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Abstract

This paper studies the classical second-order Bessel differential equation in Liouville form:

−y′′(x) + (�2 − 1
4 )x−2y(x) = �y(x) for all x ∈ (0, ∞).

Here, the parameter � represents the order of the associated Bessel functions and � is the complex spectral parameter involved in
considering properties of the equation in the Hilbert function space L2(0, ∞).

Properties of the equation are considered when the order � ∈ [0, 1); in this case the singular end-point 0 is in the limit-circle
non-oscillatory classification in the space L2(0, ∞); the equation is in the strong limit-point and Dirichlet condition at the end-point
+∞.

Applying the generalised initial value theorem at the singular end-point 0 allows of the definition of a single Titchmarsh–Weyl
m-coefficient for the whole interval (0, ∞). In turn this information yields a proof of the Hankel transform as an eigenfunction
expansion for the case when � ∈ [0, 1), a result which is not available in the existing literature.

The application of the principal solution, from the end-point 0 of the Bessel equation, as a boundary condition function yields
the Friedrichs self-adjoint extension in L2(0, ∞); the domain of this extension has many special known properties, of which new
proofs are presented.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider the Bessel differential equation in the classical form

−y′′(x) + (�2 − 1/4)x−2y(x) = �y(x) for all x ∈ (0, ∞). (1.1)

Here, the parameter � ∈ [0, ∞) ⊂ R is the order of the Bessel functions involved, and the parameter � ∈ C is the
spectral parameter. Properties of this equation are considered in the Hilbert function space L2(0, ∞).
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We restrict attention to the situation when � ∈ [0, 1); in this case the endpoint 0 of Eq. (1.1) is in the singular
limit-circle case, with respect to L2(0, ∞), except for the regular case when � = 1

2 .
For a regular endpoint a Sturm–Liouville equation, such as (1.1) when � = 1

2 , there is a classical solution to the
initial value problem which yields the analytic dependence of the solutions on the complex spectral parameter �; see for
example [19, Chapter I, Section 1.5]. Recent studies have shown that for a limit-circle endpoint there is a generalised
solution to the initial value problem, which reduces to the classical solution when the endpoint is regular; see [7,
Sections 1–5, in particular Theorem 2; 1, Section 5, Theorem 5.1].

This generalised solution, to the initial value problem, allows for the definition of the Titchmarsh–Weyl m-coefficient
associated with a singular boundary condition at the limit-circle endpoint; see details in the recent paper [1, Section 8].
From the Nevanlinna representation of this m-coefficient the spectral function � can be obtained to describe the spectrum
of the associated self-adjoint operator in L2(0, ∞).

By choosing the self-adjoint operator to be the Friedrichs extension, see [15,16,8,13,17], it then proves possible
to obtain the Hankel transform formula, see [18, Chapter VIII, Section 8.18; 19, Chapter IV, Section 4.11], as an
eigenfunction expansion, even in the case when � ∈ [0, 1).

Additional analysis then yields the limit behaviour of the functions in the domain of the Friedrichs extension, as
previously discussed by a number of authors [11,17]. These results allow for discussion of a possible HELP-type
integral inequality as previously considered for regular endpoints in [5,6].

We have made reference in the text to the earlier work of other authors whose papers are listed in the References.

2. Bessel differential equation

For the differential equation (1.1) on the interval (0, ∞) we restrict attention to the case when the order parameter
� ∈ [0, 1); this restriction has the implications (a) and (b) below for the endpoint classifications at 0 and ∞ in the space
L2(0, ∞); for general details of these classifications see [5, Section 3; 6, Section 5].

We use the following named Bessel functions, see [20, Chapter III], as solutions of (1.1):

(i) For � = 0

x1/2J0(x
√

�) and x1/2Y0(x
√

�) for all x ∈ (0, ∞). (2.1)

(ii) For � ∈ (0, 1)

x1/2J�(x
√

�) and x1/2J−�(x
√

�) for all x ∈ (0, ∞). (2.2)

Here and after the analytic function
√· : C → C is defined as follows:

given � = � exp(i�) define
√

� := �1/2 exp( 1
2 i�) for � ∈ [0, ∞) and � ∈ [0, 2�). (2.3)

In the solution x1/2Y0(x
√

�) there is a term log( 1
2 x

√
�) which here is defined by, using again � = � exp(i�),

log( 1
2 x

√
�) := ln( 1

2 x�1/2) + i 1
2 �. (2.4)

It is clear from the properties of solutions (2.1) and (2.2), see [5, Section 3; 20, Chapter III], that:

(a) The endpoint +∞ is strong limit-point and Dirichlet in the space L2(0, ∞); see [6, Section 5] for details of these
properties.

(b) The endpoint 0+ is limit-circle non-oscillatory (for � = 1
2 this endpoint is regular but this classification may be

regarded as limit-circle non-oscillatory; we make only infrequent special mention of this exception).

3. Hankel transform

Formally the Hankel inversion formula (here also called the Hankel transform) can be written in symmetrical form as

f (x) =
∫ ∞

0
(xs)1/2J�(xs) ds

∫ ∞

0
(s�)1/2J�(s�)f (�) d� for all x ∈ (0, ∞). (3.1)

A systematic account of the various forms in which this transform can be considered is given in [18, Chapter VIII].
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There are three forms which command attention:

(1) Theory of direct convergence as given in [18, Chapter VIII, Section 18.8]; this method assumes f ∈ L1(0, ∞) and
requires local bounded variation of f , as defined on (0, ∞).

(2) Theory of general symmetric integral transforms as given in [18, Chapter VIII, Sections 18.1–18.4]; this method
requires only that f ∈ L2(0, ∞) but convergence of the integrals in (3.1) is mean convergence in L2(0, ∞).

(3) Theory of Sturm–Liouville eigenfunction expansions as given in [19, Chapter IV, Section 4.11]; this method applies
the general expansion theory to the Bessel differential equation (1.1) and yields both direct and mean convergence
results; however, these methods yield the Hankel transform as an eigenfunction expansion (3.1) only for the case
when � ∈ [1, ∞) and this restriction seems to be due to the limit-circle classification of Eq. (1.1) in L2(0, ∞) when
� ∈ [0, 1).

