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Abstract

We will provide a short introduction to the calculus on a time scaleT, in order to make the reader familiar with
the basics. Then we intend to have a closer look at the so-called “cylinder transform”�� which maps a positively
regressive functionp : T → R to another functioñp : T → R. It will turn out that, under certain conditions, this
cylinder transform acts as an isometry between two normed spaces. Therefore, we obtain a two-fold generalization
of the well-known Banach and Hilbert spaces of functions in continuum analysis. Finally, we shall give some
examples concerning this structure of corresponding spaces—for instance an example of orthogonal polynomials
on equidistant lattices. In order to achieve this, we shall state a theorem on how to take orthogonality theory over
from a Hilbert space to its corresponding Hilbert space.
© 2004 Elsevier B.V. All rights reserved.
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1. Motivation of the subject

In order to solve analytic Schrödinger difference equations, the concept of unitary linear lattices was
introduced in[7]. Let us briefly refer to the results which we had prepared there: In[7], we focussed first
on regular latticesby which we understand setsT ⊂ R such that there exists a bijective map� : Z → T.
For abbreviation, we have definedtn := �(n), n ∈ Z.
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Let moreover(en)n∈Z be an orthonormal basis forl
2(Z) and let

l2T(Z) :=
{
F ∈ l2(Z)

∣∣∣∣∣F =
∞∑

n=−∞
|tn+1− tn|1/2f (tn)en, f : T → C

}
,

where the scalar product inl2T(Z) is induced by the standard one inl
2(Z). There is a one-to-one corre-

spondence betweenl2T(Z) and the space of all square integrable functions on the gridT,

L2(T)=
{
f : T → C

∣∣∣∣∣
∞∑

n=−∞
|tn+1− tn|f (tn)f (tn)<∞

}
.

The induced scalar product for any two elements inL2(T) is

〈f, g〉 =
∞∑

n=−∞
|tn+1− tn|f (tn)g(tn).

As for the correspondingL1-space, we had chosen

L1(T) :=
{
f : T → C

∣∣∣∣∣
∞∑

n=−∞
|tn+1− tn| |f (tn)|<∞

}
.

As forL2(T), we define shift operatorsV resp.Won their maximal definition rangesD(V ) ⊂ L2(T) and
D(W) ⊆ L2(T) by

(Vf )(tn) := f (tn−1), (Wf )(tn) := f (tn+1) ∀n ∈ Z.

Let nowT be a regular lattice. The uniquely defined functionu : T → T, fixed by

u(tn)= tn+1, u−1(tn+1)= tn ∀n ∈ Z,

was referred to in[7] as generating function of the latticeT. Moreover, we callT a unitary lattice if the
adjointV ∗ of V and the operatorW fulfill

V ∗�= �W�= �V −1�

for any function� : T → C with compact support,�>0 denoting a universal constant.
In [7], a characterization property of unitary lattices could be stated: Letu : T → T be the generating

function of a regular latticeT. The latticeT is unitary if and only if there exists a constant�>0 such that

|u(x)− x| = � |x − u−1(x)| ∀x ∈ T.

The structure of unitary linear lattices turns out to be quite sophisticated. However, these lattices and the
spectral theory of the linear difference operators behind can still be generalized. They are based on the
q-linear grids and equidistant lattices from the related “quantum calculus”.
Investigations on discrete Schrödinger equations in context of theUndergraduate Research Program

AbiTUMathhave led to the question of how to extend Schrödinger theory to discrete structures which
are even more general than those of unitary linear lattices. From the level of difference operators, this
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means moving the classical Askey–Wilson divided difference operator setting to a more general type of
difference operators. An essential key to this understanding lies in the so-called time scale analysis. In
the sequel, we will deal with the concept of corresponding Banach spaces on time scales.
The organization of this article shall be as follows: a short introduction to time scale calculus is provided

in Section 2. The concept of exponential functions and positive regressivity is referred to by Section 3. In
Section 4, we interpret the so-called cylinder transform as an isomorphism. A two-fold Banach structure
is elucidated in Section 5. Some concrete examples are presented in Section 6.

