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Abstract

The convergence problem of the family of the deformed Euler–Halley iterations with parameters for solving
nonlinear operator equations in Banach spaces is studied. Under the assumption that the second derivative of the
operator satisfies the Hölder condition, a convergence criterion of the order 2+p of the iteration family is established.
An application to a nonlinear Hammerstein integral equation of the second kind is provided.
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1. Introduction

Let X and Y be (real or complex) Banach spaces, � ⊆ X an open subset and let F : � ⊆ X → Y be a
nonlinear operator with a second continuous derivative on �. Solving the operator equation

F(x) = 0 (1.1)

is a basic and important problem in applied and computational mathematics. The most well-known method
to solve (1.1) is the Newton method, which is quadratically convergent under the proper conditions, showed
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by the well-known Kantorovich theorem; see e.g. [17]. Recent progress in the Newton method is referred
to [21,20] and [22]. The important cubical generalizations of the Newton method are the well-known
Chebyshev method (or Euler method) [1,3,15,16] and the Halley method [4,2,12,15]. More generally,
Gutiérrez and Hernández proposed the family of the Euler–Halley iterations in [8], which is defined as
follows:

x�,n+1 = x�,n − [I + 1
2 LF (x�,n)[I − �LF (x�,n)]−1]F ′(x�,n)

−1F(x�,n), n = 0, 1, . . . , (1.2)

where � ∈ [0, 1] and

LF (x) = F ′(x)−1F ′′(x)F ′(x)−1F(x), x ∈ X. (1.3)

The family of the Euler–Halley iterations includes, as particular cases, not only the Chebyshev method
(� = 0) and the Halley method (� = 1

2 ) but also the convex acceleration of the Newton method (or the
super-Halley method) (� = 1) (cf. [5,10,9]). Hence, this family has recently been studied extensively; see
for example [11,23]. However, the disadvantage of this family is that evaluation of the second derivative
of the operator F is required at every step, the operation cost of which may be very large in fact. To
reduce the operation cost but also retain the cubical convergence, in [6] Ezquerro and Hernández gave
a variant of avoiding computation of the second derivative for the convex acceleration of the Newton
method. More precisely, the second derivative of F at xn in this method is replaced by the difference of
the first derivatives at xn and zn:

F ′′(xn)(zn − xn) ≈ F ′(zn) − F ′(xn), (1.4)

where for some � ∈ [0, 1],
yn = xn − F ′(xn)

−1F(xn) and zn = xn + �(yn − xn). (1.5)

Thus under the assumption that the second derivative of F satisfies the Lipschitz condition on �, a
cubical convergence criterion based on the Lipschitz constant and boundary of the second derivative was
established for this method. The same variant was given in [13] for the Chebyshev method, and cubical
convergence criteria for the variant of the Chebyshev method were studied in [13,14]. Convergence
criteria for these methods under the assumption that the first derivative satisfies the Lipschitz condition
were discussed in [7,13].

Motivated by the idea of Ezquerro and Hernández in [6] and [13], we define, for arbitrary � ∈ [0, 1],
the variant of the family of the Euler–Halley iterations with parameters as follows: Let � ∈ (0, 1] and
� ∈ [0, 1]. Define

H(x, y) = 1

�
F ′(x)−1[F ′(x + �(y − x)) − F ′(x)] (1.6)

and

Q(x, y) = −1
2 H(x, y)[I + �H(x, y)]−1, (1.7)

where I is the identity. Then the family of the deformed Euler–Halley iterations with parameters is defined
by

yn = xn − F ′(xn)
−1F(xn), n = 0, 1, 2, . . . , (1.8)

xn+1 = yn + Q(xn, yn)(yn − xn), n = 0, 1, 2, . . . . (1.9)
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Under the assumption that the second derivative of F satisfies the Hölder condition on the ball B(x0, r) ⊆ �
for some proper r > 0, we will establish a unified convergence criterion based on the values of the operator
and its second derivative at the initial point as well as the Hölder constant for the family of the deformed
Euler–Halley iterations with parameters. The main theorem is stated in Section 3, which extends and
improves the corresponding results for the deformed convex acceleration of the Newton method and the
Chebyshev method obtained in [6,13,14]. An application to a nonlinear Hammerstein integral equation
of the second kind (cf. [18]) is given in the final section.

