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Abstract

Every n × n generalized K-centrosymmetric matrix A can be reduced into a 2 × 2 block diagonal matrix (see [Z. Liu, H. Cao,
H. Chen, A note on computing matrix–vector products with generalized centrosymmetric (centrohermitian) matrices, Appl. Math.
Comput. 169 (2) (2005) 1332–1345]). This block diagonal matrix is called the reduced form of the matrix A. In this paper we further
investigate some properties of the reduced form of these matrices and discuss the square roots of these matrices. Finally exploiting
these properties, the development of structure-preserving algorithms for certain computations for generalized K-centrosymmetric
H-matrices is discussed.
© 2007 Elsevier B.V. All rights reserved.

MSC: 65F10; 65F30; 15A18

Keywords: Generalized K-centrosymmetric; Matrix square root; H-matrix; Iterative method

1. Introduction

A matrix A is said to be (skew-)centrosymmetric if A = JAJ (A = −JAJ ), where J is the exchange matrix with
ones on the anti-diagonal (lower left to upper right) and zeros elsewhere. This class of matrices find use, for example,
in digital signal processing [3], in the numerical solution of certain differential equations [2], in Markov processes [25]
and in various physics and engineering problems [9]. See [19] for some properties of centrosymmetric matrices.

Generalized versions of these matrices have been defined in [2,15,20,23].

Definition 1. A matrix A ∈ Rn×n is said to be generalized K-centrosymmetric if A = KAK , and generalized K-skew-
centrosymmetric if A = −KAK , where K ∈ In×n can be any permutation matrix which is the product of disjoint
transpositions (i.e., K2 = I and K = KT).
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Mirrorsymmetric matrices are a special subclass of generalized K-centrosymmetric matrices with

K =
[

Jk

Ip

Jk

]
, n = 2k + p,

where Ip is the p × p identity matrix and Jk is the k × k exchange matrix. They play a role in the analysis of
multiconductor transmission line equations [16].

The blurring matrices arising in image reconstruction [7,17] are also a special subclass of generalized K-centro-
symmetric matrices with

K =

⎡
⎢⎢⎢⎣

Jl

·
Jl

·
Jl

⎤
⎥⎥⎥⎦ . (1.1)

Symmetric block Toeplitz matrices form another important subclass of generalized K-centrosymmetric matrices with

K =

⎡
⎢⎢⎢⎣

Il

·
Il

·
Il

⎤
⎥⎥⎥⎦ .

They appear in signal processing, trigonometric moment problems, integral equations and elliptic partial differential
equations with boundary conditions, solved by means of finite differences, see for instance [6,11,12,24].

This paper focuses on generalized K-centrosymmetric H-matrices. In next section we review the definitions of H-
matrices, and some basic properties of these matrices, as well as a reduced form of generalized K-centrosymmetric
matrices. Some properties of the reduced form of generalized K-centrosymmetric H-matrices will be investigated in
Section 3 and the square root of a generalized K-centrosymmetric is discussed in Section 4. Finally, exploiting these
properties discussed in preceding two sections, we develop effective algorithms for different computational tasks:
for constructing an incomplete LU factorization of a generalized K-centrosymmetric H-matrix with positive diagonal
entries, for iteratively solving linear systems with a generalized K-centrosymmetric H-matrix as coefficient matrix, and
for computing the principal square root of a generalized K-centrosymmetric H-matrix with positive diagonal entries.

2. Preliminaries

In this section we begin with some basic notation frequently used in the sequel (see, e.g., [4]). For definiteness,
matrices throughout this paper are assumed to be real, and the matrix K denotes a fixed permutation matrix of order n
consisting of the product of disjoint transpositions.

Definition 2. A matrix A = (aij ) is called: a Z-matrix if aij �0 for i �= j ; an M-matrix if A is a Z-matrix and A−1 �0;
an H-matrix if its comparison matrix 〈A〉 is an M-matrix, where 〈A〉 = (�ij ) with �ii = |aii | for i = j , �ij = −|aij | for
i �= j .

Definition 3. An n × n matrix A is called a generalized K-centrosymmetric H-matrix if it is an H-matrix and also
generalized K-centrosymmetric.