One of the results of this present paper is to show that the Hankel transform for � ∈ [0, 1) can be obtained as an
eigenfunction expansion when the generalised initial value conditions are applied to Eq. (1.1) at the singular limit-circle
endpoint 0.

4. Differential expression M�

For all � ∈ [0, 1) the differential expression M� : D(M�) → C is defined by

(i) D(M�) := {f : (0, ∞) → C : f, f ′ ∈ ACloc(0, ∞)}; and
(ii) M�[f ](x) := −f ′′(x) + (�2 − 1

4 )x−2f (x) for all f ∈ D(M�) and all x ∈ (0, ∞).

The Green’s formula for M� is, for all compact intervals [�, 	] ⊂ (0, ∞) and for all f, g ∈ D(M�),∫ 	

�
{g(x)M�[f ](x) − f (x)M�[g](x)} dx = [f, g](	) − [f, g](�). (4.1)

Here the symplectic form [f, g](·) is defined by

[f, g](x) := (f (x)g′(x) − f ′(x)g(x)) for all x ∈ (0, ∞). (4.2)

5. Differential operators

In the space L2(0, ∞) the maximal operator T�,1 is defined by

D(T�,1) := {f ∈ D(M�) : f, M�[f ] ∈ L2(0, ∞)},
T�,1f := M�[f ] for all f ∈ D(T�,1). (5.1)

From Green’s formula (4.1) both the limits

[f, g](0) := lim
x→0+ [f, g](x) and [f, g](∞) := lim

x→+∞ [f, g](x), (5.2)

exist and are finite in C, for all f, g ∈ D(T�,1). Since M� is in the limit-point case at +∞ it follows that

[f, g](∞) = 0 for all f, g ∈ D(T�,1). (5.3)

The minimal operator T�,0 is defined by

D(T�,0) := {f ∈ D(T�,1) : [f, g](0) = 0 for all g ∈ D(T�,1)},
T�,0f := M�[f ] for all f ∈ D(T�,0). (5.4)

The operator T�,0 is closed and symmetric in the Hilbert function space, and has equal deficiency indices d−(T�,0)=
d+(T�,0) = 1; the self-adjoint extensions {T } of T�,0 satisfy T�,0 ⊂ T ⊂ T�,1. The domain of any such operator T has
the definition

D(T ) := {f ∈ D(T�,1) : [f, 
](0) = 0}, (5.5)
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where 
 is a real-valued, non-null element of D(T�,1) such that 
 /∈ D(T�,0); for this result see [14, Chapter V, Section
18.1, Theorem 4] and recall that the differential expression M� is in the limit-point case at +∞.

Remark 5.1. From an application of the well known Hardy inequality to the domain of the closure of the maximal
operator but restricted to functions of compact support, and then using results from [14, Chapter V, Section 17.4] it
follows that the minimal operators T�,0, for all � ∈ [0, 1), are bounded below by zero in the space L2(0, ∞).

6. The generalised initial value problem

The general theory of the solution of this problem in the case of a limit-circle endpoint is given in [7, Sections 1–5,
in particular Theorem 2; 1, Section 5, Theorem 5.1].

In this Bessel equation case we have

Lemma 6.1. Given the Bessel differential expression M� as above in Section 4, for all � ∈ [0, 1), and the differential
operators as in Section 5, then there exists a pair {��, �� : � ∈ [0, 1)} with the properties

{
(i) ��, �� : (0, ∞) → R,

(ii) ��, �� ∈ D(T�,1),

(iii) [��, ��](0) = 1.

(6.1)

Proof. See [1, Section 5]. �

Remark 6.1. We call the pair {��, ��} boundary condition functions for the limit-circle singular endpoint 0, for the
Bessel equation (1.1).

We now have the existence theorem for the basic solutions 
� and �� of the Bessel differential equation that generalise
the fundamental solutions 
 and � introduced by Titchmarsh in his text [19, Chapters I and II].

Theorem 6.1. Given the Bessel differential equation (1.1) then for all � ∈ [0, 1) there exist linearly independent
solutions 
� and �� with the properties:

(1) 
�, �� : (0, ∞) × C → C;
(2) 
�(x, ·), 
′

�(x, ·), ��(x, ·), �′
�(x, ·) : C → C are entire analytic functions, for all x ∈ (0, ∞);

(3) 
�(·, �), ��(·, �) ∈ L2(0, X) for all X ∈ (0, ∞) and for all � ∈ C; and
(4) Given ��, �� as in Lemma 6.1 then 
�, �� satisfy the following generalised initial conditions:

{ [
�(·, �), ��(·)](0) = 1 [
�(·, �), ��(·)](0) = 0,

[��(·, �), ��(·)](0) = 0 [��(·, �), ��(·)](0) = 1
(6.2)

for all � ∈ C.

Proof. See [7, Section 5; 1, Section 6]. �

7. The case � = 0

It proves necessary to distinguish between the case for � = 0 and the cases when � ∈ (0, 1).

7.1. The boundary condition functions

For the case � = 0 a calculation shows a pair {�0, �0} may be defined by

�0(x) := x1/2 and �0(x) := x1/2 ln(x) for all x ∈ (0, 1], (7.1)
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and then further defined on [1, ∞) so that both �0, �0 are zero in some neighbourhood of the endpoint +∞; this can
be done using the Naimark patching lemma, see [14, Chapter V, Section 17.3, Lemma 2]; then (6.1) is satisfied. Note
that both �0 and �0 satisfy the differential equation (1.1) with � = � = 0, i.e. for all x ∈ (0, 1],

�′′
0(x) + 1

4 x−2�0(x) = 0 and �′′
0(x) + 1

4 x−2�0(x) = 0. (7.2)

7.2. The basis solutions 
0 and �0

Further define the solutions 
0 and �0, for all x ∈ (0, ∞) and all � ∈ C, by

�0(x, �) := x1/2J (0x
√

�), (7.3)


0(x, �) := −�

2
x1/2Y0(x

√
�) +

[
log

(
1

2

√
�

)
+ �

]
x1/2J0(x

√
�), (7.4)

where � is Euler’s constant.
A calculation, details omitted, then shows that the basis {
0, �0} satisfies the four properties given in Theorem 6.1;

note in particular that the generalised initial conditions (6.2) are satisfied.