Throughout the paper, we always assume that � ∈ [0, 1], � ∈ (0, 1], p ∈ [0, 1] and that x0 ∈ X such
that an inverse F ′(x0)

−1 of F ′ at x0 exists. For r > 0, we use B(x0, r) to denote the open ball with radius
r and center x0 while B(x0, r) stands for the corresponding closed ball.

2. Iteration sequences {an} and {bn}

We begin with two real-valued functions defined below, which will play an important role in analyzing
the convergence order of the family of the Euler–Halley iterations. Write

s� = 2

1 + � +
√

(1 − �)2 + 2
, � ∈ [0, 1]. (2.1)

Then

s

(
1 + s

2(1 − �s)

)
< 1, ∀s ∈ [0, s�). (2.2)

Now we define continuous functions g on [0, s�) and h on [0, s�) × [0, +∞), respectively, by

g(s) = 1

1 − s(1 + s
2(1−�s) )

= 2(1 − �s)

2(1 − �s)(1 − s) − s2 , ∀s ∈ [0, s�) (2.3)

and

h(s, t) = (2 + (p + 2)�p)t

2(p + 1)(p + 2)
+ �(1 − �)pst

2(p + 1)(1 − �s)
+ (1 − �)s2

2(1 − �s)
+ s3

8(1 − �s)2 ,

∀(s, t) ∈ [0, s�) × [0, +∞), (2.4)

where we adopt the convention that 00 = 0. Then the following lemma on the properties of the functions
is trivial and so the proof is omitted.

Lemma 2.1. Let g and h be defined by (2.3) and (2.4), respectively. Then

(1) g(·) is strictly monotonically increasing on [0, s�) and g(0) = 1;
(2) for each (s, t) ∈ [0, s�) × [0, +∞), h(s, ·) and h(·, t) are strictly monotonically increasing, respec-

tively, on [0, +∞) and [0, s�); and
(3) for each � ∈ (0, 1),

h(�s, �1+pt)��1+ph(s, t), ∀(s, t) ∈ [0, s�) × [0, +∞). (2.5)
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Let a0 > 0 and b0 > 0. Define real sequences {an} and {bn}, respectively, by

an = an−1g(an−1)
2h(an−1, bn−1), ∀ n�1 (2.6)

and

bn = bn−1g(an−1)
p+2h(an−1, bn−1)

p+1, ∀ n�1. (2.7)

Then we have the following lemma.

Lemma 2.2. Let a0 ∈ (0, s�) and b0 > 0 such that g(a0)
2h(a0, b0) < 1. Set � = g(a0)

2h(a0, b0) (hence
� = a1/a0 < 1) and � = g(a0)

−1. Then

an��(p+2)n−1
an−1 ��

(p+2)n−1
p+1 a0, ∀n�1, (2.8)

bn�(�(p+2)n−1
)(p+1)bn−1 ��(p+2)n−1b0, ∀n�1, (2.9)

n−1∏
j=0

g(aj )h(aj , bj )��
(p+2)n−1

p+1 �n, ∀n�1. (2.10)

Proof. To show (2.8), it suffices to show that

an��(p+2)n−1
an−1 (2.11)

holds for each n�1. We proceed by mathematical induction. Clearly, (2.11) holds for n=1. Now assume
that (2.11) holds for n = k. Then, by (2.6), we have that

ak+1 = akg(ak)
2h(ak, bk)��(p+2)k−1

ak−1g(�(p+2)k−1
ak−1)

2h(�(p+2)k−1
ak−1, (�

(p+2)k−1
)p+1bk−1).

Consequently, by (2.5), we obtain that

ak+1 ��(p+2)k−1
ak−1g(ak−1)

2(�(p+2)k−1
)p+1h(ak−1, bk−1) = �(p+2)kak . (2.12)

This shows that (2.11) holds for n = k + 1. Therefore, (2.11) holds for all n�1.
Next, by (2.7) and (2.11), we obtain that, for each n,

bn+1=bng(an)
p+2h(an, bn)

p+1<bn[g(an)
2h(an, bn)]p+1 �

(
an+1

an

)p+1

bn�(�(p+2)n)p+1bn (2.13)

and so (2.9) is proved.
Finally, from (2.8) and (2.9), one has that, for each j �0,

g(aj )h(aj , bj )�g(�
(p+2)j −1

p+1 a0)h(�
(p+2)j −1

p+1 a0, �(p+2)j−1b0)��(p+2)j−1g(a0)h(a0, b0) = �(p+2)j �.