Generalized K-centrosymmetric H-matrices are of interest in, e.g., image reconstruction [7,17]: the problem of
high-resolution image reconstruction usually reduces to solving the following linear system:

Ex = b̂, (2.1)

where E is the blurring matrix which is a generalized K-centrosymmetric matrix with K = Bdiag(Jl, . . . , Jl) as in
(1.1). The system in (2.1) is ill-conditioned and susceptible to noise. The common scheme to remedy this is to use the
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Tikhonov regularization which solves the system

Fx = b, (2.2)

where F = ETE + �R, b = ETb̂, R is a regularization operator (usually chosen to be the identity operator or some
differential operators) and � > 0 is the regularization parameter, see [7]. The coefficient matrix F in (2.2) is a generalized
K-centrosymmetric matrix for periodic or symmetric boundary condition, where K = Bdiag(Jl, . . . , Jl) as in (1.1).
Furthermore, if � is chosen to be large enough, then F is a generalized K-centrosymmetric H-matrix with positive
diagonal entries.

Another example is the well-known block tridiagonal matrix T = Btridiag (−I, D, −I ), which is a symmetric block
Toeplitz matrix obtained from the second-order elliptic partial differential equation via a difference scheme, where
D = tridiag(−1, 4, −1) is a tridiagonal centrosymmetric matrix of order l. Obviously, such a matrix T is a generalized
centrosymmetric H-matrix.

Some basic results for M-matrices (see for instance [4]) used in the sequel are given next.

Lemma 1. 1. Let A be a Z-matrix, then A is an M-matrix if and only if there exists a nonnegative vector x such that
Ax > 0.

2. Let B and C be two M-matrices. If B �A�C, then A is an M-matrix.
3. Let A be an M-matrix, then all the principal submatrices of any order are M-matrices.

Some useful facts about generalized K-centrosymmetric matrices can be found in [20]. We will briefly recall those
needed here.

Lemma 2. Let K be a fixed permutation matrix as in Definition 1.

1. If C is an n × n generalized K-centrosymmetric matrix, then its comparison matrix 〈C〉 and its transpose CT are
generalized K-centrosymmetric. Also, if C is nonsingular, then C−1 is generalized K-centrosymmetric.

2. If E and F ∈ Rn×n are generalized K-centrosymmetric matrices, then E ± F and EF are generalized K-
centrosymmetric matrices respectively too.

In particular, in [20] it is shown that every n × n generalized K-centrosymmetric matrix can be reduced to a 2 × 2
block diagonal matrix by a simple similarity transformation. As we will make use of the reduction later on, we restate
the derivation in the following:

The matrix K is a permutation matrix consisting of the product of disjoint transpositions. Hence, without loss of
generality, we can assume that

K = Pj1,�(j1)Pj2,�(j2) · · · Pjl,�(jl ), l�n,

where Pij is the transposition which interchanges the rows i and j and ji �= �(ji) for i = 1, . . . , l (that is we do not
allow for Pu,�(u) = I , when u = �(u)).

Define Q(ji ,�(ji )) as the matrix that differs from the identity in the four entries

[
Qji,ji

Qji ,�(ji )

Q�(ji ),ji
Q�(ji ),�(ji )

]
=

⎡
⎢⎢⎣

√
2

2

√
2

2√
2

2
−

√
2

2

⎤
⎥⎥⎦ . (2.3)

Q(ji ,�(ji )) is an orthogonal matrix and for i, s = 1, . . . , l,

Q(ji ,�(ji ))Q(js ,�(js )) = Q(js,�(js ))Q(ji ,�(ji )).

The product of all these rank-2 modifications of the identity

Q̃ = Q(j1,�(j1))Q(j2,�(j2)) · · · Q(jl,�(jl )) (2.4)
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yields an orthogonal matrix Q̃. Let P̃ be a permutation matrix such that in Q= Q̃P̃ the columns of Q̃ are interchanged
such that the columns �(j1), �(j2), . . . , �(jl) of Q̃ become the columns n − l + 1, n − l + 2, . . . , n of a new matrix
Q. Partition Q as

Q = Q̃P̃ = [Q1, Q2], (2.5)

where Q1 denotes the matrix consisting of the first n− l columns of Q and Q2 denotes the matrix consisting of the last
l columns of Q.

Define

K1 = 1
2 (I + K), K2 = 1

2 (I − K). (2.6)

It is easy to check that the matrices Q1 and Q2 are the maximum rank factorizations of the matrices K1 with rank(K1)=
n − l and K2 with rank(K2) = l in (2.6), respectively; Q1Q

T
1 = K1 and Q2Q

T
2 = K2.

