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Abstract

We consider the inverse scattering problem of determining both the shape and some of the physical properties of the scattering object
from a knowledge of the (measured) electric and magnetic fields due to the scattering of an incident time-harmonic electromagnetic
wave at fixed frequency. We shall discuss the linear sampling method for solving the inverse scattering problem which does not
require any a priori knowledge of the geometry and the physical properties of the scatterer. Included in our discussion is the case of
partially coated objects and inhomogeneous background. We give references for numerical examples for each problem discussed in
this paper.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The field of inverse electromagnetic scattering theory has drawn increased attention in recent years due to its
importance in many areas of science and technology. The aim of research in this field has been to not only detect but
also to identify unknown objects through the use of electromagnetic waves. However, the remarkable progress that has
been achieved to date depends on having certain a priori information on the physical properties of the scattering objects
such as being able to ignore multiple scattering effects, knowing that the index of refraction is a small perturbation of
a known background medium, assumptions on the electrical properties of the object, etc. In particular, until few years
ago, essentially all existing algorithms for target identification were based on either a weak scattering approximation
or on the use of nonlinear optimization techniques. Although nonlinear optimization techniques avoid the incorrect
modeling assumptions of weak scattering approximations, for many practical applications such approaches require
a priori information that may not be available. Hence in recent years alternative methods for imagining have been
developed which avoid incorrect model assumptions but, as opposed to nonlinear optimization techniques, only seek
limited information about the scattering object and do not rely on any a priori knowledge of the geometry and physical
properties of the scatterer. Such methods come under the general title of qualitative methods in inverse scattering
theory. Examples of such approaches are the linear sampling method [6,5,13,14], the factorization method [21–23], the
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method of singular sources [28], the range test method for finitely many incident waves [26,29], etc. In this paper we
will survey the recent developments of the linear sampling method for solving the inverse electromagnetic scattering
problem. The recent monograph by Cakoni and Colton [6] presents a general introduction to the linear sampling method
for scalar problems and [5] provides a survey of some open problems in the area.

The inverse scattering problem we consider in this paper is to determine the shape and some of the physical properties
of an obstacle from a knowledge of the scattered field due to the scattering of incident time-harmonic electromagnetic
waves at fixed frequency. In many applications the scattering object is a composite material such that parts of the
scatterer have different electrical properties e.g., a thin coating of a material is put on part of the boundary of the object.
Scattering problems in such situations lead to the investigation of mixed boundary value problems for Maxwell’s
equations [7,8]. In general, it is not known a priori whether the object is coated and if so what is the extent of the
coating. Hence, in order to identify the target from measured far field data, it is necessary to determine both the shape
of the scatterer and whether or not the scatterer is coated. Mathematically, this means determining both the shape and a
coefficient in a boundary condition, neither one of which is known a priori. In this paper we shall show how to resolve
such problems through the use of the linear sampling method.

The plan of the paper is as follows. In the next section we introduce the main mathematical ideas of the linear
sampling method for the simple case of electromagnetic scattering by a perfect conductor. In particular we will provide
a mathematical justification of the method for the practical case of limited aperture scattering data. In Section 3 we then
use the linear sampling method to determine both the shape and the surface impedance of a partially coated perfect
conductor without knowing a priori whether or not the obstacle is coated. We end our paper with an investigation of
the inverse electromagnetic scattering problem for objects buried in a known inhomogeneous medium. In particular,
we present a new sampling method which in certain cases avoids the need to compute the Green’s function of the
background media.

2. The scattering problem for a perfect conductor

We first consider the case when the scattering object D is a perfect conductor. In particular, let D ⊂ R3 be a bounded
region such that R3\D̄ is connected. The boundary � of D is assumed to be a Lipshitz curvilinear polyhedron and �
denotes the unit outward normal defined almost everywhere on �. After factoring out a term of the form e−i�t where
� is the frequency and expressing the magnetic field in terms of the electric field, we are led to the following boundary
value problem for the scattered electric field Es:

curl curl Es − k2Es = 0 in De, (1)

� × Es = f on �, (2)

where k is the wave number, f = −� × Ei where Ei is the incident field given by

Ei(x) = i

k
curl curl peikx·d . (3)

p ∈ R3 is a polarization vector and d ∈ � := {x ∈ R3; |x| = 1} is the direction of propagation. Finally Es is required
to satisfy the Silver–Müller radiation condition

lim|x|→∞(curl Es × x − ik|x|Es) = 0 (4)

uniformly in x̂ = x/|x|.
To analyze the scattering problem we consider the following Hilbert spaces:

H(curl, D) := {u ∈ (L2(D))3 : curl u ∈ (L2(D))3},
Lt(�) := {u ∈ (L2(�))3 : � · u = 0 on �},
H

−1/2
div (�) := {u ∈ H−1/2(�), div� u ∈ H−1/2(�)},

H
−1/2
curl (�) := {u ∈ H−1/2(�), curl� u ∈ H−1/2(�)}.
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Furthermore, u ∈ Hloc(curl, R3\D̄) if u ∈ H(curl, BR\D̄) for every ball of radius R containing D. It is known that
for u in H(curl, D) or in Hloc(curl, R3\D̄), � × u ∈ H

−1/2
div (�) and � × (u × �) ∈ H

−1/2
curl (�), and a duality pairing is

defined between H
−1/2
div (�) and H

−1/2
curl (�) through an integration by parts formula (see [2] for the interpretation of the

above spaces in the case of nonsmooth boundaries). The proof of the following theorem can be found in [27].