7.3. The Friedrichs extension F0

For any abstract operator in Hilbert space that is closed, symmetric and bounded below there is a distinguished self-
adjoint extension named for Friedrichs, see [9]; a later characterisation of this extension was given in [8]; at that time
and in following years there has been an extensive study of the Friedrichs extension for Sturm–Liouville differential
operators, see [16,4,11,13,17].

It is possible to show that the closed, symmetric operator T0,0, see Remark 5.1 in Section 5 above, is bounded below
in the space L2(0, ∞), and so has a Friedrichs extension which we denote here by F0.

From the established properties of Sturm–Liouville differential expressions, see in particular paper [17], the operator
F0 is determined by, compare with (5.5), for any � ∈ R,

D(F0) := {f ∈ D(T0,1) : [f, �0](0) = 0} = {f ∈ D(T0,1) : [f, �0(·, �)](0) = 0}, (7.5)

F0f := M0[f ] for all f ∈ D(F0). (7.6)

Note that we are using result (5.5), with 
 = �0, to determine the domain D(F0).
For an alternative definition of the Friedrichs operator, for a similar but more complicated differential expression,

see [2, Section III].

Remark 7.1. Following the argument similar to that used in Remark 5.1, an application of the Hardy inequality implies
that the Friedrichs operator F0 is also bounded below by zero in the space L2(0, ∞).

7.4. The Titchmarsh–Weyl m-coefficient m0

As is shown in paper [1, Section 8] the Friedrichs boundary condition (7.5) at the singular endpoint 0 and the limit-
point condition at the endpoint +∞, serve to determine a unique m-coefficient m0 such that the solution �0(·, �) of
Eq. (1.1) defined by, recall [19, Chapter II, Section 2.1],

�0(x, �) := 
0(x, �) + m0(�)�0(x, �) for all x ∈ (0, ∞) and all � ∈ C\R, (7.7)

has the property

�0(·, �) ∈ L2(0, ∞) for all � ∈ C\R. (7.8)

Remark 7.2. Note that in choosing to represent the solution �0 in form (7.7), with the solution �0 in the product with
the coefficient m0, we are connecting with the boundary value problem associated with the Friedrichs extension F0;
see the boundary condition in (7.5).
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To compute this m-coefficient note that, see [19, Chapter IV, Section 4.10], the Bessel function

x 	−→ x1/2H
(1)
0 (x

√
�) = x1/2J0(x

√
�) + ix1/2Y0(x

√
�),

lies in the space L2(0, ∞) for all � ∈ C\[0, ∞); thus we have for some function k : C\[0, ∞) → C\{0}
�0(x, �) = k(�)x1/2H

(1)
0 (x

√
�) for all � ∈ C\[0, ∞) and all x ∈ (0, ∞). (7.9)

Using the initial conditions (6.2) and representation (7.7) we obtain

[�0, �0](0) = m0(�) and [�0, �0](0) = 1,

so that from (7.9), since k(�) 
= 0,

m0(�) = [�0, �0](0)

[�0, �0](0)
= [x1/2H

(1)
0 (x

√
�), �0(x)](0)

[x1/2H
(1)
0 (x

√
�), �0(x)](0)

. (7.10)

From the properties for Bessel functions, see [20, Chapter III], it may be shown that the following results hold:

[x1/2J0(x
√

�), �0(x)](0) = 0 and [x1/2J0(x
√

�), �0(x)](0) = 1,

[x1/2Y0(x
√

�), �0(x)](0) = −2

�
and [x1/2Y0(x

√
�), �0(x)](0) = 2

�

(
� + log

(
1

2

√
�

))
,

which combine to give

[x1/2H0(x
√

�), �0(x)](0) = −2i

�
and [x1/2H0(x

√
�), �0(x)](0) = 1 + 2i

�

(
� + log

(
1

2

√
�

))
.

From these results and using (7.10) we obtain the following explicit form of this m-coefficient:

m0(�) = i�

2
− � − log

(
1

2

√
�

)
for all � ∈ C\[0, ∞). (7.11)

If, as before, we write � = � exp(i�) then

m0(�) = i

2
(� − �) −

(
� + ln(1/2) + 1

2
ln(�)

)
, (7.12)

from which result it follows that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Im(m0(�)) = 1

2
� for � = 0,

= 1

2
(� − �) > 0 for all � ∈ (0, �),

= 0 for � = �,

= 1

2
(� − �) < 0 for all � ∈ (�, 2�),

= − 1

2
� for � = 2�.

(7.13)

Remark 7.3. (1) The results in (7.13) confirm the Nevanlinna properties, see [1, Section 10], of this m-coefficient.
(2) Form (7.11) of this m-coefficient shows that this Nevanlinna function has logarithmic growth as |�| → +∞ in

the open domain C\R.

7.5. The spectral function �0

The explicit form of the m-coefficient m0 leads to the spectral function �0 for this Nevanlinna function, and hence for
the Friedrichs self-adjoint operator F0; for the appropriate definitions see [14, Chapter VI, Section 20.2, andAppendix I;
1, Section 10].
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Define the monotonic non-decreasing function �0 : R → R by

�0(t) := 1

�
lim

�→0+

∫ t

0
Im(m0(� + i�)) d� for all t ∈ R

= t/2 for all t ∈ [0, ∞)

�0(t) := 0 for all t ∈ (−∞, 0). (7.14)

Remark 7.4. (1) We note, and this point is significant for the Hankel transform to be discussed in the following section,
that for the Friedrichs operator F0 the corresponding spectral Hilbert function space L2(R; �0), see [1, Section 10], is
essentially identical with the original space L2(0, ∞).