Lemma 3 ([20, Theorem 1]). Let K be a fixed permutation matrix of order n and Q be defined as in (2.5). Then
A ∈ Rn×n is a generalized K-centrosymmetric matrix if and only if

QTAQ =
[
B

C

]
, (2.7)

where B ∈ R(n−l)×(n−l) and C ∈ Rl×l with l = rank(K2) and K2 is defined as in (2.6).

We will refer to the matrix on the right-hand side of Eq. (2.7) as the reduced form of the matrix A, under the orthogonal
similarity transformation with the orthogonal matrix Q (2.5).

3. Some properties of the reduced form

In this section we will investigate some properties of the reduced form of generalized K-centrosymmetric matrices.
Note that if a generalized K-centrosymmetric matrix A is nonsingular, symmetric or positive definite respectively, then
due to the orthogonal similarity, the reduced form (2.7) has the same structure, that is, these properties are preserved in
the reduced form. In particular, we will see that the reduced form (2.7) of a generalized K-centrosymmetric H-matrix
is an H-matrix.

Theorem 1. Assume that A ∈ Rn×n is a generalized K-centrosymmetric H-matrix and the orthogonal matrix Q is as
defined in (2.5). Then the reduced form (2.7) of the matrix A is an H-matrix.

Proof. As A = (aij )i,j=1,...,n is a generalized K-centrosymmetric H-matrix, by Lemma 2 and by the definition of an
H-matrix, we have that the comparison matrix 〈A〉= (�ij ) of the matrix A is a generalized K-centrosymmetric M-matrix
and thus Lemma 3 yields

QT〈A〉Q =
[
B̂

Ĉ

]
, (3.1)

where B̂ = QT
1 〈A〉Q1 ∈ R(n−l)×(n−l) and Ĉ = QT

2 〈A〉Q2 ∈ Rl×l with Q1, Q2 as in (2.5) and l = rank(I − K).
Next we show that B̂ = (b̂uv)u,v=1,...,n−l is an M-matrix. By Lemma 1, there exists a nonnegative vector y such that

〈A〉y > 0. From the construction of the matrix Q (2.5) we have that the matrix Q1 is a nonnegative matrix and that
there is at least one nonzero entry in each of its columns. Therefore we obtain that QT

1 〈A〉y > 0, and hence, B̂z > 0,
where z = QT

1 y�0. Again, by Lemma 1, B̂ is an M-matrix if B̂ has the sign pattern of a Z-matrix.
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Note that the (u, v)th entry b̂uv of the matrix B̂ can be expressed as follows:

b̂uv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�uv, u = �(u), v = �(v),
√

2

2
[�uv + �u,�(v)], u = �(u), v �= �(v),

√
2

2
[�uv + ��(u),v], u �= �(u), v = �(v),

�uv + ��(u),v, u �= �(u), v �= �(v),

(3.2)

where �uv denotes the (u, v)th entry of the comparison matrix 〈A〉 of the matrix A. We now consider the signs of the
off-diagonal elements in B̂ (3.2). If u=�(u) and v =�(v), we have b̂uv = �uv �0. If u=�(u) and v �= �(v), then from
KAK = A we get �uv = ��(u),�(v), and, hence, b̂uv = √

2�uv �0. Similarly, if u �= �(u) and v = �(v), we obtain that
b̂uv = √

2�uv �0. If u �= �(u) and v �= �(v), using the fact that u �= v and �(u) �= v (since the transpositions {�i}li=1

are disjoint), we have that b̂uv = �uv + ��(u),v �0. That is to say that B̂ is a Z-matrix. Thus we have proved that B̂ is
an M-matrix.