2. A short introduction to time scales calculus

A time scaleT is any closed (nonempty) subset of the real numbers. Frequently considered examples
of time scales are the real numbersR, the integersZ or theq-linear gridqZ where 0<q <1. Those time
scales lead to different types of “calculus”, for instance continuum calculus, difference calculus and the
already mentioned quantum calculus. (An introduction to quantum calculus can for instance be found in
[6].) However, all those different calculi can be summarized under the generaltime scale calculus. For
a thorough introduction to this special field of analysis, the reader is referred to the books[2,3]. Stefan
Hilger, the author of the fundamental article[5], initiated the research on time scales in 1988. A major
advantage of the time scales point of view is that, no matter what strange lattice or structure onR one is
given, one can apply quite general concepts. Therefore, let us now revise the basic ideas behind the time
scale approach.
Given a pointx on a time scaleT, we state the following fundamental

Definition. The “right-shift” �(x) and the “forward graininess”�(x) are given by

�(x)= inf {t ∈ T | t > x}, �(x)= �(x)− x.
Similarly, the “left-shift” �(x) and the “backward graininess”�(x) are defined by

�(x)= sup{t ∈ T | t < x}, �(x)= x − �(x).

Points fulfilling �(x) = 0 are calledright-dense. If �(x)>0, x is said to beright-scattered. If moreover
�(x)= 0, x is calledleft-dense, otherwiseleft-scattered.
According to this definition, we can meet the upcoming four essentially different scenarios:

• x is dense.⇐⇒ �(x)= x = �(x).
• x is left-dense and right-scattered.⇐⇒ �(x)= x < �(x).
• x is left-scattered and right-dense.⇐⇒ �(x)< x = �(x).
• x is isolated.⇐⇒ �(x)< x < �(x).

Remark. All the above expressions are well defined because the time scaleT is defined to be aclosed
subset of the real numbers.

Now, given a functionf : T → R, we want to define aderivative—generalizing the continuum
derivativef ′(x) on T = R and the difference operator�f (x) = f (x + 1) − f (x) on T = Z. This is
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achieved by the so-calleddelta-derivative

f �(x)=
{
f ′(x) ≡ if �(x)= 0,
f (�(x))− f (x)

�(x)
if �(x)>0.

(1)

In an analogous way, one can define anabla-derivativeby

f ∇(x) ≡
{
f ′(x) if �(x)= 0,
f (x)− f (�(x))

�(x)
if �(x)>0,

generalizing the “backward” difference operator∇f (x)= f (x)− f (x − 1) onT= Z. To become more
familiar with these derivatives, let us consider aq-linear grid.

Example 1. Let T ≡ Rq = {±qn |n ∈ Z}, where 0<q <1. Then the nabla-derivative of a function
f : Rq → R is computed via

f ∇(x)=




f (qx)− f (x)
qx − x if x >0,

f ′(x) if x = 0,
f (q−1x)− f (x)
q−1x − x if x <0,

henceequal to theusualq-differenceoperatoronqZ.On thenegativepart of this timescale, theq-difference
operator coincides with the delta-derivative.

Remark. In the above, we understand by

f ′(x) ≡ lim
y→x

f (x)− f (y)
x − y ,

a generalized continuum derivative. Hence, the delta-derivative exists at a right-dense point provided the
functionf : T → R is “differentiable” at this point, i.e., the above limit exists. For the existence at a
right-scattered point we must guaranteef is continuous at that point. (And analogous conditions hold for
the existence off ∇ .)

To see where the differences to the continuum calculus arise, let us, e.g., formulate theproduct rule
for derivatives.

Proposition 2. Letf, g : T → R be differentiable functions(in the time scale sense).Thenfg : T → R

is differentiable, satisfying

(fg)�(x)= f �(x)g(x)+ f (�(x))g�(x),

(fg)∇(x)= f ∇(x)g(x)+ f (�(x))g∇(x).
Note that some shifts in the argument appear, like in the classical equidistant case ofT = Z, being of

course a special case of our general considerations.
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From now on we will concentrate on the calculus involving the delta-derivative, the so-calleddelta-
calculus.
Having defined derivatives, the next question is how to defineintegrals. The easiest way of doing this

is just to “invert” the derivative operation. Therefore we define the (Cauchy)delta-integralof f : T → R

via (∫ x

x0

f (t)�t

)�

≡ f (x) ∀x ∈ T. (2)

But when does the integral exist? This “primitive” integral can be shown to exist provided the functionf
is rd-continuous, i.e.,f is a regulated function and continuous at right-dense points. (“Regulated” means
that, at each pointx ∈ T, right-hand and left-hand limits exist and are finite.) However, there have already
been some deeper investigations concerning the theory of integration on time scales. In fact, one can
define bothRiemannandLebesgueintegrals on general time scales, see e.g.[3], in particular the whole
corresponding continuum theory is preserved.