(2) The explicit information about the spectral function �0 in 7.14 implies the following spectral properties of the
Friedrichs extension F0, defined in (7.5) and (7.6).{

(i) F0 has no eigenvalues,
(ii) �(F0) = �ess(F0) = �cont(F0) = �abcont(F0) = [0, ∞).

(7.15)

(3) The spectral properties (7.15) confirm the previous results, see Remarks 5.1 and 7.1, that the two symmetric
operators T0,0 and F0 are bounded below by 0, i.e.,

(T0,0f, f )�0 for all f ∈ D(T0,0) and (F0f, f )�0 for all f ∈ D(F0); (7.16)

both the Hardy inequality applications and these spectral results imply that these two inequalities are best possible,
with only the null function as cases of equality.

7.6. The Hankel transform

With the spectral function �0 for the operator F0 now obtained in explicit form we can apply the general Sturm–
Liouville expansion theorem as given in [1, Section 11, Theorem 11.1 and Corollary 11.1] to obtain the Hankel
transform, as discussed in Section 3 above, for the case � = 0.

Formally, this Hankel transform result may be written in the form:

(1) Given f ∈ L2(0, ∞) it is shown that F defined on (0, ∞) by

F(t) =
∫ ∞

0
�1/2J0(�

√
t)f (�) d�, (7.17)

satisfies F ∈ L2(R; �0).
(2) Then f is recovered by (this is the eigenfunction expansion for f which recognises that �(F0)=�cont(F0)=[0, ∞))

f (x) =
∫ ∞

0
x1/2J0(x

√
t)F (t) d�0(t). (7.18)

As in [19, Chapter IV, Section 4.11] we obtain, again formally, using the spectral result (7.14) and writing t = s2

f (x) =
∫ ∞

0
x1/2J0(x

√
t) d�0(t)

∫ ∞

0
�1/2J0(�

√
t)f (�) d�

= 1

2

∫ ∞

0
x1/2J0(x

√
t) d

∫ ∞

0
�1/2J0(�

√
t)f (�) d�

=
∫ ∞

0
x1/2J0(xs)s ds

∫ ∞

0
�1/2J0(s�)f (�) d�

=
∫ ∞

0
(xs)1/2J0(xs) ds

∫ ∞

0
(s�)1/2J0(s�)f (�) d�. (7.19)
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7.7. Properties of the Friedrichs domain

The asymptotic properties of f and f ′, where f ∈ D(F0), near the singular endpoint 0+ have been the subject of
study by a number of authors, see in particular [11,17]. Here we give a new proof of these results together with some
additional explicit information of the value of certain limits.

Given f ∈ D(T0,1), the maximal domain of the differential expression M0, we note the integrability result, for
t ∈ (0, 1],

t 	→ t−1
∫ t

0
�1/2M0[f ](�) d� ∈ L1(0, 1). (7.20)

This follows since for all x ∈ (0, 1]:∫ 1

x

t−1
(∫ t

0
�1/2|M0[f ](�)| d�

)
dt �

∫ 1

0
t−1/2 dt

∫ 1

0
|M0[f ](�)| d� < + ∞,

since M0[f ] ∈ L2(0, 1).
We define K0 : D(T0,1) → C by

K0(f ) := f (1) +
∫ 1

0
t−1

(∫ t

0
�1/2M0[f ](�) d�

)
dt . (7.21)

Theorem 7.1. Let f ∈ D(F0) and let K0(f ) ∈ C be defined by (7.21); then:

(1) The following limit properties hold

lim
x→0+ x−1/2f (x) = K0(f ), lim

x→0+ x1/2f ′(x) = 1

2
K0(f ), lim

x→0+ f (x)f ′(x) = 1

2
K0(f )2. (7.22)

(2) In general K0(f ) 
= 0.
(3) The following properties of f hold

f ′ ∈ L1(0, 1), f ∈ ACloc[0, ∞), f (0) = 0. (7.23)

(4) In general f ′ /∈ L2(0, 1).

Proof. Since f ∈ D(F0) we have

[f, x1/2](0) = lim
x→0+ [f, x1/2](x) = lim

x→0+

(
f (x)

1

2
x−1/2 − f ′(x)x1/2

)
= 0.

From Green’s formula (4.1) on the interval (0, x] and noting again that M0[x1/2]=0 on (0, 1], we have for x ∈ (0, 1]

[f, x1/2](x) − [f, x1/2](0) = [f, x1/2](x) =
∫ x

0
�1/2M0[f ](�) d�

to give

f ′(x)x−1/2 − f (x)
1

2
x−3/2 = −x−1

∫ x

0
�1/2M0[f ](�) d�.

Thus, again for all x ∈ (0, 1],

(f (x)x−1/2)′ = −x−1
∫ x

0
�1/2M0[f ](�) d�;
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integrating over the interval (x, 1] gives

f (x)x−1/2 = f (1) +
∫ 1

x

t−1
(∫ t

0
�1/2M0[f ](�) d�

)
dt . (7.24)

Hence, as required for the first part of (7.22), using (7.21),

lim
x→0+ f (x)x−1/2 = f (1) +

∫ 1

0
t−1

(∫ t

0
�1/2M0[f ](�) d�

)
dt = K0(f ). (7.25)

From (7.24) we obtain, on differentiation,

f ′(x) = 1

2
x−1/2f (1) + 1

2
x−1/2

∫ 1

x

t−1
(∫ t

0
�1/2M0[f ](�) d�

)
dt − x−1/2

∫ x

0
�1/2M0[f ](�) d�; (7.26)

hence, for all x ∈ (0, 1],

x1/2f ′(x) = 1

2

{
f (1) +

∫ 1

x

t−1
(∫ t

0
�1/2M0[f ](�) d�

)
dt

}
−

∫ x

0
�1/2M0[f ](�) d�.