Next we show that B = (buv) in (2.7) is an H-matrix. Note that the (u, v)th entry buv of the matrix B can be expressed
as follows:

buv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

auv, u = �(u), v = �(v),
√

2

2
[auv + au,�(v)], u = �(u), v �= �(v),

√
2

2
[auv + a�(u),v], u �= �(u), v = �(v),

auv + a�(u),v, u �= �(u), v �= �(v),

(3.3)

where auv denotes the (u, v)th entry of the matrix A. Now consider the comparison matrix 〈B〉 = (�uv) of the matrix
B, that is �uu = |buu| if u = v or �uv = −|buv| if u �= v. Comparing the (u, v)th entry of 〈B〉 with the corresponding
one in the matrix B̂ in (3.2), we find that

�uv � b̂uv ,

which implies

B̂ �〈B〉�D〈B〉,

where D〈B〉 = diag(�11, . . . , �rr ). By Lemma 1, 〈B〉 is an M-matrix. Hence, B in (2.7) is an H-matrix.
We finally show that C = (cuv) in (2.7) is an H-matrix too. Using the assumptions, it is easy to show that

cuv = auv − a�(u),v ,

where u �= �(u) and v �= �(v) and �(u) �= v. We denote the comparison matrix of the matrix C by 〈C〉 = (�uv)

with �uu = |cuu| for u = v and �uv = −|cuv| for u �= v. Denote by Q̃[j1, . . . , jl] the matrix which consists of column
j1, . . . , column jl of the matrix Q̃ in (2.4), respectively, and let B̆ = Q̃T[j1, . . . , jl]〈A〉Q̃[j1, . . . , jl]. Comparing the
(u, v)-entry b̆uv of B̆ with the corresponding one of the matrix 〈C〉, we find that

b̆uv ��uv .

That is to say that

B̆ �〈C〉. (3.4)

In fact, the matrix B̆ is an l × l principal submatrix of the matrix B̂ in (3.2). Since B̂ is an M-matrix, the matrix B̆ is
also an M-matrix by Lemma 1. Combining (3.4) with the inequality 〈C〉�D〈C〉 where D〈C〉 = diag(�11, . . . , �ll ), we
obtain that 〈C〉 is an M-matrix by Lemma 1. This proves the theorem. �
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Furthermore, if a generalized K-centrosymmetric matrix A is an H-matrix with positive diagonal entries, then its
reduced form (2.7) inherits this property.

Corollary 1. If A is an n×n generalized K-centrosymmetric H-matrix with positive diagonal entries, then the matrices
B and C in the reduced form (2.7) are also H-matrices with positive diagonal entries.

Proof. It suffices to show that the diagonal entries of the matrices B and C are positive. Note that B̂ in (3.1) is an
M-matrix. Hence its diagonal entries are all positive. For u = 1, . . . , n, we have

0 < b̂uu =
{

�uu, u = �(u),

�uu + ��(u),u, u �= �(u),

=
{ |auu|, u = �(u),

|auu| − |a�(u),u|, u �= �(u).

The diagonal entries {buu}nu=1 of the matrix B in (2.7) are given by

buu =
{

auu, u = �(u),

auu + a�(u),u, u �= �(u),

while the diagonal entries {cuu}nu=1 of the matrix C in (2.7) are given by

cuu = auu − a�(u),u, u �= �(u).

Since auu > 0, we have auu � |auu| > 0 for u = �(u) and auu ± a�(u),u � |auu| − |a�(u),u| > 0 for u �= �(u). That is, the
diagonal entries of the matrices B and C are all positive. �

In general, the converse of Theorem 1 does not hold. Some additional restrictions on the original matrix A are
necessary.

Theorem 2. Let A be an n × n generalized K-centrosymmetric matrix and let the orthogonal matrix Q be as in (2.5).
If the matrix B̂ defined in (3.1) is an M-matrix, then A is a generalized K-centrosymmetric H-matrix.

Proof. From the hypothesis, B̂ is an M-matrix. By Lemma 1, there exists an nonnegative vector y ∈ Rn−l such that
B̂y > 0. From the construction of Q = [Q1, Q2] in (2.5) it follows that Q1 is a nonnegative matrix, the positions of
nonzero entries are disjoint and the number of nonzero entries in each of its columns is either 1 or 2. We arbitrarily
choose a nonnegative vector x satisfying y = QTx. For example, if there is only one nonzero entry in the uth column
of the matrix Q1, that is, u = �(u), we select xu = yu. Otherwise, that is in case u �= �(u), we take xu = √

2yu and
x�(u) = 0. Note from (3.1) that

〈A〉 = Q

[
B̂

Ĉ

]
QT

with Q = [Q1, Q2] in (2.5), QT
1 Q1 = Ir and QT

2 Q1 = 0. Right-multiplying 〈A〉 by K1x with K1 as in (2.6) shows that

〈A〉K1x = [Q1, Q2]
[
B̂

Ĉ

] [
QT

1

QT
2

]
K1x

= [Q1, Q2]
[
B̂

Ĉ

] [
QT

1 x

0

]

= Q1B̂QT
1 x

= Q1B̂y > 0.