3. Exponential functions and positive regressivity

Let us consider thedynamic initial value problem

f �(x)= p(x)f (x) ∀x ∈ T, f (x0)= 1, (3)

wherep : T → R is a given function. In[2] it is shown that (3) has a unique solutionf (x) ≡ ep(x, x0)
if the functionp is rd-continuous andregressive, i.e.,

1+ �(x)p(x) �= 0 ∀x ∈ T. (4)

Under these conditions the solution is explicitly given by

ep(x, x0)= e
∫ x
x0
p̃(t)�t ∀x ∈ T,

where thecylinder transform��(p) ≡ p̃ is defined as follows:

��(p)(x) ≡
{
p(x) if �(x)= 0,
log(1+ �(x)p(x))

�(x)
if �(x)>0.

(5)

(Here log(z)denotes theprincipal logarithmofz �= 0.) Sinceep(x, x0)generalizes the continuumsolution

f (x)= e
∫ x
x0
p(x)�x

of (3), the functionep(x, x0) is calledexponential function. In the special casep ≡ 1 we obtain the
generalization of the “ordinary” exponential function ex−x0.
Having a close look at the definition of the cylinder transform, we recognize that the regressivity

condition (4) is not only sufficient, but also necessary. Concerning the oscillation behavior ofep(x, x0),
one can easily prove the following:
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Proposition3. Ifwehave1+�p>0onT, then theexponential function ispositive, i.e.,ep(x, x0)>0 ∀x ∈
T. If contrarily 1+ �p<0 onT, then the time scaleT is isolated and the exponential function changes
sign at every point. (In general, we haveep(x, x0) �= 0 onT.)

Although the proof for this statement is quite simple, e.g., given in the book[2], let us rather illustrate
it.

Example 4. LetT ≡ Z. Then the constant functionp(x) ≡ 	 is regressive iff	 �= −1. The corresponding
exponential function with initial pointx0= 0 can be computed easily, since the dynamic condition in (3)
can be rewritten as

f (�(x))= (1+ �(x)p(x))f (x) ∀x ∈ T

in this case simplifying to

f (x + 1)= (1+ 	)f (x) ∀x ∈ Z.

The solution of this last equation is just

f (x)= (1+ 	)xf (0) ≡ (1+ 	)x.

Here the exponential functione	(x,0)= (1+ 	)x clearly satisfies the assertions of the proposition.
Functionsp : T → R fulfilling

1+ �(x)p(x)>0 ∀x ∈ T (6)

are calledpositively regressive. Considering those functions as “comfortable” is quite straightforward
since their exponential functionep(x, x0) is positive—preserving the continuum property.

Definition. We denote by
(T) the set of all positively regressive functionsp : T → R, furthermore by
R+(T) the set of all functionsp ∈ 
(T) which arein addition rd-continuous. Here we should remark
that we understand by a (positively) regressive functionp just one satisfying property (4) resp. (6), not
necessarily rd-continuous. (In this way, we differ from the original definition given in[2].) Now, given
functionsp, q ∈ 
(T) and an arbitrary scalar� ∈ R, we define the so-called “circle-plus” addition via

(p ⊕ q)(x)= p(x)+ q(x)+ �(x)p(x)q(x) ∀x ∈ T (7)

and the so-called “circle-dot” multiplication via

�� p(x)=
{

�p(x) if �(x)= 0,
(1+ �(x)p(x))� − 1

�(x)
if �(x)>0.

(8)

Remark. The�-multiplication can still be generalized to a�-product of a (general) functionf : T → R

and a functionp ∈ 
(T) in a pointwise sense:

f � p(x) ≡ f (x)� p(x)=
{
(1+ �(x)p(x))f (x) − 1

�(x)
if �(x)>0,

f (x)p(x) if �(x)= 0.
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Notice that the productf � p is noncommutative. For the question of the usefulness of this definition
we refer the reader to article[4] about Gaussian bells on time scales. Anyway later on, when considering
orthogonal polynomials on time scales, we will make use of this more general definition.
Akın-Bohner and Bohner have discovered in[1] that the setR+(T), supplied with the addition⊕ and

the scalar multiplication�, constitutes a real vector space(R+,⊕,�). That is the starting point of our
investigations.We want to generalize this result in view of taking over many spaces of functions we know
from the continuum setting to the time scales setting—involving positive regressivity.A first step towards
this goal is the upcoming result.