From this last result we obtain, as required for the second part of (7.22),

lim
x→0+ x1/2f ′(x) = 1

2

⎧⎨
⎩f (1) +

1∫
0

t−1
(∫ t

0
�1/2M0[f ](�) d�

)
dt

⎫⎬
⎭ = 1

2
K0(f ). (7.27)

The third part of (7.22) now follows.
If f = �0, as defined by (7.1), then �0 ∈ D(F0) and it may be seen that K0(f ) = f (1) = 1 
= 0.
From (7.27), for any f ∈ D(F0), if follows that f ′ ∈ L1(0, 1) and so f ∈ ACloc[0, ∞); this now defines the value

of f at the endpoint 0 and gives f (0) = 0, otherwise there is a contradiction to result (7.25).
For f = �0 we have f ′ ∈ L1(0, 1) but f ′ /∈ L2(0, 1).
This completes the proof of the theorem. �

Corollary 7.1. Let f ∈ D(F0); then the following limit result exists

lim
x→0+{f ′(x)2 − 1

4 x−2f (x)2} = 0. (7.28)

Proof. This result follows from a direct calculation using (7.24) and (7.26) and taking the limit at the point 0. �

Remark 7.5. In general, the properties of the domain D(F0), as given in Theorem 7.1, do not hold on the domain
of any other self-adjoint extension of the minimal operator T0,0; in this respect, as in other respects, the Friedrichs
extension is a distinguished self-adjoint operator in the Hilbert space L2(0, ∞).

7.8. The Dirichlet formula

The endpoint classification in the space L2(0, ∞) of the differential expression M0 is given in Section 2 above;
thus:

(1) M0 is limit-circle non-oscillatory at 0+; for any � ∈ [0, ∞) the principal solution is x1/2J0(x
√

�).
(2) M0 is strong limit-point and Dirichlet at +∞, and this condition implies:

(i) limx→∞ f (x)g′(x) = 0 for all f, g ∈ D(T0,1), see (5.3),
(ii) f ′ ∈ L2(	, ∞) for all 	 ∈ (0, ∞) and for all f ∈ D(T0,1),

(iii) x−1f ∈ L2(	, ∞) for all 	 ∈ (0, ∞) and for all f ∈ D(T0,1).
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Integration by parts and using item 2 above yields, for all f, g ∈ D(T0,1) and for all � ∈ (0, ∞),∫ ∞

�

{
f ′(x)g′(x) − 1

4
x−2f (x)g(x)

}
dx = [f (x)g′(x)]∞� −

∫ ∞

�

{
f (x)g′′(x) + 1

4
x−2f (x)g(x)

}
dx

= − f (�)g′(�) +
∫ ∞

�
f (x)M0[g](x) dx. (7.29)

This result is the general Dirichlet formula for M0 on the domain D(T0,1) of the maximal operator in L2(0, ∞).
Now take f ∈ D(F0) and to be real-valued on (0, ∞); also let g = f ; then from (7.29)

lim
�→0+

∫ ∞

�

{
f ′(x)2 − 1

4
x−2f (x)2

}
dx = − lim

�→0+ f (�)f ′(�) +
∫ ∞

0
f (x)M0[f ](x) dx.

From (7.22) of Theorem 7.1, using the notation in [18, Chapter I, Section 1.7] and letting � → 0+ gives∫ ∞

→0

{
f ′(x)2 − 1

4
x−2f (x)2

}
dx = −1

2
K0(f )2 +

∫ ∞

0
f (x)M0[f ](x) dx, (7.30)

which implies that the limit integral on the left-hand side exists and is finite, for all f ∈ D(F0).
From Corollary 7.1 if follows that the integral on the left of (7.30) is a Lebesgue integral and the Dirichlet formula

for M0 on the domain D(F0) of the Friedrichs operator in L2(0, ∞) is∫ ∞

0

{
f ′(x)2 − 1

4
x−2f (x)2

}
dx = −1

2
K0(f )2 +

∫ ∞

0
f (x)M0[f ](x) dx. (7.31)

Remark 7.6. (1) In the Dirichlet formula (7.31) the out-integrated term involves K0(f ), which depends on the be-
haviour of the function f in the neighbourhood of the singular endpoint 0. This is in contrast to the case when such
an endpoint is regular when for the Dirichlet formula, see [5, Section 3, (3.13)], the out-integrated term involves the
endpoint values of the function and its derivative.

(2) Any self-adjoint extension of the minimal operator T0,0, other than the Friedrichs extension, involves a domain
which essentially contains the function �0.For this function we have

∫ 1

→0

{
�′

0(x)2 − 1

4
x−2�0(x)2

}
dx = +∞.

This result implies that there cannot be a Dirichlet formula on the domains of such extensions; again this is an example
of the special nature of the Friedrichs extension.

7.9. A HELP-type inequality

The Dirichlet formula on the domain D(F0) suggests, in the light of the HELP integral inequalities considered in
[5,6], that there could be a HELP-type integral inequality of the form

(∫ ∞

0

{∣∣f ′(x)
∣∣2 − 1

4
x−2|f (x)|2

}
dx

)2

�C

∫ ∞

0
|f (x)|2 dx

∫ ∞

0
|M0[f ](x)|2 dx for all f ∈ D(F0).

(7.32)

Here C would be a positive number independent of the elements of D(F0).
However the form of the out-integrated term − 1

2 K0(f )2 in equality (7.31) does not allow of an application of the
methods used in [5]. Nevertheless, we conjecture:

Conjecture 7.1. There exists a positive number C, which is independent of the elements of the domain D(F0), such
that inequality (7.32) is valid.
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8. The case � ∈ (0, 1)

In this section we give the corresponding results from Section 7 but now for the case when � ∈ (0, 1), making use
of the previous formulae wherever possible.