As K1x�0, by Lemma 1 we obtain that 〈A〉 is an M-matrix. This completes the proof of Theorem 2. �
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4. Square roots of generalized K-centrosymmetric matrices

In this section we present some new results on the square roots of nonsingular matrices with generalized central
symmetry.

Recall that an n × n matrix X is said to be a square root of a square matrix A of order n, if X2 = A. It is shown in
[8, Lemma 1] that any nonsingular matrix always has a square root. Note by Lemma 2 that the product of two generalized
K-centrosymmetric matrices is generalized K-centrosymmetric. In fact, if the square X = A2 is a generalized K-
centrosymmetric matrix KXK = X, then so is A as A = X2 implies KAK = A. Here we will first answer the question
whether the converse is true as well, that is whether a generalized K-centrosymmetric matrix has square roots which
are also generalized K-centrosymmetric.

Theorem 3. Let A be an n × n generalized K-centrosymmetric matrix. Then, A has a generalized K-centrosymmetric
square root if and only if each of B and C in (2.7) admits a square root.

Proof. Let A be generalized K-centrosymmetric. Then, by Lemma 3, A has the reduced form (2.7).
�⇒ Assume that A has a generalized K-centrosymmetric square root, denoted by X̃. From Lemma 3, we have

QTX̃Q = X = diag(X1, X2),

where Q is defined as in (2.5). Note that X̃2 = A implies that X2
1 = B and X2

2 = C hold simultaneously, i.e., X1 and
X2 are square roots of B and C, respectively.

⇐� If B and C in (2.7) have square roots X1 and X2, respectively, then X = diag(X1, X2) is a square root of the
matrix diag(B, C). By Lemma 3, X̃ = QXQT is a generalized K-centrosymmetric square root of A. Hence A always
has a generalized K-centrosymmetric square root X̃. �

Corollary 2. For any nonsingular generalized K-centrosymmetric matrix A of order n there exists a generalized K-
centrosymmetric square root.

Proof. As A is generalized K-centrosymmetric and nonsingular, the matrices B and C in the reduced form (2.7) of
A are nonsingular. Then, each of B and C has a square root. Therefore, by Theorem 3, we know that A always has a
generalized K-centrosymmetric square root. �

In the remaining part of this section we will discuss the square roots of a generalized K-centrosymmetric matrix A,
which are functions of A. For the reader’s convenience, we now recall the definition of matrix function of a nonsingular
matrix A:

Definition 4 ([13]). For a given function f and a matrix A ∈ Cn×n, f (A) can be defined as g(A); where g is a
polynomial of minimal degree that interpolates f on the spectrum of A, i.e.,

g(j)(�k) = f (j)(�k), 0�j �nk − 1, 1�k�s,

where A has s distinct eigenvalues �k and nk is the largest Jordan block in which �k appears.

Obviously, the function f (�) = �1/2 is clearly defined on the spectrum of a nonsingular matrix A.

Theorem 4. If A ∈ Cn×n is a nonsingular generalized K-centrosymmetric matrix, then all square roots of A which
are functions of A are generalized K-centrosymmetric.

Proof. Assume that X̃ is a square root of A which is a function of A, that is, X̃2 = A and X̃ = f (A). By Lemma 2, we
have that the sum and product of two generalized K-centrosymmetric matrices are also generalized K-centrosymmetric,
therefore any polynomial p in A is generalized K-centrosymmetric. As a function f (A) is defined as its interpolating
polynomial g in the sense of Definition 4, we have that X̃ = g(A) is obviously generalized K-centrosymmetric. �
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It is known that any matrix A having no nonpositive real eigenvalues has a unique square root for which every
eigenvalue has positive real part, denoted by A1/2 and called the principal square root; that is, (A1/2)2=A and Re(�k) > 0
for all k, where �k(A) denotes an eigenvalue of A. By Theorem 4, the following corollary holds immediately.

Corollary 3. Let A be a nonsingular generalized K-centrosymmetric matrix of order n. If A has no eigenvalues on the
nonpositive real axis, then the principal square root A1/2 is generalized K-centrosymmetric.