Theorem 5. The set
(T), supplied with⊕ and�, is also a real linear space(
,⊕,�)—generalizing
the spaceF(R) ≡ {f |f : R → R} from the continuum scenario.

Proof. We have to show that(
,⊕) is a commutative group, furthermore that
 is closed with respect
to the scalar multiplication�. In addition, we must prove the distributive laws to be true, as well as the
properties 1� p = p ∀p ∈ 
(T) and

�� (�� p)= (��)� p ∀p ∈ 
(T). (9)

Let us just show (9), which is done in a straightforward way—same as all the other properties follow
directly from the definitions.
At right-dense pointsx ∈ T, assertion (9) is clearly fulfilled. Therefore, assume�(x)>0. Then the

left-hand side yields

�� (�� p)(x)= (1+ �(x)�� p(x))� − 1
�(x)

= ((1+ �(x)p(x))�)� − 1
�(x)

,

whereas the right-hand side gives us

(��)� p(x)= (1+ �(x)p(x))�� − 1
�(x)

.

But those expressions coincide by a power law, proving (9).�

In the next section, we are going to pay some attention on properties of the cylinder transform and to
see how they can be exploited.

4. The cylinder transform as an isomorphism

The first result we prove next about the cylinder transform concerns the fact that this operator is
one-to-one.

Lemma 6. AssumeS is some set of regressive functionsp : T → R. Then the cylinder transform
�� : S→ ��(S) is bijective.

Proof. Let p, q ∈ S fulfill p �= q. Then there is at least one pointx ∈ T, wherep(x) �= q(x). If this
point is right-dense, the statement will follow at once as the cylinder transform coincides with the identity
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mapping at right-dense points. So let us supposex is right-scattered, i.e.,�(x)>0. Now we have

��(p)(x)= log(1+ �(x)p(x))

�(x)
, ��(q)(x)= log(1+ �(x)q(x))

�(x)
.

But since the principal logarithm is one-to-one, we must have

log(1+ �(x)p(x)) �= log(1+ �(x)q(x))

and thereforẽp(x) �= q̃(x)—proving the statement.�
After this simple proof, let us assume we have some (real) vector space(Ṽ ,+, ·) of functions on a time

scale. The next theorem shows that this space corresponds to another linear space(V ,⊕,�) of positively
regressive functions—the cylinder transform acting as anisomorphismbetween those spaces.

Theorem 7. Let (Ṽ ,+, ·) be a vector space of functionsf : T → R on a time scale. Then, defining the
set V of positively regressive functions by

p ∈ V ⇐⇒ p̃ ∈ Ṽ , (10)

we obtain another vector space(V ,⊕,�). The cylinder transform�� : (V ,⊕,�) → (Ṽ ,+, ·) is an
isomorphism between these spaces.

Proof. Tosee thatV really consists of positively regressive functions,wemust first show that�� : 
(T)→
F(T) is onto. In order to do this, letf : T → R be arbitrary. Then definep : T → R by

p(x)= e�(x)f (x) − 1
�(x)

≡ �−1� (f )(x)

at right-scatteredpoints, otherwisebyp(x)=f (x).This functionp iswell definedandpositively regressive
by construction. Furthermore we have��(p) = f , which had to be shown. Now Lemma 6 tells us that
�� : V → Ṽ is bijective.
It remains to show that�� is linear. But this is again straightforward by the definition of the cylinder

transform; let us just consider a right-scattered pointx ∈ T, where�� can be rewritten in a “discrete”
sense:

��((�� p)⊕ (�� q))(x)= log[(1+ �(x)�� p(x))(1+ �(x)�� q(x))]
�(x)

= log[(1+ �(x)p(x))�] + log[(1+ �(x)q(x))�]
�(x)

= ���(p)(x)+ ���(q)(x).

Since this holds for whateverp, q ∈ V and�, � ∈ R, we are done. �

Remark. The statements in Theorem 7 could have been formulated the other way round, i.e., for every
vector space(V ,⊕,�) of positively regressive functions there is a corresponding one(Ṽ ,+, ·). The
inverse cylinder transform�−1� : Ṽ → V is an isomorphism. That shows that there is really a one-to-one

correspondence between the spacesV andṼ .
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Finally, let us give three examples illustrating this correspondence, two of them giving a hint on what
still remains to be worked out.