8.1. The boundary condition functions

For the case � ∈ (0, 1) a calculation shows a pair {��, ��) may be defined by

��(x) := x1/2+� and ��(x) := − 1

2�
x1/2−� for all x ∈ (0, 1], (8.1)

and then defined on [1, ∞) so that both ��, �� are zero in some neighbourhood of the endpoint +∞; this can be done
using the Naimark patching lemma, see [14, Chapter V, Section 17.3, Lemma 2]; then (6.1) is satisfied. Note that both
�� and �� satisfy the differential equation (1.1) with � = 0, i.e. for all x ∈ (0, 1],

−�′′
�(x) + (�2 − 1

4x−2)��(x) = 0 and − �′′
�(x) + (�2 − 1

4x−2)��(x) = 0. (8.2)

8.2. The basic solutions 
� and ��

Further define the solutions 
� and �� for all � ∈ (0, 1), for all x ∈ (0, ∞) and all � ∈ C, by

��(x, �) := 2��(1 + �)�−�/2x1/2J�(x
√

�), (8.3)


�(x, �) := 2−��(1 − �)

2�
��/2x1/2J−�(x

√
�). (8.4)

A calculation, details omitted, then shows that for all � ∈ (0, 1) the basis {
�, ��} satisfies the four properties given
in Theorem 6.1; note in particular that the generalised initial conditions (6.2) are satisfied.

Note that for any � ∈ (0, 1) and given � = � exp(i�) as in (2.3), we define

�±� := �±� exp(±i��) for all � ∈ (0, ∞) and all � ∈ [0, 2�).

Remark 8.1. A computation for the special case � = 1
2 yields, compare with [19, Chapters II and III],

�1/2(x, �) = sin(x
√

�)√
�

and 
1/2(x, �) = cos(x
√

�). (8.5)

8.3. The Friedrichs extension F�

Following the results stated in Section 7.3 we now define the corresponding Friedrichs operators F�, for all � ∈ (0, 1).
From the established properties of Sturm–Liouville differential expressions, see in particular paper [17], the operator

F�, for all � ∈ (0, 1), is determined by, compare with (5.5), for any � ∈ R,

D(F�) := {f ∈ D(T�,1) : [f, ��](0) = 0} = {f ∈ D(T�,1) : [f, ��(·, �)](0) = 0}, (8.6)

F�f := M�[f ] for all f ∈ D(F�). (8.7)

8.4. The Titchmarsh–Weyl m-coefficient m�

As is shown in paper [1, Section 8] the Friedrichs boundary condition (8.6) at the singular endpoint 0 and the limit-
point condition at the endpoint +∞, serve to determine a unique m-coefficient m� such that the solution ��(·, �) of
Eq. (1.1) defined by, recall [19, Chapter II, Section 2.1],

��(x, �) := 
�(x, �) + m�(�)��(x, �) for all x ∈ (0, ∞) and all � ∈ C\R, (8.8)
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has the property, for all � ∈ (0, 1),

��(·, �) ∈ L2(0, ∞) for all � ∈ C\R. (8.9)

The corresponding solution to H
(1)
0 (·) given in Section 7.4 above is, for all � ∈ (0, 1) and all x ∈ (0, ∞),

H(1)
� (x) = J�(x) + iY�(x)

= J�(x) + i

[
cos(��)J�(x) − J−�(x)

sin(��)

]
. (8.10)

Then the solution to the differential equation (1.1) that lies in the space L2(0, ∞) for all � ∈ C\[0, ∞), for all
x ∈ (0, ∞) and all � ∈ (0, 1), is given by

x 	→ x1/2H(1)
� (x

√
�). (8.11)

Using the properties of the basis solutions {
�, ��} and representation (8.10), we find

x1/2H(1)
� (x

√
�) = 21+��i

�(1 − �) sin(��)
�−�/2
(x, �)

− 2−�(1 + i cos(��))

�(1 + �) sin(��)
��/2�(x, �). (8.12)

From definition (8.8) of the solution �� it follows that:

m�(�) = exp(i(1 − �)�)

2�4�

�(1 − �)

�(1 + �)
�� for all � ∈ C\[0, ∞), (8.13)

where � = � exp(i�) and � ∈ [0, 2�).
It follows that, writing:

K(�, �) = 1

2�4�

�(1 − �)

�(1 + �)
�� > 0 for all � ∈ (0, 1) and � ∈ (0, ∞),

we obtain

Im(m�(�)) = K(�, �) sin(�(� − �));

hence, for � ∈ (0, ∞),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Im(m�(�)) = K(�, �) sin(��) > 0 for � = 0,

= K(�, �) sin(�(� − �)) > 0 for all � ∈ (0, �),

= 0 for � = �,

= K(�, �) sin(�(� − �)) < 0 for all � ∈ (�, 2�),

= − K(�, �) sin(��) < 0 for � = 2�.

(8.14)

Remark 8.2. (i) We note that table (8.14) confirms the required properties of m�(·) as a Nevanlinna function, see
[1, Section 10].

(ii) The asymptotic growth of m�(�) covers the full range of powers �� as |�| tends to infinity, for all � ∈ (0, 1); this
result is to be compared with the logarithmic growth of m0(�) when � = 0, see (2) of Remark 7.3.

(iii) If we take � = 1
2 in formula (8.13) then we obtain m1/2(�) = i�1/2; this is the known result for the m-coefficient

for the Fourier differential equation −y′′ = �y on [0, ∞) and the Dirichlet boundary condition y(0) = 0 at the now
regular endpoint; this boundary condition is consistent with the definition of the domain of the Friedrichs extension
F1/2 as in (8.7) above, when now �1/2(x) = x for all x ∈ (0, 1].
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8.5. The spectral function ��

We can now define the spectral function ��(·) for the Nevanlinna function m�(·) from the formula, see [14], for all
� ∈ (0, 1),

��(t) := 1

�
lim

�→0+

∫ t

0
Im(m�(� + i�)) d� for all t ∈ R

= 1

�

∫ t

0

1

2�4�

�(1 − �)

�(1 + �)
sin(��)�� d� for all t ∈ [0, ∞)

= 1

�

1

2�4�

�(1 − �)

�(1 + �)

sin(��)

� + 1
t�+1 for all t ∈ [0, ∞)

��(t) = 0 for all t ∈ (−∞, 0). (8.15)

This explicit information about the spectral function �� in (8.15) implies that the following spectral properties hold
for the Friedrichs extension F� defined in (8.7):{

(i) F� has no eigenvalues,
(ii) �ess(F�) = �cont(F�) = �abcont(F�) = [0, ∞).