Hence,

n−1∏
j=0

g(aj )h(aj , bj )�
n−1∏
j=0

�(p+2)j � = �
(p+2)n−1

p+1 �n.

The proof is complete. �
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We still need two simple lemmas. The first one is clear while the second one is a direct consequence
of Lemma 2.1. Recall that g and h are given by (2.3) and (2.4), respectively.

Lemma 2.3. Let K �0 and � > 0. Then the equation

Ktp+1 + �t − 1 = 0 (2.14)

has a unique positive solution r satisfying r � 1
� .

Lemma 2.4. Let K �0, r > 0 and let s� be defined by (2.1). Define the function q on [0, rs�) by

q(s) = g(s/r)2h(s/r, Ksp+1), ∀s ∈ [0, rs�). (2.15)

Then q is strictly monotonically increasing and continuous on [0, rs�) with q(0)=0 and q(rs�−)=+∞.
Consequently, there exists a unique r� ∈ (0, rs�) such that q(r�) = 1.

3. Convergence of the iterations

Let r be the unique positive solution of equation (2.14). Then

� + Krp = 1
r
. (3.1)

Throughout this section, we assume that the nonlinear operator F : B(x0, r) ⊆ X → Y satisfies the
following conditions:

‖F ′(x0)
−1F(x0)‖��, (3.2)

‖F ′(x0)
−1F ′′(x0)‖�� (3.3)

and

‖F ′(x0)
−1(F ′′(x) − F ′′(y))‖�K‖x − y‖p, ∀x, y ∈ B(x0, r). (3.4)

Below we will establish the convergence of order p + 2 for the family of the Euler–Halley iterations. For
this purpose, we first give several lemmas.

Lemma 3.1. Let x ∈ B(x0, r). Then F ′(x)−1 exists and satisfies that

‖F ′(x)−1F ′(x0)‖�
1

1 − 1
r
‖x − x0‖

. (3.5)

Proof. Since by (3.1)

� + K‖x − x0‖p �� + Krp = 1
r
,
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it follows from (3.4) that

‖I − F ′(x0)
−1F ′(x)‖

= ‖F ′(x0)
−1F ′′(x0)(x − x0) +

∫ 1

0
F ′(x0)

−1[F ′′(x0 + �(x − x0)) − F ′′(x0)](x − x0) d�‖

�
(

‖F ′(x0)
−1F ′′(x0)‖ +

∫ 1

0
‖F ′(x0)

−1[F ′′(x0 + �(x − x0)) − F ′′(x0)]‖ d�

)
‖x − x0‖

�(� + K‖x − x0‖p)‖x − x0‖� 1
r
‖x − x0‖ < 1.

Consequently, the well-known Banach Lemma yields that F ′(x)−1 exists and (3.5) holds. �

Let {yn} and {xn} denote the sequences generated by (1.8) and (1.9), respectively. Then by (1.6) and
(1.7)

H(xn, yn) = 1

�
F ′(xn)

−1[F ′(xn + �(yn − xn)) − F ′(xn)] (3.6)

and

Q(xn, yn) = −1
2 H(xn, yn)[I + �H(xn, yn)]−1. (3.7)

Lemma 3.2. Suppose that yn, xn ∈ B(x0, r) and that

1
r
‖F ′(xn)

−1F ′(x0)‖‖yn − xn‖ < 1. (3.8)

Then

‖Q(xn, yn)‖�
1
r
‖F ′(xn)

−1F ′(x0)‖‖yn − xn‖
2(1 − �

r
‖F ′(xn)

−1F ′(x0)‖‖yn − xn‖)
, (3.9)

‖xn+1 − xn‖�(1 + ‖Q(xn, yn)‖)‖yn − xn‖ (3.10)

and

‖F ′(x0)
−1F(xn+1)‖�

(
2 + (p + 2)�p

2(p + 1)(p + 2)
+ �(1 − �)p

(p + 1)
‖Q(xn, yn)‖

)
K‖yn − xn‖p+2

+ 1

r

(
(1 − �)‖Q(xn, yn)‖ + ‖Q(xn, yn)‖2

2

)
‖yn − xn‖2. (3.11)

