1. The corresponding
exponential function with initial pointg = 0 can be computed easily, since the dynamic condition in (3)
can be rewritten as

fe(x) = A+ pux)p(x)fx) VxeT
in this case simplifying to
fx+1D)=1A+Df(x) VxeZ
The solution of this last equation is just
fEO=A+D"fO) =Q0+n"

Here the exponential functian (x, 0) = (1 + 4)* clearly satisfies the assertions of the proposition.
Functionsp : T — R fulfilling

1+ ux)px)>0 VxeT (6)

are calledpositively regressiveConsidering those functions as “comfortable” is quite straightforward
since their exponential functian, (x, xo) is positive—preserving the continuum property.

Definition. We denote by’(T) the set of all positively regressive functiops T — R, furthermore by
2+ (T) the set of all functiong e I'(T) which arein addition rd-continuous. Here we should remark
that we understand by a (positively) regressive funcigust one satisfying property (4) resp. (6), not
necessarily rd-continuous. (In this way, we differ from the original definition givg@]in Now, given
functionsp, ¢ € I'(T) and an arbitrary scalare R, we define the so-called “circle-plus” addition via

(Pp®q)(x)=px)+qx)+pux)p(x)gx) VxeT (7
and the so-called “circle-dot” multiplication via
ap(x) if u(x) =0,
2@ p(x) = { I+ p(x)px))* —1 it 1) > 0. (8)
u(x)

Remark. The®-multiplication can still be generalized t@aproduct of a (general) functiofi: T — R
and a functiorp € I'(T) in a pointwise sense:

(14 p(x)p(x)/ ™ -1

fOpKx)=f(x)0Opk)= { u(x) if u(x)>0,
S(x)px) if u(x)=0.
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Notice that the product © p is noncommutativea-or the question of the usefulness of this definition
we refer the reader to artic]é] about Gaussian bells on time scales. Anyway later on, when considering
orthogonal polynomials on time scales, we will make use of this more general definition.

Akin-Bohner and Bohner have discoveredihthat the se#™ (T), supplied with the additioss and
the scalar multiplicatior®, constitutes a real vector space™, @, ©). That is the starting point of our
investigations. We want to generalize this result in view of taking over many spaces of functions we know
from the continuum setting to the time scales setting—involving positive regressivity. A first step towards
this goal is the upcoming result.

Theorem 5. The setr'(T), supplied with® and ®, is also a real linear spaceérl’, ®, ©)—generalizing
the space7 (R) = {f | f : R — R} from the continuum scenario

Proof. We have to show that, @) is a commutative group, furthermore thats closed with respect
to the scalar multiplicatio®. In addition, we must prove the distributive laws to be true, as well as the
properties 1o p=p Vp € I'(T) and

1O BOp)=@hOp Vpel(l). 9)

Let us just show (9), which is done in a straightforward way—same as all the other properties follow
directly from the definitions.

At right-dense points € T, assertion (9) is clearly fulfilled. Therefore, assunie) > 0. Then the
left-hand side yields

o _ ﬁ o _
20 (B0 po) = LHHOFO P —1_ (A+p)p())" —1
uix) u(x)

whereas the right-hand side gives us
(L4 px)pe)™ —1

p(x)
But those expressions coincide by a power law, proving (9).

(@B) © p(x) =

In the next section, we are going to pay some attention on properties of the cylinder transform and to
see how they can be exploited.

4. The cylinder transform as an isomorphism

The first result we prove next about the cylinder transform concerns the fact that this operator is
one-to-one.

Lemma 6. Assume? is some set of regressive functiops: T — R. Then the cylinder transform
&t S — () is bijective

Proof. Let p,q € & fulfill p # g. Then there is at least one pointe T, wherep(x) # g(x). If this
pointis right-dense, the statement will follow at once as the cylinder transform coincides with the identity
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mapping at right-dense points. So let us supposeight-scattered, i.ey(x) > 0. Now we have

log(1 + p(x) p(x)) _log(1 + u(x)q(x))
o Gulg)x) = .
u(x) w(x)

But since the principal logarithm is one-to-one, we must have

log(1 + u(x) p(x)) # l0g(1 + u(x)g(x))
and thereforgp (x) # g (x)—proving the statement.]

Su(p)(x) =

After this simple proof, let us assume we have some (real) vector $pace, -) of functions on a time
scale. The next theorem shows that this space corresponds to another line@Vsgace) of positively
regressive functions—the cylinder transform acting asamorphisnbetween those spaces.