(8.16)

Remark 8.3. Note that for the case � = 1
2 ,

�1/2(t) = 2

3�
t3/2 for all t ∈ [0, ∞).

Remark 8.4. The spectral properties (8.16) confirm the previous results, see Remarks 5.1 and 7.1, that, for all � ∈ (0, 1),
the symmetric operators T�,0 and F� are bounded below by 0, i.e.

(T�,0f, f )�0 for all f ∈ D(T�,0) and (F�f, f )�0 for all f ∈ D(F�); (8.17)

both the Hardy inequality applications and these spectral results imply that these two inequalities are best possible,
with only the null function as cases of equality.

8.6. The Hankel transform

Recall the general remarks made about the Hankel inversion formula at the beginning of Section 3.
From the general expansion theorem [1, Section 11, Theorem 11.1] applied to the Bessel equation on (0, ∞) when

� ∈ (0, 1), in the case when the m-coefficient m�, equivalently the corresponding self-adjoint operator F�, is chosen
to be the Friedrichs case, i.e. (8.8). Then we obtain the formula (recall the results that follow are formal but can be
interpreted in rigorous form as in [19, Chapters II and III; 1, Section 11, Theorem 11.1]),

f (x) =
∫ ∞

0
��(x, t) d��(t)

∫ ∞

0
��(�, t)f (�) d� for all x ∈ (0, ∞).

We now write this general result in the form specific to the Bessel equation, using the explicit form of �� in (8.3) and
the derivative of �� in (8.15),

f (x) =
∫ ∞

0
2��(1 + �)t−�/2x1/2J�(x

√
t)

1

�

1

2�4�

�(1 − �)

�(1 + �)
sin(��)t� dt

×
∫ ∞

0
2��(1 + �)t−�/2�1/2J�(�

√
t)f (�) d�.

= 1

�

�(1 − �)�(1 + �)

2�
sin(��)

∫ ∞

0
x1/2J�(x

√
t) dt

∫ ∞

0
�1/2J�(�

√
t)f (�) d�

=
∫ ∞

0
(xs)1/2J�(xs) ds

∫ ∞

0
(s�)1/2J�(s�)f (�) d�, (8.18)

on using properties of the �-function and writing t = s2.
This last result is the formal form of the Hankel transform, compare (3.1), but now for any � ∈ (0, 1).
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8.7. Properties of the Friedrichs domain

Lemma 8.1. Given f ∈ D(T�,1), the maximal domain of the differential expression M�, we have the integrability
result, for t ∈ (0, 1],

t 	→ t−2�−1
∫ t

0
��+1/2M�[f ](�) d� ∈ L1(0, 1). (8.19)

Proof. We rewrite the integral term in (8.19) in the product form

t1/2−� × t−�−3/2
∫ t

0
��+1/2M�[f ](�) d�. (8.20)

The first factor t 	−→ t1/2−� ∈ L2(0, 1) for all � ∈ (0, 1) since then −1 < 2� − 1 < 1.
To the second factor we can apply the criterion in [3, Section 1, Theorem 1] with a = 0, b = 1, w(x) = 1 for all

x ∈ (0, 1] and

�(t) = t�+1/2 and �(t) = t−�−3/2 for all t ∈ (0, 1].
With this choice we find, for all x ∈ (0, 1],∫ x

0
�(t)2 dt =

∫ x

0
t2�+1 dt = x2�+2

2� + 2
,

∫ 1

x

�(t)2 dt =
∫ 1

x

t−2�−3 dt = x−2�−2 − 1

2� + 2
.

Thus, see [3, Section 1, (1.12) with p = q = 2],∫ x

0
�(t)2 dt ×

∫ 1

x

�(t)2 dt � 1

(2� + 2)2 for all x ∈ (0, 1].

This result implies from [3, Theorem 1], noting that M�[f ](·) ∈ L2(0, 1),

t 	−→ t−�−3/2
∫ t

0
��+1/2M�[f ](�) d� ∈ L2(0, 1).

The Cauchy–Schwarz integral inequality then applied to (8.20) completes the proof of the Lemma. �

We now define, for all � ∈ (0, 1), K� : D(T�,1) → C by

K�(f ) := f (1) +
∫ 1

0
t−2�−1

(∫ t

0
��+1/2M�[f ](�) d�

)
dt . (8.21)

Theorem 8.1. The following results hold for all � ∈ (0, 1).
Let f ∈ D(F�) and let K�(f ) ∈ C be defined by (8.21); then:

(1) The following limit properties hold

lim
x→0+ x−�−1/2f (x) = K�(f ), lim

x→0+ x−�+1/2f ′(x) =
(

� + 1

2

)
K�(f ), lim

x→0+ f (x)f ′(x) = 0.

(8.22)

(2) In general K�(f ) 
= 0.
(3) The following properties of f hold

f ′ ∈ L2(0, 1), f ∈ ACloc[0, ∞), x−1f ∈ L2(0, 1), f (0) = 0. (8.23)
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Proof. Since f ∈ D(F�) we have

[f, x�+1/2](0) = lim
x→0+ [f, x�+1/2](x) = lim

x→0+

(
f (x)

(
� + 1

2

)
x�−1/2 − f ′(x)x�+1/2

)
= 0.

From Green’s formula (4.1) on the interval (0, x] and noting again that M�[x�+1/2] = 0 on (0, 1], we have for
x ∈ (0, 1]

[f, x�+1/2](x) − [f, x�+1/2](0) = [f, x�+1/2](x) =
∫ x

0
��+1/2M�[f ](�) d�

to give

f ′(x)x−�−1/2 − f (x)

(
� + 1

2

)
x−�−3/2 = −x−2�−1

∫ x

0
��+1/2M�[f ](�) d�.