Proof. Note that

H(xn, yn) =
∫ 1

0
[F ′(xn)

−1F ′′(x0) + F ′(xn)
−1(F ′′(xn + ��(yn − xn)) − F ′′(x0))](yn − xn) d�.
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Hence, by (3.4) and (3.1),

‖H(xn, yn)‖�‖F ′(xn)
−1F ′(x0)‖

∫ 1

0
[� + K((1 − ��)‖xn − x0‖ + ��‖yn − x0‖)p] d�‖yn − xn‖

�‖F ′(xn)
−1F ′(x0)‖(� + Krp)‖yn − xn‖

= 1
r
‖F ′(xn)

−1F ′(x0)‖‖yn − xn‖. (3.12)

It follows from (3.8) and the Banach Lemma that

‖Q(xn, yn)‖�
‖H(xn, yn)‖

2(1 − �‖H(xn, yn)‖) �
1
r
‖F ′(xn)

−1F ′(x0)‖‖yn − xn‖
2(1 − �

r
‖F ′(xn)

−1F ′(x0)‖‖yn − xn‖)
,

hence, (3.9) is proved. (3.10) follows from

xn+1 − xn = yn − xn + Q(xn, yn)(yn − xn). �

Finally, to verify (3.11), noting that xn+1 −yn =Q(xn, yn)(yn −xn) and applying Taylor’s expression,
we attain that

F(xn+1) =
∫ 1

0
[F ′′(xn + �(yn − xn)) − F ′′(xn)](1 − �)(yn − xn)

2 d�

+ 1

2

∫ 1

0
[F ′′(xn) − F ′′(xn + ��(yn − xn))](yn − xn)

2 d�

−
∫ 1

0
[�F ′′(xn + ��(yn − xn)) − �F ′′(xn + �(yn − xn))] d�

× (yn − xn)Q(xn, yn)(yn − xn)

+ (1 − �)

∫ 1

0
F ′′(xn + �(yn − xn))] d�(yn − xn)Q(xn, yn)(yn − xn)

+
∫ 1

0
F ′′(yn + �(xn+1 − yn))(1 − �)(Q(xn, yn)(yn − xn))

2 d�.

Consequently, by (3.4),

‖F ′(x0)
−1F(xn+1)‖�

∫ 1

0
K�p‖yn − xn‖p+2(1 − �) d� + 1

2

∫ 1

0
K�p�p‖yn − xn‖p+2 d�

+ �

∫ 1

0
K(1 − �)p�p‖yn − xn‖p+2 d�‖Q(xn, yn)‖

+ (1 − �)

∫ 1

0
(� + K‖(1 − �)(xn − x0) + �(yn − x0)‖p) d�‖Q(xn, yn)‖

+
∫ 1

0
(� + K‖(1 − �)(yn − x0) + �(xn − x0)‖p)(1 − �)d�‖xn+1 − yn‖2.
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Note that

� + K‖(1 − �)(xn − x0) + �(yn − x0)‖p � 1
r
,

� + K‖(1 − �)(yn − x0) + �(xn − x0)‖p � 1
r

and

‖xn+1 − yn‖ = ‖Q(xn, yn)‖‖yn − xn‖.

(3.11) follows. The proof is complete. �
Recall that q is defined by

q(s) = g(s/r)2h(s/r, Ksp+1), ∀s ∈ [0, rs�)

and r� ∈ (0, rs�) is a unique solution of the equation q(s) = 1.

Lemma 3.3. Let a0=�/r, b0=K�p+1 and �=g(a0)
−1. Let {an} and {bn} be the sequences generated by

(2.6) and (2.7), respectively. Suppose that � < r�. Then the following inequalities hold for all n=0, 1, . . ..