Example 8. Let Ṽ be the vector space of functions on a time scaleT, i.e.,V ≡F(T). Theorem 7 shows
that this space(F(T),+, ·) corresponds to the space(
(T),⊕,�) of positively regressive functions.
They both generalize the continuum spaceF(R).
The next example concerns the generalization of the Banach space(C[a, b], ‖.‖∞) of continuous

functions on a compact interval[a, b] ⊂ R.

Example 9. Let Ṽ ≡ Crd[a, b] be the vector space of rd-continuous functions on a finite interval
[a, b] ⊂ T. It corresponds to the linear space(R+([a, b]),⊕,�)which we defined before. (The cylinder
transform preserves rd-continuity.)
The final example treats the two-fold generalization of the Hilbert spaceL2(R) of square integrable

functions (resp. equivalence classes of functions).

Example 10. ConsiderṼ ≡ L2(T), whereL2(T) denotes the set of all square integrable functions with
respect to the (Lebesgue) delta-integral. Then defineV ≡ {p : T → R | p̃ ∈ L2(T)}. Again we have a
one-to-one correspondence.

The spaceṼ = Crd[a, b] in Example 9 is a normed space(Ṽ , ‖.‖∞). Using standard arguments of
functional analysis, onecanshow that it iscomplete, i.e., aBanachspace.Analogously, thespaceṼ=L2(R)
in Example 10 is an inner product space, supplied with the inner product

〈f, g〉 =
∫

T

f (x)g(x)�x.

Indeed it is a Hilbert space(Ṽ , 〈., .〉). Are the corresponding spaces also Banach resp. Hilbert spaces?
We shall give a positive answer to this question.

Remark. One of us (Moritz Simon) gave a direct analytical proof of the fact that(R+([a, b]),⊕,�),
supplied with the norm‖p‖� ≡ ‖p̃‖∞, is a Banach space, see[8]. However, this proof turns out to be
rather tedious. In the next section we will establish a more general proof.

5. A two-fold Banach structure

The following theorem provides the main result of this paper:

Theorem 11. Let (Ṽ ,+, ·, ‖.‖) be a normed space of functions on a time scaleT. Then the space
(V ,⊕,�) of positively regressive functions, defined by

p ∈ V ⇐⇒ p̃ ∈ Ṽ ,
is also a normed space(V , ‖.‖�), where the norm is given by

‖p‖� ≡ ‖p̃‖ ∀p ∈ V. (11)
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Therefore, the cylinder transform yields an isometry�� : (V , ‖.‖�) → (Ṽ , ‖.‖). Moreover, if the space
(Ṽ , ‖.‖) is complete, i.e., a Banach space, then(V , ‖.‖�) is also a Banach space. (A similar statement
holds when interchanging V and̃V , again pointing out the bijective correspondence.)

Proof. Let us first show that‖.‖� really constitutes a norm on(V ,⊕,�). By Theorem 7, the cylinder
transform satisfies the following properties:

��(p) ≡ 0⇐⇒ p ≡ 0,
��(�� p)= ���(p) ∀p ∈ V, � ∈ R,

��(p ⊕ q)= ��(p)+ ��(q) ∀p, q ∈ V.
Taking furthermore into account that‖.‖ is a norm onṼ , we directly obtain the three axioms for
‖.‖�—guaranteeing it is a norm. That shows the first part of the theorem. (The “isometry” statement
is simply fulfilled because of the construction of‖.‖�.)
Now suppose(Ṽ , ‖.‖) is complete. Let(pn)n∈N be aCauchy sequence inV. Since�� is an isometry, this

is equivalent to the fact that(p̃n)n∈N, i.e., the sequence of the cylinder transforms of thepn, is a Cauchy
sequence iñV . By the completeness of̃V , that sequence must converge to some elementf ∈ Ṽ—with
respect to‖.‖. Now, as�� : V → Ṽ is bijective, we can findp ∈ V such thatf ≡ p̃. Again using the
isometric argument, the convergencep̃n → p̃ is equivalent to

‖pn�p‖� −→ 0 (12)

asn→∞. Finally (12) shows that(V , ‖.‖�) is complete, i.e., a Banach space.�

Let us consider some examples one more time, in order to take benefit from the results of this theorem.