Theorem 2.1. There exists a unique solution Es ∈ Hloc(curl, R3\D̄) to (1)–(4) which satisfies

‖Es‖H(curl,BR\D̄) �C‖f ‖
H

−1/2
div (�)

(5)

for every ball BR of radius R containing D where C is a positive constant independent of f.

The radiating electric field Es has the asymptotic behavior [15]

E(x) = eik|x|

|x|
{
E∞(x̂) + O

(
1

|x|
)}

, |x| → ∞, (6)

where E∞ is an infinitely smooth tangential field defined on the unit sphere � and is called the electric far field pattern.
In particular if Es(x) := Es(x, d, p) corresponds to an incident plane wave given by (3), then E∞(x̂) := E∞(x̂, d, p)

depends on d and (linearly) on p.
Let us now recall two family of solutions to the (normalized) Maxwell equations. A (normalized) electromagnetic

Herglotz wave pair is defined to be a pair of vector fields of the form [15]

Eg(x) = ik
∫
�

eikx·dg(d) ds(d), Hg(x) = 1

ik
curl Eg(x), (7)

where the kernel g is a tangential vector field in L2
t (�). We call Eg an electric Herglotz function. In particular, Eg is

an entire solution to (1). Furthermore, a (normalized) electric dipole with polarization q is defined by

Ee(x, z, q) := i

k
curlx curlx q �(x, z), He(x, z, q) := curlx q �(x, z), (8)

where �(x, z) := eik|x−z|/4�|x − z|. In particular, Ee is a radiating solution to (1) outside a neighborhood of z and the
corresponding far field pattern Ee,∞(x̂, z, q) is given by

Ee,∞(x̂, z, q) = ik

4�
(x̂ × q) × x̂e−ikx̂·z. (9)

The inverse scattering problem for a perfect conductor is to determine D from a knowledge of the electric far field
pattern E∞(x̂, d, p) for d ∈ �1 ⊂ �, x̂ ∈ �2 ⊂ � and three linearly independent polarizations p, where �1 and �2
are two open subsets of the unit sphere � (possibly �1 = �2).

Theorem 2.2. D is uniquely determined by E∞(x̂, d, p), d ∈ �1 ⊂ �, x̂ ∈ �2 ⊂ � and three linearly independent
polarizations p.

The proof of this uniqueness result is based on the ideas of Kirsch and Kress [24] (see [25, 15, Theorem 7.1]) which
essentially make use of the well-posedness of the direct scattering problem and a clever use of the singular behavior of
electric dipoles. We note that these ideas are closely related to the linear sampling method for reconstructing D which
we discuss next.

We first assume that we know E∞(x̂, d, p) for all d, x̂ ∈ � (for limited aperture data see the next section). Then we
can define the far field operator F : L2

t (�) → L2
t (�) by

(Fg)(x̂) := ik
∫
�

E∞(x̂, d, g(d)) ds(d), x̂ ∈ �, (10)

for g ∈ L2
t (�). Note that by superposition Fg is the electric far field pattern of the scattered field Es corresponding

to the electric Herglotz function with kernel g as incident field i.e., Es is the solution of (1)–(4) with f := −� × Eg .
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Next, we investigate the linear first kind integral equation (which we will call the far field equation):

Fg(x̂) = Ee,∞(x̂, z, q). (11)

If z ∈ D, it is seen that if g = gz is a solution to the far field equation then from Rellich’s lemma (see [15]) the
scattered field Es due to the incident field Eg and the electric dipole Ee(·, z, q) coincide in De. Hence, by the trace
theorem, their tangential traces � × Es = −� × Eg and � × Ee(·, z, q) coincide on �. Now letting z ∈ D → �, since
‖� × Ee(·, z, q)‖

H
−1/2
div (�)

→ ∞, we conclude that ‖� × Eg‖H
−1/2
div (�)

→ ∞, whence ‖g‖L2
t (�) → ∞. This determines

the boundary � of D. The above is only a heuristic argument since it is based on the assumption that g solves the far
field equation. Unfortunately the far field equation has no solution for z ∈ D (in fact as will be seen later, the far field
equation is not solvable for any z ∈ R3). This follows from the fact that if g solves the far field equation then the electric
Herglotz function Eg is the solution of the interior boundary value problem

curl curl Ez − k2Ez = 0 in D, (12)