K‖F ′(xn)
−1F ′(x0)‖‖yn − xn‖p+1 �bn, (3.13)

‖yn − xn‖��
(p+2)n−1

p+1 �n‖y0 − x0‖, (3.14)

1

r
‖F ′(xn)

−1F ′(x0)‖‖yn − xn‖�an, (3.15)

‖yn − x0‖�(1 − (��)n+1)r , (3.16)

‖xn+1 − xn‖�
(

1 + an

2(1 − �an)

)
‖yn − xn‖, (3.17)

‖xn+1 − x0‖�(1 − (��)n+1)r (3.18)

and

‖F ′(xn+1)
−1F ′(x0)‖�g(an)‖F ′(xn)

−1F ′(x0)‖. (3.19)

Proof. Since � < r�, we have that g(a0)
2h(a0, b0) < 1 by Lemma 2.4. Hence, by Lemma 2.2, {an} and

{bn} are strictly monotonically decreasing. In addition, as � = a0r ,(
1 + an

2(1 − �an)

)
��

(
1 + a0

2(1 − �a0)

)
� = (1 − �)r �(1 − ��)r, ∀n�1. (3.20)

Clearly, (3.13), (3.14) and (3.15) hold for n = 0. Since 1
r
‖y0 − x0‖�a0 < s� < 1, it follows from (3.9)

and (3.10) that

‖x1 − x0‖�a0

(
1 + a0

2(1 − �a0)

)
r . (3.21)
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Therefore ‖x1 − x0‖ < r thanks to (2.2). This means that (3.17) and (3.18) hold for n = 0. Furthermore,
by Lemma 3.1 and (3.21),

‖F ′(x1)
−1F ′(x0)‖�

1

1 − 1
r
‖x1 − x0‖

�
1

1 − a0(1 + a0
2(1−�a0)

)
= g(a0). (3.22)

That is, (3.19) holds for n= 0. We will proceed by mathematical induction. For this purpose, assume that
(3.13)–(3.19) hold for all n�k. Then it suffices to show that they hold for n = k + 1. We first show that

‖yn − xn‖�g(an−1)h(an−1, bn−1)‖yn−1 − xn−1‖, ∀n�k + 1. (3.23)

Indeed, for each n�k + 1, since n − 1�k, we obtain that, by inductional assumption (3.15),

1

r
‖F ′(xn−1)

−1F ′(x0)‖‖yn−1 − xn−1‖�an−1 �s� < 1. (3.24)

By inductional assumptions (3.18) and (3.16), xn−1, yn−1 ∈ B(x0, r). It follows from (3.11) that

‖F ′(xn−1)
−1F(xn)‖

�‖F ′(xn−1)
−1F ′(x0)‖‖F ′(x0)

−1F(xn)‖
�
(

2 + (p + 2)�p

2(p + 1)(p + 2)
+ �(1 − �)p

(p + 1)
‖Q(xn−1, yn−1)‖

)
K‖F ′(xn−1)

−1F ′(x0)‖‖yn−1 − xn−1‖p+2

+ 1

r

(
(1 − �)‖Q(xn−1, yn−1)‖ + ‖Q(xn−1, yn−1)‖2

2

)
‖F ′(xn−1)

−1F ′(x0)‖‖yn−1 − xn−1‖2.

(3.25)

Using (3.9) and (3.24), we have that

‖Q(xn−1, yn−1)‖�
an−1

2(1 − �an−1)
. (3.26)

Note that, by inductional assumption (3.13),

K‖F ′(xn−1)
−1F ′(x0)‖‖yn−1 − xn−1‖p+1 �bn−1. (3.27)

Therefore, by (3.24)–(3.27), we obtain that

‖F ′(xn−1)
−1F(xn)‖

�

{
1

2(p + 1)

[
2 + (p + 2)�p

(p + 2)
+ �(1 − �)pan−1

(1 − �an−1)

]
bn−1 + (1 − �)a2

n−1

2(1 − �an−1)

+ a3
n−1

8(1 − �an−1)
2

}
‖yn−1 − xn−1‖ = h(an−1, bn−1)‖yn−1 − xn−1‖. (3.28)

Since

‖yn − xn‖�‖F ′(xn)
−1F ′(xn−1)‖‖F ′(xn−1)

−1F(xn)‖,

(3.23) follows from (3.28) and inductional assumption (3.19); hence (3.23) is proved. �
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Thus, by (3.23) and inductional assumptions (3.19) and (3.13), we have that

K‖F ′(xk+1)
−1F ′(x0)‖‖yk+1 − xk+1‖p+1

�g(ak)K‖F ′(xk)
−1F ′(x0)‖‖yk − xk‖p+1g(ak)

p+1h(ak, bk)
p+1

�bkg(ak)
p+2h(ak, bk)

p+1 = bk+1. (3.29)