Theorem 7. Let(f/, +, -) be a vector space of functions: T — R on a time scaleThen defining the
set V of positively regressive functions by

peVe=jpeV, (10)

we obtain another vector spac®, &, ®). The cylinder transforrriu S (V,9,0) — (‘7, +,-) is an
isomorphism between these spaces

Proof. To see tha¥/really consists of positively regressive functions, we must first show that' (T) —
Z (T) is onto. In order to do this, lef : T — R be arbitrary. Then defing : T — R by

Qi) f(x) _ 1

_ — 1
P === 5w

atright-scattered points, otherwisepgx )= f (x). This functionpis well defined and positively regressive
by construction. Furthermore we hagg(p) = f, which had to be shown. Now Lemma 6 tells us that
¢,V — Vis bijective.

It remains to show tha, is linear. But this is again straightforward by the definition of the cylinder

transform; let us just consider a right-scattered poirt T, where¢, can be rewritten in a “discrete”
sense:

log[(1 1
(20 p) ® (BO q)(x) = AT HD© p%))( + u(x)f © q(x))]

_10g1(1 + u(x) p(x))*] + 10g[(1 + p(x)g (x))"]
p(x)
=&, (P)(x) + fEu(q) ().

Since this holds for whatever, ¢ € V andq, € R, we are done. O

Remark. The statements in Theorem 7 could have been formulated the other way round, i.e., for every
vector spacéV, @, ©) of positively regressive functions there is a corresponding @het, -). The
inverse cyllndertransforrﬁ‘1 V — V is an isomorphism. That shows that there is really a one-to-one

correspondence between the spa¢esdV .
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Finally, let us give three examples illustrating this correspondence, two of them giving a hint on what
still remains to be worked out.

Example 8. Let V be the vector space of functions on atime sdalee.,V = % (T). Theorem 7 shows
that this spacéZ (T), +, -) corresponds to the spac¢g(T), @, ®) of positively regressive functions.
They both generalize the continuum spacer).

The next example concerns the generalization of the Banach $@&ceb], ||.|lo) Of continuous
functions on a compact intervat, b] C R.

Example 9. Let V = Cqla, b] be the vector space of rd-continuous functions on a finite interval
[a, b] C T. It corresponds to the linear space™ ([a, b]), ®, ®) which we defined before. (The cylinder
transform preserves rd-continuity.)

The final example treats the two-fold generalization of the Hilbert sp&¢&) of square integrable
functions (resp. equivalence classes of functions).

Example 10. ConsiderV = L2(T), whereL2(T) denotes the set of all square integrable functions with
respect to the (Lebesgue) delta-integral. Then define {p : T — R|p € L%(T)}. Again we have a
one-to-one correspondence.

The space/ = Cgla, b] in Example 9 is a normed spac¥, ||.||~). Using standard arguments of
functional analysis, one can show that itisnpletei.e., a Banach space. Analogously, the spaed.2(R)
in Example 10 is an inner product space, supplied with the inner product

(fog) = /T F()2()Ax.

Indeed it is a Hilbert spacéV, (., .)). Are the corresponding spaces also Banach resp. Hilbert spaces?
We shall give a positive answer to this question.

Remark. One of us (Moritz Simon) gave a direct analytical proof of the fact that([a, b)), ®, ©),
supplied with the normip||, = [ pll~. is @ Banach space, sf&}. However, this proof turns out to be
rather tedious. In the next section we will establish a more general proof.

5. A two-fold Banach structure
The following theorem provides the main result of this paper:

Theorem 11. Let (V, +, -, |l.|) be a normed space of functions on a time scaléThen the space
(V, @, ©) of positively regressive functiongefined by

peVepeV,
is also a normed spad¢, ||.||,), where the norm is given by

Iplu=lpl VpeV. (11)
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Therefore the cylinder transform yields an isometty : (V, |.]l,) — (V, II.ID- Moreovet if the space
(V. |I.I) is completei.e., a Banach spacehen(V, I.1l,) is also a Banach spacéA similar statement
holds when interchanging V arid, again pointing out the bijective correspondence

Proof. Let us first show thaj.||, really constitutes a norm ofV, ®, ©). By Theorem 7, the cylinder
transform satisfies the following properties:

¢u(p) =0 p =0,

la@p)=al(p) VpeV, aeR,

Elp®q)=Cu(p)+Eu(g) Yp,geV.
Taking furthermore into account thgt|| is a norm onV, we directly obtain the three axioms for

|.Il,—guaranteeing it is a norm. That shows the first part of the theorem. (The “isometry” statement
is simply fulfilled because of the construction|pfl,.)