Theorem 5. If A is an n×n generalized K-centrosymmetric H-matrix with positive diagonal entries, then its principal
square root A1/2 is a generalized K-centrosymmetric H-matrix with positive diagonal entries and unique.

Proof. Because A is an H-matrix with positive diagonal entries, we have by Lemma 14 in [18], that all eigenvalues of A
have positive real part. Hence, the principal square root A1/2 exists and unique. A1/2 is a generalized K-centrosymmetric
matrix by Corollary 3.

An H-matrix with positive diagonal entries has a unique square root which is also an H-matrix with positive diagonal
entries [18], we therefore conclude that A1/2 is a generalized K-centrosymmetric H-matrix with positive diagonal
entries and unique. �

This result is not surprising as it is already known that for an H-matrices with positive diagonal elements there exists
one and only one square root which is also an H-matrix with positive diagonal elements [18]. The principal square root
of a centrosymmetric H-matrix with positive diagonal elements is a unique centrosymmetric H-matrix with positive
diagonal entries [21].

5. Structured algorithms

In the preceding two sections we investigated some properties of generalized K-centrosymmetric (H-) matrices. In this
section we exploit those properties to develop several structured algorithms for some potential applications. It is shown
that under certain conditions our structured algorithms ensure significant saving, as compared to the corresponding
nonstructured algorithms.

As any n× n generalized K-centrosymmetric matrix can be reduced into a 2 × 2 block diagonal matrix, it may seem
that all computational problems for a generalized K-centrosymmetric matrix can be reduced to ones for two smaller
matrices. This is true for some problems, but not for all as not all properties of a generalized K-centrosymmetric
matrix are preserved in its reduced form (2.7). For example, the reduced form of a centrosymmetric M-matrix A is not
necessarily an M-matrix. In this case, the effective computational methods for M-matrices cannot be directly applied
to the reduced form of A.

5.1. Incomplete LU factorization

In this subsection we consider the incomplete LU factorization of an n×n generalized K-centrosymmetric H-matrix
A with positive diagonal entries, which is one of the most important preconditioning strategies for conjugate gradient
method and other Krylov subspace methods.

It is known that if A is positive definite, then A always has an LU factorization; that is there exists an unit lower
triangular matrix L = (lij ) and an upper triangular matrix U = (uij ) such that

A = LU . (5.1)

The incomplete LU factorization of the positive definite matrix A is an LU factorization of a modified matrix of A.
That is

A = L̂Û − R, (5.2)

where L̂ = (l̂ij ) and Û = (ûij ) are unit lower triangular and upper triangular, R is the residual matrix.
As shown in [22], if A is an H-matrix with positive diagonal entries, then the incomplete LU factorization exists for

any predetermined sparsity pattern S. That is to say that given set S of ordered pairs of integers (i, j), 1� i, j �n, one
can construct L̂ and Û such that l̂ij �= 0 (i > j ), ûij �= 0 (i < j ) for (i, j) ∈ S.
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Let us consider the solution of linear system

Ax = b (5.3)

by Gaussian elimination, where A is an n × n generalized K-centrosymmetric H-matrix with positive diagonal entries.
From (2.7), we know that solving (5.3) is equivalent to solving the following two smaller linear systems:

By1 = c1, (5.4)

Cy2 = c2, (5.5)

where y1, c1 ∈ Rn−l , y2, c2 ∈ Rl , (yT
1 , yT

2 )T = QTx and (cT
1 , cT

2 )T = QTb.
Hence, we can either solve (5.3) directly by Gaussian elimination (this process does not need pivoting, as A is an

H-matrix with positive diagonal entries) or we can first reduce the system (5.3) (at almost no cost) to two subsystems
(5.4) and (5.5), then solving them by Gaussian elimination. The first approach needs about 2

3n3 + O(n2) flops, the
second one takes about 2

3 (n − l)3 + 2
3 l3 + O(n2) flops. If l ≈ n or l>n, then both flops counts are about the same,

there is no need to first reduce (5.3) and then to work on the two smaller systems. However, if l ≈ n/2, then the second
choice ensures the savings of about 1