Example 12.Again consider the Banach space(Crd[a, b], ‖.‖∞). Now Theorem 11 guarantees
(R+([a, b]), ‖.‖�) is also a Banach space, where‖.‖� is given by

‖p‖� = ‖p̃‖∞ ∀p ∈ R+([a, b]). (13)

As was indicated, we do not need a direct proof of the completeness.

Example 13. ConsiderṼ =L2(T) fromExample 10. TheBanach space of positively regressive functions
we obtain here is indeed a Hilbert space(V ≡ T 2(T), 〈., .〉�), where the scalar product is given by

〈p, q〉� = 〈p̃, q̃〉 =
∫

T

p̃(x)q̃(x)�x. (14)

Evenmore generally, for� ∈ [1,∞), we know from Lebesgue theory on time scales that the vector space
L�(T)= {f ∈ T | |f |� integrable}, supplied with the norm

‖f ‖� ≡
(∫

T

|f (x)|��x

)1/�
(15)

is a Banach space (which has to be read in an “almost everywhere” sense). Each of theseL�−spaces
corresponds to a Banach space of positively regressive functions—denoted byT �(T).
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After all, we may conclude that a generalization of continuum vector spaces of functions to the time
scales setting cannot be achieved in a “unique” sense. Rather one obtains atwo-foldstructure of spaces:
For every continuum space there seems to be, on the one hand, an “ordinary” vector space(Ṽ ,+, ·) of
functions on a time scale, on the other hand, a “strange” linear space(V ,⊕,�) of positively regressive
functions on the same time scale. Theorem 11 guarantees thatV conserves all the topological properties
of Ṽ—and vice versa. Indeed, they can beidentifiedin someway, being (isometrically) isomorphic. Quite
an advantage of this two-fold structure lies in the following rationale:
Having established analytic results in the spaceṼ , one can“ translate” the results to V—and vice

versa.
This is of particular interest when it comes to looking atorthogonal polynomialson time scales. One

has to consider two Hilbert spaces,L2(T) andT 2(T). In the following section, we will give an example
on the “translation process” between those two spaces.

6. Some concrete examples

An example concerning the difference between the spaces Crd[a, b] andR+([a, b]), which is due to
the cylinder transform, is given in[8]. There it is worked out in detail that the functionf (x) ≡ e	(x,0)
on the time scaleT ≡ Z ∩ [0, N ] whereN�2—refer to Example 4—is positively regressive iff	>− 2
and	 �= 1. Now for 	 ∈ (−2,−1), the supremum norm off is equal to 1 all the time. On the contrary,
the�-norm off diverges as	 →−2, i.e.,

‖e	(.,0)‖�
	→−2−→ ∞.

That already reminds us to be careful comparing the spacesVandṼ . Let us consider a situation involving
integrals.

Example 14. Let T ≡ N0. Then a “Gaussian bell” on this time scale can be defined viaE(0) = 1 and
E�(x)=�(x � 1)E(x), i.e.,—after some algebraic transformations—

E(x + 1)= (1+ 1)−xE(x) ∀x ∈ N0.

(For a thorough treatment of these generalized Gaussian bells, we recommend to consider the recent
article[4], in which several properties of those functions are worked out. In fact, sufficient and necessary
conditions for the square integrability of a Gaussian bell on a time scale are provided.) A solution to this
recurrence relation is explicitly given by

E(x)= 2x(1−x) ∀x ∈ T. (16)

In [4] it is shown thatE ∈ L2(T), which can also be seen directly. But what about the corresponding
spaceT 2(T)?
By constructionwehavêE ∈ T 2(T), wheref̂ ≡ �−1� (f ) simply denotes the inverse cylinder transform.

Can we also proveE ∈ T 2(T), being equivalent tõE ∈ L2(T)? The cylinder transform of the functionE
is

��(E)(x)= log(1+ E(x))= log(1+ 2x(1−x)).
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For largex, we haveE(x) ≈ 0 and thus obtaiñE(x) ≈ E(x) by the Taylor expansion of the logarithm.
In fact, this asymptotic behavior guaranteesE ∈ T 2(T), however, not going into the
-�-details at this
point. Note that considering a more general time scale, we will usually not result in a similarity like that.
The following treatment is going to be more challenging. We shall consider orthogonal polynomials

on an equidistant lattice. The question is how to take over results onL2(T) to the corresponding space of
positively regressive functions.
To prepare the next theorem, assume(Pn)n∈N0 are orthogonal polynomials (each of exact degreen)

with respect to some weight function� : T → R
+
0 , i.e.,∫

T

Pn(x)Pm(x)�(x)�x = 0 ∀n �= m. (17)