This shows that (3.13) holds for n = k + 1. As for (3.14), it can be shown easily by (2.10) and (3.23),
while (3.15) follows from (3.23) and inductional assumptions (3.19) and (3.15). Hence (3.14) and (3.15)
hold for n = k + 1. By (3.14) and inductional assumption (3.18), one has that

‖yk+1 − x0‖�‖yk+1 − xk+1‖ + ‖xk+1 − x0‖��
(p+2)k+1−1

p+1 �k+1� + (1 − (��)k+1)r

�(��)k+1)� + (1 − (��)k+1)r �(1 − (��)k+2)r (3.30)

because ��(1+ a0
2(1−�a0)

)��(1− ��)r . Therefore (3.16) holds for n=k +1. Consequently, xk+1, yk+1 ∈
B(x0, r) by (3.30) and inductional assumption (3.18). Hence, by (3.9) and (3.10), we have that

‖xk+2 − xk+1‖�

(
1 +

1
r
‖F ′(xk+1)

−1F ′(x0)‖‖yk+1 − xk+1‖
2(1 − �

r
‖F ′(xk+1)

−1F ′(x0)‖‖yk+1 − xk+1‖)

)
‖yk+1 − xk+1‖.

Since (3.15) holds for n = k + 1, we obtain that

‖xk+2 − xk+1‖�(1 + ak+1

2(1 − �ak+1)
)‖yk+1 − xk+1‖. (3.31)

This shows that (3.17) holds for n = k + 1. Now let us show that (3.18) holds for n = k + 1. In fact, by
(3.31) and (3.14),

‖xk+2 − xk+1‖�
(

1 + ak+1

2(1 − �ak+1)

)
�

(p+2)k+1−1
p+1 �k+1��

(
1 + ak+1

2(1 − �ak+1)

)
�(��)k+1. (3.32)

Combining this with (3.20) and inductional assumption (3.18) gives that

‖xk+2 − x0‖�‖xk+2 − xk+1‖ + ‖xk+1 − x0‖
�(1 − ��)r(��)k+1 + (1 − (��)k+1)r = (1 − (��)k+2)r (3.33)

and so (3.18) holds for n = k + 1. Thus, it remains to show that (3.19) holds for n = k + 1. Since
xk+1, xk+2 ∈ B(x0, r), similar to the proof of (3.12), we obtain that

‖I − F ′(xk+1)
−1F ′(xk+2)‖�

1

r
‖F ′(xk+1)

−1F ′(x0)‖‖xk+2 − xk+1‖. (3.34)

Using (3.15) and (3.17), we obtain that

‖I − F ′(xk+1)
−1F ′(xk+2)‖�ak+1

(
1 + ak+1

2(1 − �ak+1)

)
< 1,
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where the last inequality is because of (2.2). Then, by the Banach Lemma,

‖F ′(xk+2)
−1F ′(x0)‖�

‖F ′(xk+1)
−1F ′(x0)‖

1 − ak+1

(
1 + ak+1

2(1−�ak+1)

) = g(ak+1)‖F ′(xk+1)
−1F ′(x0)‖. (3.35)

That is, (3.19) holds for n = k + 1. The proof is complete. �
Now we are ready to state the main theorem. Recall that q is defined by

q(s) = g(s/r)2h(s/r, Ksp+1), ∀s ∈ [0, rs�),

while g and h are, respectively, defined by

g(s) = 2(1 − �s)

2(1 − �s)(1 − s) − s2 , ∀s ∈ [0, s�)

and

h(s, t) = (2 + (p + 2)�p)t

2(p + 1)(p + 2)
+ �(1 − �)pst

2(p + 1)(1 − �s)
+ (1 − �)s2

2(1 − �s)
+ s3

8(1 − �s)2 ,

∀(s, t) ∈ [0, s�) × [0, +∞).