� × [Ez + Ee(·, z, q)] = 0 on � (13)

which is in general not possible. However, it can be shown that the unique solution Ez ∈ H(curl, D) of (12)–(13)
(which exists provided k is not a Maxwell eigenvalue for D) can be approximated arbitrarily closely by an electric
Herglotz function Eg [16]:

Theorem 2.3. Assume that R3\D̄ is connected. Then the set of electric Herglotz functions Eg with g ∈ L2
t (�) is dense

in the space

M(D) :=
{
u ∈ H(curl, D) : curl curl u − k2u = 0

}
with respect to the H(curl, D) norm. In particular, provided that k is not a Maxwell eigenvalue for D, the well-posedness
of the interior problem (12)–(13) with −� × Ee(·, z, q) replaced by an arbitrary function f ∈ H

−1/2
div (�) implies that

for every � > 0 there exists a g� ∈ L2
t (�) such that

‖� × Eg� − f ‖
H

−1/2
div (�)

< �.

In order to understand better the far field equation, we introduce a bounded linear operator B : H
−1/2
div (�) → L2

t (�)

which maps the boundary data f ∈ H
−1/2
div (�) to the far field pattern E∞ of the radiating solution Es of (1)–(2). Then

if F is the far field operator we have that

F = −B(� × Eg).

B is a compact operator since it can be seen as a composition of a bounded operator mapping f ∈ H
−1/2
div (�) into

(� × Es, � × H s) ∈ [H−1/2
div (�BR)]2, where BR is a ball of radius R containing D, and the compact operator mapping

this Cauchy data to the far field pattern given by

E∞(x̂) = ik

4�
x̂ ×

∫
�BR

{
(�y × Es(y)) + (�y × H s(y)) × x̂

}
e−ikx̂·y dsy .

The following lemmas play an important role in our analysis.

Lemma 2.4. The operator B : H
−1/2
div (�) → L2

t (�) is injective and has dense range.

Proof. Injectivity is a consequence of Rellich’s lemma and the uniqueness of the direct scattering problem. To prove
that B has dense range, we consider the dual operator B� : L2

t (�) → H
−1/2
curl (�) given by

〈Bf , g〉L2,L2 = 〈f, B�g〉
H

−1/2
div ,H

−1/2
curl

,
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where 〈·, ·〉 denotes the duality pairing between the denoted spaces. By changing the order of integration and using
integration by parts we see that

〈Bf , g〉 = 1

4�

∫
�
[f · (curl Eg − curl Ẽ)] ds,

where Ẽ ∈ Hloc(curl, R3\D̄) is the solution of the exterior problem (1)–(2) with data f = � × Eg and the electric
Herglotz wave function Eg is written in the form

Eg(y) :=
∫
�

g(d)e−ikd·y ds(d).

Hence, noting that the above integral is interpreted in the sense of duality between H
−1/2
div (�) and H

−1/2
curl (�), we

have that

(B�g)(x) = � × (curl Eg(x) − curl Ẽ(x)) × �, x ∈ �.

Next we show that B� is injective. To this end, B�g = 0 implies that � × curl Eg = � × curl Ẽ and by definition we
also have that � × Eg = � × Ẽ. Using the Stratton–Chu formula, this implies that Ẽ = Eg = 0, since Ẽ is a radiating
solution while Eg is an entire solution to (1). Hence g = 0. Recalling that injectivity of B� implies that B has dense
range this ends the proof. �

Lemma 2.5. Ee,∞(x̂, z, q) is in the range of B if and only if z ∈ D.

Proof. If z ∈ D then from the above we have that B(−�×Ee(·, z, q))=Ee,∞(x̂, z, q). Now let z ∈ R3\D and assume
that there is f ∈ H

−1/2
div (�) such that Bf =Ee,∞(·, z, q). Then by Rellich’s lemma the scattered field Es corresponding

to the boundary data f and the electric dipole E∞(·, z, q) coincide outside a ball that contains D and z. Applying the
unique continuation principle we arrive at a contradiction since Es ∈ Hloc(curl, R3\D̄) but E∞(·, z, q) is not.

Next we consider the ill-posed equation

Bf = Ee,∞(· , z, q), z ∈ R3. (14)

As noted in the proof of Lemma 2.5 for z ∈ D, fz := −� × Ee(·, z, q) is the solution to (14). In particular, as z → �,
we have that ‖fz‖H

−1/2
div (�)

→ ∞. If z ∈ R3\D̄, from Lemmas 2.4 and 2.5, by using Tikhonov regularization we can

construct a regularized solution to (14). In particular, there exists fz := f 	
z corresponding to a parameter 	 = 	(
)

chosen by a regular regularization strategy (e.g., the Morozov discrepancy principle) such that

‖Bf z − Ee,∞(x̂, z, q)‖L2
t (�) < �


for an arbitrary noise level 
 and a constant ��1, and

lim
	→0

‖fz‖H
−1/2
div (�)

→ ∞.