Now supposeV , ||.||) is complete. Letpy),cn be a Cauchy sequencednSince , is an isometry, this
is equivalent to the fact thap,),.c;, i.e., the sequence of the cylinder transforms ofjihgis a Cauchy
sequence itV. By the completeness of, that sequence must converge to some elenfieatV —with
respect tg|.||. Now, as¢, : V — V is bijective, we can fingp € V such thatf = p. Again using the
isometric argument, the convergenge— p is equivalent to

Ilpn©ply — 0 (12)
asn — oo. Finally (12) shows thatV, ||.||,) is complete, i.e., a Banach space.

Let us consider some examples one more time, in order to take benefit from the results of this theorem.

Example 12.Again consider the Banach spac€qla, b], ||.]l0). Now Theorem 11 guarantees
(%" ([a, b]), |I.Il,) is also a Banach space, whéiré, is given by

Iple=Plsc Vp € % (la,b)). (13)

As was indicated, we do not need a direct proof of the completeness.

Example 13. Conside = L2(T) from Example 10. The Banach space of positively regressive functions
we obtain here is indeed a Hilbert spage= T2(T), (., .),)» Where the scalar product is given by

(P )= (5. = A 5(¥)d(x)Ax. (14)

Even more generally, fap € [1, co), we know from Lebesgue theory on time scales that the vector space
L?(T)={f € T||f|?integrable, supplied with the norm

1/e
I flle = (/T If(X)I“’AX) (15)

is a Banach space (which has to be read in an “almost everywhere” sense). Each @fthepaces
corresponds to a Banach space of positively regressive functions—dendtéd by



A. Ruffing, M. Simon / Journal of Computational and Applied Mathematics 179 (2005) 313-326 323

After all, we may conclude that a generalization of continuum vector spaces of functions to the time
scales setting cannot be achieved in a “unique” sense. Rather one otttaoéodd structure of spaces:
For every continuum space there seems to be, on the one hand, an “ordinary” vectaiVspace of
functions on a time scale, on the other hand, a “strange” linear spaee, ©) of positively regressive
functions on the same time scale. Theorem 11 guaranteeg tmsuserves all the topological properties
of V—and vice versa. Indeed, they canithentifiedin some way, being (isometrically) isomorphic. Quite
an advantage of this two-fold structure lies in the following rationale:

Having established analytic results in the spaéeone can“translaté the results to V-and vice
versa

This is of particular interest when it comes to lookingpathogonal polynomialen time scales. One
has to consider two Hilbert spacds’(T) and7T2(T). In the following section, we will give an example
on the “translation process” between those two spaces.

6. Some concrete examples

An example concerning the difference between the spaggs,@] and %™ ([a, b]), Which is due to
the cylinder transform, is given ii8]. There it is worked out in detail that the functigitx) = ¢,(x, 0)
on the time scald = ZN [0, N] whereN >2—refer to Example 4—is positively regressive/ifs — 2
and/ # 1. Now for 1 € (-2, —1), the supremum norm dfis equal to 1 all the time. On the contrary,
the u-norm off diverges ad. — —2, i.e.,

A—>—2
lles(., O)H,u — Q.

That already reminds us to be careful comparing the spaaadV . Let us consider a situation involving
integrals.

Example 14. Let T = Np. Then a “Gaussian bell” on this time scale can be definedev® = 1 and
E4(x) = ©(x © 1)E(x), i.e.,—after some algebraic transformations—

Ex+1)=1+1) "E(x) Vx e Np.

(For a thorough treatment of these generalized Gaussian bells, we recommend to consider the recent
article[4], in which several properties of those functions are worked out. In fact, sufficient and necessary
conditions for the square integrability of a Gaussian bell on a time scale are provided.) A solution to this
recurrence relation is explicitly given by

E(x) =2 vxeT. (16)

In [4] it is shown thatE e L2(T), which can also be seen directly. But what about the corresponding
spacel'%(T)?
By construction we havié € T2(T), wheref = f;l(f) simply denotes the inverse cylinder transform.