Theorem 3.1. Let F : � ⊆ X → Y be a nonlinear operator with a continuous second derivative
F ′′ and let x0 ∈ � be such that F ′(x0)

−1 exists. Let r be a unique positive solution of the equation
Ktp+1 + �t − 1 = 0. Suppose that B(x0, r) ⊆ � and that conditions (3.2)–(3.4) are satisfied. Let r� be a
unique solution of the equation q(s) = 1 on (0, rs�). If � < r�, then the sequence {xn} generated by (1.8)
and (1.9) with initial point x0 converges at a rate of order 2 + p to a unique solution x∗ of the equation
F(x) = 0 on B(x0, r).

Proof. Recall that a0 =�/r, b0 =K�p+1 and �=g(a0)
−1. Since � < r�, it follows from (3.14) and (3.17)

that, for each n�0,

‖xn+1 − xn‖�
(

1 + an

2(1 − �an)

)
��

(p+2)n−1
p+1 �n�(1 − �)r�

(p+2)n−1
p+1 �n. (3.36)

As

(p + 2)i − 1

p + 1
�

(p + 2)n − 1

p + 1
+ (i − n), ∀i�n,

one has that, for all m, n�0,

‖xm+n − xn‖�(1 − �)r�
(p+2)n−1

p+1 �n
n+m−1∑

i=n

(��)i−n�
(1 − �)r

(1 − ��)
�

(p+2)n−1
p+1 �n. (3.37)

This means that {xn} is a Cauchy sequence and hence {xn} converges, say, to x∗. Letting m → ∞ in
(3.37) yields

‖x∗ − xn‖�
(1 − �)r

(1 − ��)
�

(p+2)n−1
p+1 �n. (3.38)
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That is, {xn} converges to x∗ at a rate of order 2+p. In particular, letting n=0, we have that ‖x∗−x0‖ < r .
Since F ′(xn)

−1F(xn) → 0 and F ′(x)−1F(x) is continuous, F ′(x∗)−1F(x∗) = 0; hence, F(x∗) = 0.
Thus, to complete the proof, it remains to show that the solution of the equation F(x) = 0 is unique on

B(x0, r). To this end, let y∗ ∈ B(x0, r) be such that F(y∗) = 0. Then∫ 1

0
F ′(x0)

−1F ′(x∗ + t (y∗ − x∗)) dt (y∗ − x∗) = F ′(x0)
−1[F(y∗) − F(x∗)] = 0. (3.39)

As ∥∥∥∥
∫ 1

0
F ′(x0)

−1[F ′(x∗ + t (y∗ − x∗)) − F ′(x0)] dt

∥∥∥∥
�
∫ 1

0

∫ 1

0
‖F ′(x0)

−1F ′′(x0+�(x∗+t (y∗ − x∗) − x0))‖ d�[(1 − t)‖x∗ − x0‖+t‖y∗ − x0‖]dt

�r

∫ 1

0

∫ 1

0
(� + K�p‖(1 − t)(x∗ − x0) + t (y∗ − x0)‖p)d� dt < 1,

by the Banach Lemma,
∫ 1

0 F ′(x∗ + t (y∗ − x∗)) dt is invertible. Hence, y∗ = x∗ by (3.39). The proof is
complete. �

In particular, taking � = 0, 1
2 and 1 in Theorem 3.1, respectively, we immediately obtain the semi-local

convergence results of the Euler method, the Halley method and the super-Halley method, which are not
necessary to restate here. The first and the third were, respectively, investigated in [13,14] and [6].

4. Application to a nonlinear integral equation of Hammerstein type

In this section, we provide an application of the main result to a special nonlinear Hammerstein integral
equation of the second kind (cf. [18]). Letting 	 ∈ R and p ∈ [0, 1], we consider

x(s) = l(s) +
∫ b

a

G(s, t)[x(t)2+p + 	x(t)2] dt, s ∈ [a, b], (4.1)

where l is a continuous function such that l(s) > 0 for all s ∈ [a, b] and the kernel G is a non-negative
continuous function on [a, b] × [a, b].

Note that if G is the Green function defined by

G(s, t) =

⎧⎪⎨
⎪⎩

(b − s)(t − a)

b − a
, t �s,

(s − a)(b − t)

b − a
, s� t,

(4.2)

Eq. (4.2) is equivalent to the following boundary value problem (cf. [19]):{
x′′ = −x2+p − 	x2,

x(a) = v(a), x(b) = v(b).
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To apply Theorem 3.1, let X = Y = C[a, b], the Banach space of real-valued continuous functions on
[a, b] with the uniform norm, and let

�p =
{ {x ∈ C[a, b] : x(s) > 0, s ∈ [a, b]}, p ∈ (0, 1),

C[a, b], p = 0, 1.