Note that 	 → 0 as 
 → 0. Finally approximating −fz arbitrarily close by � × Eg (see Theorem 2.3) yields the
following result.

Theorem 2.6. Assume that k is not a Maxwell eigenvalue for D and F is the far field operator corresponding to the
scattering problem (1)–(4). Then

(1) For z ∈ D and a given � > 0 there exists a g�
z ∈ L2

t (�) such that

‖Fg�
z − Ee,∞(· , z, q)‖L2

t (�) < �

and the corresponding Herglotz function Eg�
z

converges to the solution of (12)–(13) in H(curl, D) as � → 0.
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(2) For a fixed � > 0, we have that

lim
z→�

‖Eg�
z
‖H(curl,D) = ∞ and lim

z→�
‖g�

z‖L2
t (�) → ∞.

(3) For z ∈ R3\D̄ and a given � > 0, every g�
z ∈ L2

t (�) that satisfies

‖Fg�
z − Ee,∞(x̂, z, q)‖L2

t (�) < �

is such that

lim
�→0

‖Eg�
z
‖H(curl,D) = ∞ and lim

�→0
‖g�

z‖L2
t (�) → ∞.

The above result provides a characterization for the boundary � of the scattering object D. Unfortunately, since
the behavior of Eg�

z
is described in terms of a norm depending on the unknown region D, Eg�

z
cannot be used to

characterize D. Instead the linear sampling method characterizes the obstacle by the behavior of g�
z. In particular,

given a discrepancy � > 0 and g�
z the �-approximate solution of the far field equation, the boundary of the scatterer is

reconstructed as the set of points z where the L2
t (�) norm of g�

z becomes large. An open question is how to obtain
numerically the �-approximate solution of the far field equation given by Theorem 2.6. In all numerical experiments
implemented up to date, the Tikhonov regularization combined with the Morozov discrepancy principle is used to solve
the far field equation [18] (see [10,13] for a detailed numerical study of the linear sampling method). Although all these
experiments indicate that this regularized solution behaves in the same way as g�

z given by Theorem 2.6, in general
there is no mathematical justification of this fact. However, for the case of the Helmholtz equation, Arens has shown
in [1] that in certain cases applying a regular regularization technique to the far field equation leads to a solution g that
exhibits the desired behavior.

Obviously, in the context of the above discussion, it would be desirable to modify the far field equation in a way
that it has a solution if and only if z ∈ D. This desire motivated Kirsch to introduce the factorization method
for solving the inverse scattering problem of shape reconstruction [21–23]. The applicability of the factorization
method is still limited to a restricted class of scattering problems. In particular, to date the method has not been
established for the case of Maxwell’s equation for a perfect conductor, for partially coated obstacles and limited
aperture scattering data. On the other hand, when applicable, the factorization method provides a mathe-
matical justification for using the regularized solution of an appropriate far field equation to determine D. In the
case of a perfect conductor, the factorization method has been shown to be valid for the case of a spherical
scatterer in [10].

3. Limited aperture data

In many cases of practical interest, the far field data E∞(x̂, d, p) is restricted to the case when d and x̂ are on a
subset �1 and �2, respectively, of the unit sphere � (possibly �1 = �2). In the case of limited aperture data the far
field (11) takes the form

∫
�1

E∞(x̂, d, g(d)) ds(d) = Ee,∞(x̂, z, q), x̂ ∈ �2. (15)

In order to handle this case, we note that from the proof of Theorem 2.6 the function g� ∈ L2
t (�) is the kernel

of a Herglotz wave function which approximates a solution to (1) in D with respect to the H(curl, D) norm
(see Theorem 2.3). Therefore, as it is discussed in [3], to treat the limited aperture case it is enough to show that a
Herglotz wave function and its first derivative can be approximated uniformly on compact subsets of a ball BR of radius R
by a Herglotz wave function with kernel supported in a subset of �. This new Herglotz wave function and the kernel can
now be used in place ofEg�

z
andg�

z in Theorem 2.6. To this end, assuming that k is not a Maxwell eigenvalue for the ballBR

(this is not a restriction since we can always find a ball containing D and having this property), it suffices to show that the
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set of functions

Eg(x) := � ×
∫
�

g(d)eikx·d ds(d), g ∈ L2
t (�) with support in �0 ⊆ �

for some subset �0 ⊆ � is complete in H
−1/2
div (�BR).

To this end, let � ∈ H
−1/2
curl (�BR) and assume that for a fixed �0 ⊂ � we have that

∫
�BR

�(x)

[∫
�0

g(d)e−ikx·d ds(d)

]
ds(x) = 0 (16)

for every g ∈ L2
t (�0), where the first integral is interpreted in the sense of duality pairing. We want to show that �= 0.