The idea is to take the inverse cylinder transform ofPn�, where� ≡ √
�. If we denote

Pn(x)=
n∑
k=0

�nkx
k,

then we obtain

�−1� (Pn�)(x)=
(

n⊕
k=0

�nk � xk
)
� �̂(x)

because of the linearity of the inverse cylinder transform. (The definition of
⊕
should be clear—wemade

use of the general�-product.) The corresponding weight function is indeed�̂ ≡ �−1� (�). However, the
“polynomials” in the sense ofT 2(T) are no more polynomials as we know them; they rather have to
be understood in the sense ofoperatorsworking on the ground statê�. Let us denote those “operator
polynomials” byPn. Now define the operatorX, having a domain which is dense inT 2(T), via the
relation

Xp(x) ≡ x � p(x) ∀x ∈ T.

Using this relation, the operator polynomialPn can be put into another form, namely

Pn(X) ≡
n⊕
k=0

�nk �Xk. (18)

Representation (18) of the “polynomials” in the positively regressive sense finally shows us the link to
the original scenario. To round this up, let us remark that one might also think of the polynomialsPn(x)

as operatorsPn(X) working on the ground state�, in detail

Pn(X) ≡
n∑
k=0

�nk ·Xk, (19)

where the operatorXf (x) ≡ xf (x) ∀x ∈ T is densely defined inL2(T). Representations (18) and (19)
make the correspondence even more understandable. However, notice that (18) is a necessary operator
representation, whereas (19) is not necessary.
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Theorem 15. Assume(Pn)n∈N0 are orthogonal polynomials with respect to some weight function��0
in L2(T). Then, denotingPn(x)=∑n

k=0 �nkxk ∀n ∈ N0, we obtain“orthogonal operator polynomials”
Pn(X) with respect toT 2(T), working on the ground state� ≡ �−1� (

√
�). They are explicitly given by

(18).

Proof. In principle, everything has been shown above. Themain reason for the possibility of calculations
like those lies again in the fundamental theorem on the Banach resp. Hilbert correspondence.�

Remark. The “orthogonality” of the operator polynomialsPn should be understood by their action on
the ground state:

Pn ⊥ Pm ∀n �= m⇐⇒ 〈Pn(X)�,Pm(X)�〉� = 0 ∀n �= m.
An interesting questionmight be whether one could introduce a scalar product on some space of operators
via this relation. Anyway, one cannot consider a “weight function”� ≡ �2. Hence this observation
encourages us to consider for instanceladder formalismsgenerated by some ground states rather than
Gram–Schmidt orthonormalization with respect to some weight function.
To sum up, we give an example on how to apply Theorem 15, which was originally considered in

context of[7]. It concerns equidistant lattices, as already mentioned.

Example 16. Let T = y − hN0, whereh>0 andy = 1/h�. Here�>0 has to be chosen such that
�−1 ∈ hN. Then the polynomialsHn(x)= (−h�)nC(a)n (a− x/h), where theC(a)n denote the well-known
Charlier polynomials, are orthogonal onT with respect to the weight function� given by

�(y − nh)=
n∏
k=1

[1− �h(y − k)]−1 ∀n ∈ N0.

Now the theorem yields that the operator polynomialsHn(X) are “orthogonal” inT 2(T) with respect to
some ground state�. This ground state is explicitly computed as

�(y − hn)= eh
√

�(y−hn) − 1
h

∀n ∈ N0.

Theorem 15provides a general correspondence statement, but the computation in special cases is not as
clear as the correspondence itself—one of the rare caseswhere the abstract theorem is easier to understand
than concrete examples.
In any case, it is still an open question, which of the two Hilbert spaces is more likely to deliver a

sufficient theory of orthogonal function systems.

7. Future perspectives

A main perspective will be the extension of the considered structures to the theory of orthogonal
polynomials. A main branch of these future investigations shall deal with the question of how to classify
different orthogonal function systems in Hilbert spaces of time scale analysis. Fundamental results in
this direction will also shed somemore light on the question of how to generalize Schrödinger’s equation
within the framework of time scale analysis.
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