Thus, again for all x ∈ (0, 1],

(f (x)x−�−1/2)′ = −x−2�−1
∫ x

0
��+1/2M�[f ](�) d�;

integrating over the interval (x, 1] gives

f (x)x−�−1/2 = f (1) +
∫ 1

x

t−2�−1
(∫ t

0
��+1/2M�[f ](�) d�

)
dt for all x ∈ (0, 1]. (8.24)

From this last result, Lemma 8.1 and definition (8.21) we obtain

lim
x→0+ x−�−1/2f (x) = f (1) +

∫ 1

0
t−2�−1

(∫ t

0
��+1/2M�[f ](�) d�

)
dt = K�(f ),

to give the first part of (8.22).
From (8.24) we obtain, on differentiating,

f ′(x) =
(

� + 1

2

)
x�−1/2

(
f (1) +

∫ 1

x

t−2�−1
(∫ t

0
��+1/2M�[f ](�) d�

)
dt

)

− x�+1/2x−2�−1
∫ x

0
��+1/2M�[f ](�) d�

and so, for all x ∈ (0, 1],

x−�+1/2f ′(x) =
(

� + 1

2

) (
f (1) +

∫ 1

x

t−2�−1
(∫ t

0
��+1/2M�[f ](�) d�

)
dt

)

− x−2�
∫ x

0
��+1/2M�[f ](�) d�. (8.25)

Now, recall � ∈ (0, 1),

lim
x→0+ x−2�

∫ x

0
��+1/2M�[f ](�) d�� lim

x→0+ x−2�
{∫ x

0
�2�+1 d�

∫ x

0
|M�[f ](�)|2 d�

}1/2

� lim
x→0+ x−2�x�+1

{∫ 1

0
|M�[f ](�)|2 d�

}1/2

= 0. (8.26)

Taking the limit as x → 0+ in (8.25) and using result (8.26) gives the second part of (8.22).
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For the third part of (8.22) we have, using the above limit results,

lim
x→0+ f (x)f ′(x) = lim

x→0+
f (x)

x�+1/2

f ′(x)

x�−1/2 lim
x→0+ x2� = 0. (8.27)

If f = ��, as defined by (8.1), then �� ∈ D(F�) and it may be seen that K�(f ) = f (1) = 1 
= 0.
From the second limit result of (8.22), since � ∈ (0, 1), if follows that f ′ ∈ L2(0, 1) and so f ∈ ACloc[0, ∞); this

now defines the value of f at the endpoint 0 and gives f (0) = 0, otherwise there is a contradiction to the first limit
result of (8.22).

From the first limit result of (8.22) we obtain the existence of a positive number C such that, for all x ∈ (0, 1],
|f (x)|�Cx�+1/2 and so x−1|f (x)|�Cx�−1/2.

This implies, since � ∈ (0, 1) that x−1f ∈ L2(0, 1).
This completes the proof of the theorem. �

Remark 8.5. The content of Remark 7.5 applies, with appropriate changes, to each of the cases � ∈ (0, 1).

8.8. The Dirichlet formulae

The following results apply to all the cases when � ∈ (0, 1). For an earlier discussion of these results see [9, Page
710; 10].

The endpoint classification in the space L2(0, ∞) of the differential expression M� is given in Section 2 above;
thus:

(1) M� is limit-circle non-oscillatory at 0+; for any � ∈ [0, ∞) the principal solution is x1/2J�(x
√

�).
(2) M� is strong limit-point and Dirichlet at +∞, and this condition implies:

(i) limx→∞ f (x)g′(x) = 0 for all f, g ∈ D(T�,1),
(ii) f ′ ∈ L2(	, ∞) for all 	 ∈ (0, ∞) and for all f ∈ D(T�,1),

(iii) x−1f ∈ L2(	, ∞) for all 	 ∈ (0, ∞) and for all f ∈ D(T�,1).

Integration by parts and using item 2 above yields, for all f, g ∈ D(T�,1) and for all � ∈ (0, ∞),∫ ∞

�

{
f ′(x)g′(x) +

(
�2 − 1

4

)
x−2f (x)g(x)

}
dx

= [f (x)g′(x)]∞� −
∫ ∞

�

{
f (x)g′′(x) +

(
�2 − 1

4

)
x−2f (x)g(x)

}
dx

= −f (�)g′(�) +
∫ ∞

�
f (x)M�[g](x) dx. (8.28)

This result is the general Dirichlet formula for M� on the domain D(T�,1) of the maximal operator in L2(0, ∞).
Let � ∈ (0, 1), take f ∈ D(F�) and to be real-valued on (0, ∞); also let g = f ; then from (8.28)

lim
�→0+

∫ ∞

�

{
f ′(x)2 +

(
�2 − 1

4

)
x−2f (x)2

}
dx = − lim

�→0+ f (�)f ′(�) +
∫ ∞

0
f (x)M�[f ](x) dx.

From Theorem 8.1, in particular from (8.22), letting � → 0+ gives∫ ∞

0

{
f ′(x)2 +

(
�2 − 1

4

)
x−2f (x)2

}
dx =

∫ ∞

0
f (x)M�[f ](x) dx. (8.29)

Here the integral on the left-hand side is a Lebesgue integral for all f ∈ D(F�), on using the properties of f given in
Theorem 8.1, see (8.23).

For � ∈ (0, 1) this result (8.29) is the Dirichlet formula for M� on the domain D(F�) of the Friedrichs operator in
L2(0, ∞).
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Remark 8.6. With appropriate changes for the situation when � ∈ (0, 1), but with � 
= 1
2 , item 2 of Remark 7.6 applies

also to these cases.

The Cauchy–Schwarz inequality can be applied to (8.29) to give, for all f ∈ D(F�),(∫ ∞

0

{∣∣f ′(x)
∣∣2 +

(
�2 − 1

4

)
x−2|f (x)|2

}
dx

)2

�
∫ ∞

0
|f (x)|2 dx

∫ ∞

0
|M�[f ](x)|2 dx.
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