By interchanging the order of integration we arrive at

∫
�0

g(d)

[∫
�BR

�(x)e−ikx·d ds(x)

]
ds(d) = 0

for every g ∈ L2
t (�0), which implies that

d ×
∫
�BR

�(x)e−ikx·d ds(x) × d ≡ 0, d ∈ �0. (17)

The left-hand side of (17) coincides with the far field pattern (A�)∞ of the surface potential defined by

(A�)(y) := 1

k2 ∇y × ∇y ×
∫
�BR

a(x)�(x, y) ds(x), y ∈ R3\�BR, � ∈ H
−1/2
curl (�BR).

It is known [15] that � × A� is continuous across the boundary �BR and A maps H
−1/2
curl (�BR) to Hloc(R

3). Since
A� is a radiating solution to (1) in R3\B̄R , from Rellich’s lemma, (17) implies that A� = 0 outside BR . In particular
�×A�=0. From the continuity of �×A� we then have that A� satisfies (1) inside BR and the zero boundary condition
� × A� = 0, whence A� = 0 in BR . Finally, applying the jump relation for � × ∇ × (A�) across �BR [15] we obtain
that � ≡ 0. This ends the proof. �

Examples of reconstruction with limited aperture data can be found in [10,13,17].

4. Partially coated objects

To fix our ideas, we discuss here only the scattering problem for a partially coated perfect conductor. Other scattering
problems for partially coated obstacles are discussed in [17] and in the references therein. Let D ⊂ R3 be a bounded
region with Lipshitz boundary � such that De := R3\D is connected. We assume that the boundary � = �D ∪ 
 ∪ �I

is split into two disjoint parts �D and �I having 
 as their possible common boundary in �. Again � denotes the unit
outward normal defined almost everywhere on �. We assume that D is a perfectly conducting object that is coated
on the part �I of its boundary by a very thin layer of a dielectric material. Under appropriate assumptions [20], the
first-order approximation of the scattering problem is described by the following mixed boundary value problem for
the electric scattered field Es:

curl curl Es − k2Es = 0 in R3\D, (18)

� × Es = f on �D , (19)

� × curl Es − i�(x)(� × Es) × � = h on �I , (20)

lim
r→∞(curl Es × x − ikrEs) = 0, (21)
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where the surface impedance � ∈ L∞(�I ) describing the physical properties of the coating satisfies �(x)��0 > 0. If the
scattering is due to an incident electromagnetic plane wave then f := −�×Ei and h := −�× curl Ei + i�(�×Ei)× �
where Ei is given by (3).

The well-posedness of the direct problem is established in [7]. In particular it is shown that there exist a unique
solution Es ∈ X(BR\D̄, �I ) of (18)–(21) where

X(BR\D̄, �I ) := {u ∈ H(curl, BR\D̄) : � × u|�I
∈ L2

t (�I )}

for every ball of radius R containing D. The inverse scattering problem we are interested in is to determine both D
and � from a knowledge of the electric far field pattern E∞(x̂, d, p) for d ∈ �1 ⊂ �, x̂ ∈ �2 ⊂ � and three linearly
independent polarizations p.

Theorem 4.1. Assume that D1 and D2 are two partially coated scattering obstacles with corresponding surface
impedances �1 and �2 such that for a fixed wave number the electric far field patterns coincide for d ∈ �1 ⊂ �,
x̂ ∈ �2 ⊂ � and three linearly independent polarizations p. Then D1 = D2 and �1 = �2.

Proof. First, following [25], one shows that D1 = D2 = D. As a part of this proof, one also obtains that the scattered
field Es

1 and Es
2 corresponding to �1 and �2 coincide in R3\D̄, whence � × Es

1 = � × Es
2 and � × curl Es

1 − i�1(� ×
Es

1) × � = � × curl Es
2 − i�1(� × Es

2) × � on �. From the boundary condition we have

� × (Es
j + Ei) = 0 on �Dj

, � × curl(Es
j + Ei) − i�1(� × (Es

j + Ei)) × � = 0 on �Ij

for j = 1, 2. First we observe that �D1 ∩ �D2 = ∅, because otherwise both Cauchy data of the total field will be zero
on a part of the boundary and from the Stratton–Chu formula one concludes that the total field is zero which is not the
case. Hence, we have that �I1 = �I2 = �I . Next

(�1 − �2)(� × Es
1) × � = 0 on �I ,

and again we can conclude that �1 = �2 since otherwise both � × (Es
1 + Ei) = 0 and � × curl(Es

1 + Ei) = 0 on a part
of �, implying that Es

1 + Ei = 0 in R3\D̄ which is a contradiction. �

The shape of the scattering object D can be reconstructed without any a priori knowledge of �D , �I or � by using
the linear sampling method. In particular, similar results to the ones stated in Theorem 2.3, Lemmas 2.4 and 2.5 can be
proven for the boundary data f, h and the boundary operator B which in this case takes (f, h) to E∞ of the radiating
solution Es of (18)–(21). We note that complications arise in the proof of these results due to the nonstandard space
for the tangential component � × u|�D

of functions u ∈ X(BR\D̄, �I ). We also remark that if �I �= ∅ then the linear
sampling method is valid for all (fixed) wave numbers k. We refer the reader to [7] for the complete proof of the linear
sampling method for partially coated perfect conductors.