2n3 + O(n2) flops.
Finally, we consider the solution of (5.3) by a preconditioned iterative methods based on an incomplete LU factoriza-

tion. Because A is an H-matrix with positive diagonal entries, we can directly consider the incomplete LU factorization
of A as its preconditioner for a given sparsity pattern S and then apply this preconditioner to the corresponding iterative
method. On the other hand, by Theorem 1 and Corollary 1, we know that the coefficient matrices B and C in (5.4) and
(5.5) are also H-matrices with positive diagonal entries. In this case the matrix B in (5.4) has an incomplete LU factoriza-
tion based preconditioner for any predetermined sparsity pattern S1. So does C in (5.5) for any predetermined sparsity
pattern S2. Therefore, we can get the solution of (5.3) by solving linear systems (5.4) and (5.5) by preconditioned
iterative methods.

The computational costs of the above two approaches are rather complicated. If the computational costs of incomplete
LU factorizations of A, B and C are negligible, then the second scheme (that is to solve (5.4) and (5.5) by preconditioned
iterative methods) ensures significant savings if l ≈ n/2, as compared to the first scheme (that is to directly solve (5.3)
by the same preconditioned iterative method). For more details, see [20].

Based on the above analysis, it can be expected that the algorithm on page 162 in [17] as well as the corresponding
preconditioned conjugate gradient method can be improved by exploiting the structured algorithm, which will be
considered in our future work.

5.2. The classical iterative methods

The classical iterative methods including the Jacobi, Gauss–Seidel and successive over-relaxation (SOR) algorithms
have been proved to be very effective for solving linear system (5.3) when A is an H-matrix. Assume that A = M − N

(M nonsingular) be a splitting of A. Then the classical iterative methods can be described as follows: Given an initial
guess x0, repeatedly compute Mxj+1 = Nxj + b.

In order to illustrate the advantage of our structured algorithm, we only consider the Gauss–Seidel algorithm. For
other iterative methods, such as two-stage iterative method in [10] and Schwarz iterative method in [5], etc., one can
easily get similar results.

Let A=D−L−U be a decomposition of A, where D=diag(a11, . . . , ann), i.e., D consists of the diagonal elements
of A, L and U consist of the lower triangular part and upper triangular part of A, respectively. Then the Gauss–Seidel
iteration is as follows:

(D − L)xj+1 = Uxj + b for j = 1, . . . , until convergence. (5.6)

It is known that if A is an H-matrix, then the Gauss–Seidel iteration is convergent for any initial guess x0.
Assume that A in (5.3) is a generalized K-centrosymmetric H-matrix. As before, we have two options to solve the

linear system (5.3). The first option is directly to solve it by Gauss–Seidel iteration (5.6). It takes about 2n2 + O(n)

flops to perform one iteration involving a upper triangular matrix–vector product, a vector–vector sum and a solution of
a lower triangular linear system. The second option is first to reduce the system (5.3) to two subsystems (5.4) and (5.5).
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By Theorem 1, B and C in (5.4) and (5.5) are two H-matrices. Thus the Gauss–Seidel iteration (5.6) can be applied to
subsystems (5.4) and (5.5). The computational costs in each iteration step amount to about 2(n− l)2 +2l2 +O(n) flops.
Again, if l ≈ n or l>n, then both flops counts are about the same, there is no need to first reduce system (5.3) and
then to work on the smaller subsystems (5.4) and (5.5). However, if l ≈ n/2, then a structured iteration step ensures
the savings of about n2 + O(n) flops.

5.3. The computation of principal square roots

A stable algorithm (called the LL algorithm) for computing the principal square root of an H-matrix with positive
diagonal entries was proposed by Lin and Liu in [18], which can be viewed as an extension of one developed in
[1] (refereed to as AS iteration) for M-matrices, in which only nonnegative matrix additions and multiplications are
involved. The AS iteration converges linearly (see [14]) and is stable. The LL iteration can be briefly outlined as follows.