Can we also prove e T2(T), being equivalent t& € L2(T)? The cylinder transform of the functidh
is

éu(E)(x) = |Og(1 + E(x)) — |Og(1 4 2x(1—x))‘
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For largex, we haveE(x) ~ 0 and thus obtaifE(x) ~ E(x) by the Taylor expansion of the logarithm.
In fact, this asymptotic behavior guarantées T2(T), however, not going into thes-details at this
point. Note that considering a more general time scale, we will usually not result in a similarity like that.
The following treatment is going to be more challenging. We shall consider orthogonal polynomials
on an equidistant lattice. The question is how to take over resuli€6h) to the corresponding space of
positively regressive functions.
To prepare the next theorem, assu@®g), n, are orthogonal polynomials (each of exact degrge
with respect to some weight functign: T — R, i.e.,

/ P,(x)P,(x)p(x)Ax =0 Vn # m. a7
T

The idea is to take the inverse cylinder transfornPpif, wherey = ,/o. If we denote

n

Po(x) =) oux®,
k=0
then we obtain

n

EM P (x) = (EB Tk @xk) © i (x)

k=0
because of the linearity of the inverse cylinder transform. (The definitiép should be clear—we made

use of the generab-product.) The corresponding weight function is indgest é;l(w). However, the

“polynomials” in the sense of2(T) are no more polynomials as we know them; they rather have to
be understood in the senseayeratorsworking on the ground statg. Let us denote those “operator
polynomials” by #,. Now define the operatot’, having a domain which is dense #2(T), via the
relation

Ipx)=x0Opkx) VxeT.

Using this relation, the operator polynomia), can be put into another form, namely

Pn (1) = P i © 2%, (18)
k=0
Representation (18) of the “polynomials” in the positively regressive sense finally shows us the link to

the original scenario. To round this up, let us remark that one might also think of the polyn@niajs
as operator®, (X) working on the ground staig, in detail

n

Py(X) =) o - XF, (19)
k=0

where the operataX f (x) = xf (x) Vx € T is densely defined if.%(T). Representations (18) and (19)
make the correspondence even more understandable. However, notice that (18) is a necessary operatc
representation, whereas (19) is not necessary.
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Theorem 15. Assume P,),,cn, are orthogonal polynomials with respect to some weight funatipr®
in L2(T). Then denotingP, (x) = Yo aix® ¥n € No, we obtain“orthogonal operator polynomials
2, (%) with respect tol'?(T), working on the ground state = 5;1(\/6). They are explicitly given by
(18).

Proof. In principle, everything has been shown above. The main reason for the possibility of calculations
like those lies again in the fundamental theorem on the Banach resp. Hilbert correspondence.

Remark. The “orthogonality” of the operator polynomialg, should be understood by their action on
the ground state:

Py L Py Vn#Em = (P, Pn(X)¥), =0 ¥n #m.

An interesting question might be whether one could introduce a scalar product on some space of operators
via this relation. Anyway, one cannot consider a “weight functign’= ¥2. Hence this observation
encourages us to consider for instatedder formalismgenerated by some ground states rather than
Gram-Schmidt orthonormalization with respect to some weight function.

To sum up, we give an example on how to apply Theorem 15, which was originally considered in
context of[7]. It concerns equidistant lattices, as already mentioned.

Example 16.Let T = y — hNg, whereis >0 andy = 1/ ha. Hereo > 0 has to be chosen such that

«~1 € hN. Then the polynomial#l,, (x) = (—ha)"C\* (a — x/ h), where theC\*’ denote the well-known
Charlier polynomials, are orthogonal d@rnwith respect to the weight functiop given by

n

o(y —nh) = ]_[ [1—ah(y — k)] Vn e No.
k=1

Now the theorem yields that the operator polynomizls(%) are “orthogonal” inT’2(T) with respect to
some ground stat®. This ground state is explicitly computed as
gvoly—hn) _ 1

Y(y — hn) = — Vn € Np.

Theorem 15provides a general correspondence statement, but the computation in special cases is not a
clear as the correspondence itself—one of the rare cases where the abstract theorem is easier to understar
than concrete examples.

In any case, it is still an open question, which of the two Hilbert spaces is more likely to deliver a
sufficient theory of orthogonal function systems.

7. Future perspectives

A main perspective will be the extension of the considered structures to the theory of orthogonal
polynomials. A main branch of these future investigations shall deal with the question of how to classify
different orthogonal function systems in Hilbert spaces of time scale analysis. Fundamental results in
this direction will also shed some more light on the question of how to generalize Schrédinger’s equation
within the framework of time scale analysis.
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