Assuming now that D is known, we want to determine the surface impedance � by making use of the approximate
solution g to the far field equation

(Fg)(x̂) := ik
∫
�

E∞(x̂, d, g(d)) ds(d) = Ee,∞(x̂, z, q) (22)

that was used to determine D. Note that now E∞(x̂, d, p) is the far field pattern that correspond to (18)–(21). To this
end let Ez ∈ X(D, �I ) be the unique solution (see [7]) of

curl curl Ez − k2Ez = 0 in D, (23)

� × [Ez + Ee(·, z, q)] = 0 on �D , (24)

� × curl(Ez + Ee(·, z, q)) − i�[� × (Ez + Ee(·, z, q))] × � = 0 on �I (25)
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for a fixed but arbitrary z ∈ D and define

Wz := Ez + Ee(·, z, q). (26)

Denoting u� := (� × u) × � we recall that (Wz)T ∈ H
−1/2
curl (�) and (Wz)T |�I

∈ L2
t (�I ). The following result holds

(see [7, Theorem 3.2]):

Theorem 4.2. For every � > 0 and z ∈ D there exists an electric Herglotz function Eg�
z

with kernel g�
z ∈ L2

t (�)

such that

‖Ez − ikEg�
z
‖X(D,�I ) ��, (27)

where Ez is the solution of (23)–(25). Moreover this g�
z is an approximate solution of the far field equation

‖(Fg�
z)(x̂) − Ee,∞(x̂, z, q)‖L2

t (�) ��. (28)

Our next aim is to find a relation that connects the surface impedance � with Ez. We need the following technical
lemma:

Lemma 4.3. For every two points z1 and z2 in D and polarization q ∈ R3 we have that

2
∫
�I

(Wz1)T · �(Wz2)T ds = −‖q‖2A(z1, z2, k) + k Re(q · Ez1(z2) + q · Ez2(z1)),

where Ez1 , Ez1 and Wz2 , Wz2 are defined by (23)–(25) and (26), respectively, and A(z1, z2, k) is a computable number
depending only on z1, z2 and k.

Proof. See [4]. �

Next, assuming that D is connected, we consider a subset E of L2
t (�I ) defined by

E :=
{
f ∈ L2

t (�I ) : f = (Wz)T |�I
with Wz = Ez + Ee(·, z, q),

z ∈ Br, Ez the solution of (12)–(13) and q ∈ R3

}
,

where Br is a ball of radius r contained in D.

Remark 4.1. If D is not connected, the lemma remains true if we replace Br by a union of discs where each component
contains one disc from the union.

Lemma 4.4. E is complete in L2
t (�I ).

Proof. Let � ∈ L2
t (�I ). Let E ∈ X(D, �I ) be the solution of the interior mixed boundary value problem

curl curl E − k2E = 0 in D,

� × E = 0 on �D ,

� × curl E − i�ET = � on �I .
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Then for z ∈ Br and q ∈ R3, using the fact that (Wz)T = ET = 0 on �D , simple calculations show that

0 =
∫
�I

(Wz)T · ET ds =
∫
�

Wz · (� × curl E − i�ET ) ds

=
∫
�
[Ez · (� × curl E) − i�Ez · ET ] ds

+
∫
�
[Ee(·, z, q) · (� × curl E) − i�Ee(·, z, q) · ET ] ds

=
∫
�
[Ez · (� × curl E) − E · (� × curl Ez)] ds

−
∫
�
[E · (� × curl Ee(·, z, q)) − i�ET · Ee(·, z, q)] ds

+
∫
�
[Ee(·, z, q) · (� × curl E) − i�Ee(·, z, q) · ET ] ds

=
∫
�
[Ee(·, z, q) · (� × curl E) − E · (� × curl Ee(·, z, q))] ds

= −
∫
�
[(� × Ee(·, z, q)) · curl E − (� × E) · curl Ee(·, z, q)] ds = ikq · E(z).

Thus q · E(z) = 0 holds for all polarizations q ∈ R3 and z ∈ Br and hence E(z) = 0 for z ∈ Br . By the unique
continuation principle for the solution of Maxwell’s equations in D we now see that E ≡ 0 in D, whence by the trace
theorem � ≡ 0 which proves the lemma. �

Using Lemmas 4.3 and 4.4 we can prove the following result [4].

Theorem 4.5. Let � ∈ L∞(�I ) be the surface impedance of the scattering problem (18)–(21). Then

‖�(x)‖L∞(�I )

= sup
z1,z2∈Br ,q∈R3

−‖q‖2A(z1, z2, k) + k Re(q · Ez1(z2) + q · Ez2(z1))

2‖(Wz1)T ‖L2
t (�)‖(Wz2)T ‖L2(�)

, (29)

where Wz1 = Ez1 + Ee(·, z1, q) and Wz2 = Ez2 + Ee(·, z2, q) with Ez1 and Ez2 being the solutions to (23)–(25)
corresponding to z1 and z2, respectively, and

A(z1, z2, k) = k3

6�
[2j0(k|z1 − z2|) + j2(k|z1 − z2|)(3 cos2 � − 1)].