Define F : �p → C[a, b] by

[F(x)](s) = x(s) − l(s) −
∫ b

a

G(s, t)[x(t)2+p + 	x(t)2] dt, s ∈ [a, b]. (4.3)

Then solving Eq. (4.1) is equivalent to solving Eq. (1.1) with F being defined by (4.3).
We start by calculating the parameters � and � in the study. Firstly, we have

[F ′(x)u](s) = u(s) −
∫ b

a

G(s, t)[(2 + p)x(t)1+p + 2	x(t)]u(t) dt, s ∈ [a, b]
and

[F ′′(x)u z](s) = −
∫ b

a

G(s, t)[(2 + p)(1 + p)x(t)p + 2	]u(t)z(t) dt, s ∈ [a, b].
Let x0 ∈ �p be fixed. Then

‖I − F ′(x0)‖�M((2 + p)‖x0‖1+p + 2	‖x0‖),
where

M = max
s∈[a,b]

∫ b

a

|G(s, t)| dt .

By the Banach Lemma, if M((2 + p)‖x0‖1+p + 2	‖x0‖) < 1, one has

‖F ′(x0)
−1‖�

1

1 − M((2 + p)‖x0‖1+p + 2	‖x0‖) .

Since

‖F(x0)‖�‖x0 − l‖ + M(‖x0‖2+p + 	‖x0‖2)

and

‖F ′′(x)‖ = M((2 + p)(1 + p)‖x(t)‖p + 2	),

it follows that

‖F ′(x0)
−1F(x0)‖�

‖x0 − l‖ + M(‖x0‖2+p + 	‖x0‖2)

1 − M((2 + p)‖x0‖1+p + 2	‖x0‖)
and

‖F ′(x0)
−1F ′′(x)‖�

M((2 + p)(1 + p)‖x‖p + 2	)

1 − M((2 + p)‖x0‖1+p + 2	‖x0‖) .

Therefore, � and � are estimated.
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On the other hand, for x, y ∈ �p,

[(F ′′(x) − F ′′(y))uz](s) = −
∫ b

a

G(s, t)(2 + p)(1 + p)(x(t)p − y(t)p)u(t)z(t) dt, s ∈ [a, b]

and consequently,

‖F ′′(x) − F ′′(y)‖�M(2 + p)(1 + p)‖x − y‖p, x, y ∈ �p.

This means that K = M(2 + p)(1 + p). Thus, we can establish the following result from Theorem 3.1.

Theorem 4.1. Let F be the nonlinear operator defined in (4.3) and x0 ∈ �p be a point such that
M((2 + p)‖x0‖1+p + 2	‖x0‖) < 1. Suppose that B(x0, r) ⊆ �p, where r is a unique positive solution of
the equation Ktp+1 +�t −1=0. Let r� be a unique solution of the Eq. q(s)=1 on (0, rs�). If � < r�, then
the sequence {xn} generated by (1.8) and (1.9) with initial point x0 converges at a rate of order 2 + p to
a unique solution x∗ of Eq. (4.1) on B(x0, r).

Example 4.1. Let l0 be defined by

l0(s) = s, s ∈ [0, 1]
and G Green’s function on [0, 1]×[0, 1] defined by (4.2). Consider the following particular case of (4.1):

x(s) = l0(s) +
∫ 1

0
G(s, t)[2x(t)2] dt, s ∈ [a, b]. (4.4)

Choose x0 = l0 for Theorem 4.1. Clearly, K = 0 and p = 0. Since M = 1/8, we have � = 1 and so r = 1.
Hence B(x0, 1) ⊆ �0. Note that

‖F ′(x0)
−1F(x0)‖ <

2M‖x0‖2

1 − 4M‖x0‖ = 1

2
.

Then � = ‖F ′(x0)
−1F(x0)‖ < 1

2 . Furthermore, we have r� = 1
2 . Thus, assumptions of Theorem 4.1 are

satisfied. Consequently, the sequence {xn} generated by (1.8) and (1.9) with initial point x0 converges
quadratically to a unique solution x∗ of Eq. (4.4) on B(x0, 1).
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