Let A= (aij ) be an H-matrix with positive diagonal entries. Let N̂ = (n̂ij ) with n̂ij =aij if aij �0, i �= j and n̂ij = 0
otherwise. Then the matrix A can be written as

A = sI − P̂ + N̂

with P̂ �0, N̂ �0, where the scalar s is positive and satisfies the inequality s�maxn
i=1 aii . Denoting P = P̂ /s and

N = N̂/s, we have that A/s = I − P + N . Hence, the square root problem of A is equivalent to that of A/s. Then the
LL iteration is defined as follows for X0 = Y0 = 0:

Xj+1 = 1
2 (P + X2

j + Y 2
j ), j = 0, 1, 2, . . . ,

Yj+1 = 1
2 (N + XjYj + YjXj ). (5.7)

The sequences {Xj } and {Yj } are convergent, i.e.,

Xj → X, Yj → Y as j → ∞,

and I −X +Y is an H-matrix with positive diagonal entries and is the principal square root of the H-matrix I −P +N

with positive diagonal entries. The LL iteration inherits the linear converge rate from the AS iteration. For N = 0, the
matrix I − P + N is an M-matrix and the LL iteration in (5.7) reduces to the AS iteration for computing the square
root of an M-matrix.

As A is an H-matrix with positive diagonal entries, one could simply use the LL algorithm (5.7) from [18] to compute
its root. But as A is also a generalized K-centrosymmetric matrix, it can be first transformed (at almost no cost) to its
reduced form (2.7). As B and C in (2.7) are both H-matrices with positive diagonal entries, the LL algorithm can be
directly applied to them to compute their roots. Let us say, the computed roots are E and F, respectively. Then

A1/2 = Q

[
E

F

]
QT. (5.8)

If we compute the principal square root of an n × n generalized K-centrosymmetric H-matrix using the LL iteration
(5.7), the main computational costs in each iteration step (that is the computation of Xj+1 and Yj+1) are roughly
8n3 + O(n2) flops. Applying the LL iteration to the (n − l) × (n − l) matrix B and the l × l matrix C amounts to
8[(n − l)3 + l3] + O((n − l)2) flops. If l ≈ n or l>n, then both flops counts are about the same, there is no need to
first transform A and then to work on the smaller matrices B and C (assuming that it is fair to say that both approaches
will need the same number iterations in order to converge). However, if l ≈ n/2, then the second algorithm ensures
the savings of about 6n3 + O(n2) flops in comparison with LL iteration, for each iteration.

A different option for computing the desired square root is the Schulz iteration [14] defined as follows for Y0 =
A, Z0 = I :

Yj+1 = 1
2Yj (3I − ZjYj ), j = 0, 1, 2, . . .

Zj+1 = 1
2 (3I − ZjYj )Zj . (5.9)

It possess quadratic convergence if ‖diag(A − I, A − I )‖ < 1,

Yj → A1/2, Zj → A−1/2 as j → ∞.
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Note that if A= I −P +N is an H-matrix with positive diagonal entries, then 〈A〉= I − (P +N) is an M-matrix with
�(P + N) < 1, due to |P − N | < P + N , hence we have that �(P − N)��(|P − N |) < �(P + N) < 1, which implies
that ‖A − I‖ < 1 for a consistent norm. Therefore, the convergence condition of the Schulz iteration is satisfied.

As before, we have two different options here. We could either apply the Schulz iteration directly to A or we first
transform A to its reduced form (2.7) and apply the Schulz iteration to B and C to compute their roots. Let us say, the
computed roots are E and F, respectively. Then, as in (5.8), A1/2 can be expressed via Q, E, F . If we compute the
principal square root of an n × n generalized K-centrosymmetric H-matrix using the Schulz iteration (5.9), the main
computational costs in each iteration step (that is the computation of Xj+1 and Yj+1) are roughly 6n3 + O(n2) flops.
Applying the Schulz iteration to the (n−l)×(n−l) matrix B and the l×l matrix C amounts to 6[(n−l)3+l3]+O((n−l)2)

flops. Again, if l ≈ n or l>n, then both flops counts are about the same, there is no need to first transform A and
then to work on the smaller matrices B and C (assuming that it is fair to say that both approaches will need the same
number iterations in order to converge). However, if l ≈ n/2, then the second algorithm ensures the savings of about
9
2n3 + O(n2) flops in comparison with Schulz iteration on A, for each iteration.

Both algorithms discussed here, the LL iteration and the Schulz iteration, encompass only matrix–matrix multipli-
cations, an operation that can be done very efficiently on modern high performance computers. The convergence of the
LL iteration is linear, while the convergence of the Schulz iteration is quadratic. However, we note that the LL iteration
only uses nonnegative matrix–matrix multiplications and nonnegative matrix–matrix additions. That means that the LL
iteration is potentially more stable than the Schulz iteration.
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