In the particular case where � is a positive constant and setting z1 = z2 = z0 ∈ Br , we obtain the following formula
for constant surface impedance:

� = −(k2/6�)‖q‖2 + k Re(q · Ez0)

‖(Wz0)T ‖2
L2

t (�)

, (30)

where Wz0 = Ez0 + Ee(·, z0, q) with Ez0 being the solution of (23)–(25) corresponding to z0 ∈ Br .
In both cases (29) and (30) Ez cannot be computed since � appears in the boundary conditions. However from

Theorem 4.2 we can approximate Ez by the electric field Egz of the Herglotz electromagnetic pair with kernel gz where
gz is a (regularized) solution of the far field equation for z ∈ Br ⊂ D and E∞ is the measured far field data (recall that
D is reconstructed by using the linear sampling method!). We end this section by remarking that from the discussion
in Section 3 the results of this section are valid for limited aperture data. Numerical examples of reconstructions of D
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for partially coated perfect conductor can be found in [7,10], while examples of reconstructions for both D and � are
given in [17].

Remark 4.2. If the thickness of the scattering object is much smaller than the other dimensions and the wave number,
we can model the object by an open surface in R3 which we refer to as a screen. If one side of the screen is a perfect
conductor and the other side a dielectric, the scattering problem becomes a mixed boundary value problem which can
again be treated by using the linear sampling method [9].

5. Inhomogeneous background

In many practical situations the scattering object is imbedded in an inhomogeneous background. Furthermore, in
applications such as mine detection or medical imagining, it is more suitable to use point sources as incident waves and
to measure near field data i.e., the scattered electromagnetic field measured on a given surface. As a model problem we
discuss here the case of a perfect conductor embedded in a known piecewise homogeneous background. All the ideas
can also be generalized to the case of partially coated obstacles, penetrable scatterers, etc.

We assume that the magnetic permeability �0 > 0 of the background medium is a positive constant whereas the
electric permitivity �(x) and conductivity �(x) are piecewise constant. Moreover we assume that for |x| > R for R
sufficiently large, � = 0 and �(x) = �0. Then, after an appropriate scaling [15] and eliminating the magnetic field, we
have that the electric field E in the background medium satisfies

curl curl E − k2n(x)E = 0,

where k = �0�0�
2 and n(x)= (1/�0)(�(x)+ i(�(x)/�)) (� is the frequency). Note that the piecewise constant function

n(x) satisfies n(x) = 1 for |x| > R, R(n) > 0 and I(n)�0. The surface across which the refractive index of the
background media n(x) is discontinuous are assumed to be piecewise smooth. We assume that the scattering object D
embedded in this medium is a perfect conductor such that R3\D̄ is connected and that the boundary � of D is piecewise
smooth. Furthermore, we suppose that the incident field is an electric dipole located at x0 ∈ � with polarization p ∈ R3,
where � is a smooth open surface situated in a layer with constant index of refraction ns . Recall that in this case the
point source is given by

Ee(x, x0, p, ks) := i

ks

curlx curlx p
eiks |x−x0|

4�|x − x0| (31)

where k2
s = k2ns . We denote by G(x, x0) the free space Green’s tensor of the background medium (which is the total

field in the absence of the scatterer) and define Ei(x) := Ei(x, x0, p) = G(x, x0)p which satisfies

curl curl Ei(x) − k2n(x)Ei(x) = p 
(x − x0) in R3. (32)

Note that Ei can be written as

Ei(x) = Ee(x, x0, p, ks) + Es
b(x), (33)

where Es
b = Es

b(·, x0, p) is the electric scattered field due to the background medium. Then the scattering problem is
given Ei = G(· , x0)p, find a solution E ∈ Hloc(curl, R3\D ∪ {x0}) of

curl curl E − k2n(x)E = 0 in R3\D ∪ {x0}, (34)

� × E = 0 on �D, (35)

E = Es + Ei, (36)

lim|x|→∞(curl Es × x − ik|x|Es) = 0. (37)

It is known that (34)–(37) is well-posed [27]. We remark that it is also possible to consider the problem of objects
buried in unbounded multi-layer medium. In this case, the radiation condition and mathematical analysis become more
complicated (see [19] for the case of two layered medium).
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The inverse scattering problem is to determine D from a knowledge of the tangential component � × E of the total
field measured on � for all incident point sources Ee(x, x0, p, ks), x0 ∈ � and three linearly independent polarization
p, where � is the unit normal to �.

We use the linear sampling method to solve the inverse problem which is based on finding a solution �z ∈ (L2(�))3

of the following integral equation of the first kind called the near field equation:∫
�

�(x) × Es(x, y, �z(y)) ds(y) = �(x) × G(x, z) q, x ∈ �, z ∈ R3. (38)

Here � is the unit outward normal to � and q ∈ R3 is an artificial polarization. Note that since Es depends linearly
on the polarization p, the near field equation is linear. We remind the reader that in our formulation Es is in fact the
scattered field due to the incident wave being G(·, x0) p. Alternatively, one could replace Es by the difference of the
scattered field due to the point source and the scattered field due to the background.

In the same way as in Section 2 one can prove a similar result to the one stated in Theorem 2.6 for the near field
equation, where the electric Herglotz function Eg and its kernel g are replaced by the single layer potential

(S�)(x) :=
∫
�

�(y)G(x, y) ds(y)

with density �. In particular, the boundary � of D is characterized as the set of points where the L2-norm of the
approximate (regularized) solution �z to the near field equation becomes large. The discussion at the end of Section
2 is also applicable to the solution of the near field equation. The reader can find in [11] some numerical experiments
using the linear sampling method for buried perfect conductors in unbounded two layered medium.

A drawback of the linear sampling method is that the Green’s function of the background medium appears in the
equations to be solved. As reported in [11], the computation of the background Green’s function is a difficult and
very expensive task. We now show that under additional assumptions it is possible to avoid the need to compute the
background Green’s function. This is done by using an alternative linear sampling method first introduced in [12] for
the scalar case and further developed in [11]. We end the paper by discussing the main ideas of this new sampling
method.

We assume that there is a bounded region B containing D such that inside B the medium is homogeneous with
constant index of refraction nb. Define k2

b := k2nb. Furthermore, assume that it is possible to measure both � × E and
� × H on the boundary �B of B, where � is the outward normal vector to �B and E and H are the total electric and
magnetic fields, respectively. Note that � × H |�B = (1/ikb)� × curl E. The inverse scattering problem is to determine
D from a knowledge of both � × E and � × H on �B for all incident point sources Ee(x, x0, p, ks), x0 ∈ � and three
linearly independent polarization p.

For any function W ∈ H(curl, B) , we define the gap reciprocity function by

R(E, W) =
∫
�B

(� × E) · curl W − (� × W) · curl E ds, (39)

where the integral is interpreted in the sense of the duality between H
−1/2
div (�B) and H

−1/2
curl (�B). Note that E depends

on x0 ∈ � and hence so does R. In particular R(E, W) ∈ L2(�). Next we consider a dense subset {A� : � ∈ X} of

M(B) := {u ∈ H(curl, B) : curl curl u − k2
bu = 0},

where X is a normed space. An example of such dense sets of solutions is the set of electric Herglotz functions

Eg(x) =
∫
�

g(d)eikd·x ds(d), g ∈ L2
t (�),

where � is the unit sphere, or the set of single layer potentials

(S�)(x) :=
∫
�B

�(y)G(x, y) ds(y), � ∈ L2
div(�B).

Now we look for a solution � ∈ X to the following integral equation

R(E, A�) = R(E, Ee(·, z, q, ks)), (40)
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where A� is one of the above choices (there are more possibilities of choosing A�). To fix our ideas we take {A�} to
be Herglotz wave functions Eg , g ∈ L2

t (�). The following result is proven in [11]:

Theorem 5.1. Provided that k is not a Maxwell eigenvalue for D, we have that

(1) If z ∈ D, for every � > 0 there exists a g�
z ∈ L2

t (�) such that

‖R(E, Eg�
z
) − R(E, Ee(·, z, q, ks))‖L2(�) < �

and the corresponding Herglotz function Eg�
z

converges to the solution Ez of

curl curl Ez − k2
bEz = 0 in D,

� × [Ez + Ee(·, z, q, ks)] = 0 on �

in H(curl, B) as � → 0.

(2) For a fixed � > 0, we have that

lim
z→�

‖Eg�
z
‖H(curl,B) = ∞ and lim

z→�
‖g�

z‖L2
t (�) → ∞.

(3) If z ∈ R3\D̄, for every g�
z ∈ L2

t (�) satisfying

‖R(E, Eg�
z
) − R(E, Ee(·, z, q, ks))‖L2(�) < �

for an arbitrary � > 0 we have that

lim
�→0

‖Eg�
z
‖H(curl,B) = ∞ and lim

�→0
‖g�

z‖L2
t (�) → ∞.

The approximate solution g�
z provided by this theorem can now be used in the same way as in the linear sampling

method to characterize D (see the discussion at the end of Section 2). We remark that the reciprocity gap (40) with
A� := Eg can be transformed to the far field equation if the background medium is homogeneous and the incident
field is a plane wave. It is an open problem how to use the reciprocity gap method with limited aperture data. Numerical
examples using the gap reciprocity method for solving the inverse problem for buried objects can be found in [12] in
the scalar case and in [11] for Maxwell’s equations.
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