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Abstract

In this paper, we introduce and study a system of variational inclusions with P –�-accretive operators in real q-uniformly smooth
Banach spaces. By using the resolvent operator technique associated with P –�-accretive operators, we prove the existence and
uniqueness of solutions for this system of variational inclusions and construct a Mann iterative algorithm to approximate the unique
solution. The results in this paper extend and improve some known results in the literature.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Variational inclusion problems are among the most interesting and intensively studied classes of mathematical
problems and have wide applications in the fields of optimization and control, economics and transportation equilibrium,
engineering science. For the past years, many existence results and iterative algorithms for various variational inequality
and variational inclusion problems have been studied. For details, please see [1–6,8–35] and the references therein.

Recently, some new and interesting problems, which are called systems of variational inequality problems were
introduced and studied. Pang [27], Cohen and Chaplais [11], Bianchi [6] and Ansari andYao [5] considered a system of
scalar variational inequalities and Pang showed that the traffic equilibrium problem, the spatial equilibrium problem,
the Nash equilibrium, and the general equilibrium programming problem can be modeled as a variational inequality.
He decomposed the original variational inequality into a system of variational inequalities which are easy to solve
and studied the convergence of such methods. Ansari et al. [4] introduced and studied a system of vector equilibrium
problems and a system of vector variational inequalities by a fixed point theorem. Allevi et al. [3] considered a system
of generalized vector variational inequalities and established some existence results under relative pseudomonotonicity.
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Kassay and Kolumbán [20] introduced a system of variational inequalities and proved an existence theorem by the
Ky Fan lemma. Kassay et al. [21] studied Minty and Stampacchia variational inequality systems with the help of
the Kakutani–Fan–Glicksberg fixed point theorem. Peng [28,30] introduced a system of quasi-variational inequality
problems and proved its existence theorem by maximal element theorems. Verma [31–35] introduced and studied some
systems of variational inequalities and developed some iterative algorithms for approximating the solutions of system
of variational inequalities in Hilbert spaces. Kim and Kim [24] introduced a new system of generalized nonlinear quasi-
variational inequalities and obtained some existence and uniqueness results of solution for this system of generalized
nonlinear quasi-variational inequalities in Hilbert spaces. Cho et al. [10] introduced a new system of nonlinear variational
inequalities and proved some existence and uniqueness theorems of solutions for this system of nonlinear variational
inequalities in Hilbert spaces. As generalizations of system of variational inequalities, Agarwal et al. [2] introduced a
system of generalized nonlinear mixed quasi-variational inclusions and investigated the sensitivity of solutions for this
system of generalized nonlinear mixed quasi-variational inclusions in Hilbert spaces. Kazmi and Bhat [22] introduced
a system of nonlinear variational-like inclusions and gave an iterative algorithm for finding its approximate solution.
Fang and Huang [16,14], and Fang et al. [17] introduced and studied some new systems of variational inclusions
involving P-accretive operators, P-monotone operators, and P –�-monotone operators, respectively.

On the other hand, Kazmi and Khan [23] introduced and studied the class of P –�-accretive operators which gen-
eralizes and unifies the classes of �–m-accretive operators in [9], P –�-monotone operators in [17] and P-accretive
operators in [13] as special cases.

Inspired and motivated by the above results, the purpose of this paper is to study some properties of the class of
P –�-accretive operators in q-uniformly smooth Banach spaces. We also introduce and study a system of variational
inclusions with P –�-accretive operators. By using the resolvent technique for the P –�-accretive operators, we prove the
existence and uniqueness of solutions for this system of variational inclusions. We also prove the convergence of a Mann
iterative algorithm which approximate the solution to this system of variational inclusions. The results in this paper
extend and improve the corresponding results about the existence and uniqueness of solutions for systems of variational
inclusions or systems of variational inequalities and the convergence of some iterative algorithms which approximate
the solution to these systems of variational inclusions or systems of variational inequalities in [17,16,14,31–35,24,10].

2. Preliminaries

Following Xu [36], Xu and Roach [37] and Chang [7], let E be a real Banach space with dual space and norm denoted
by E∗ and ‖ · ‖. For x in E and f ∗ in E∗, let 〈x, f ∗〉 be the value of f ∗ at x (〈·, ·〉 is the generalized dual pair between E
and E∗). Let 2E denote the family of all the nonempty subsets of E, CB(E) denote the families of all nonempty closed
bounded subsets of E, and the generalized duality mapping Jq : E → 2E∗

be defined by

Jq(x) = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖f ∗‖ · ‖x‖, ‖f ∗‖ = ‖x‖q−1}, ∀x ∈ E,

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping. It is known that, in general,
Jq(x) = ‖x‖q−2J2(x), for all x 	= 0, and Jq is single-valued if E∗ is strictly convex. The modulus of smoothness of E
is the function �E : [0, ∞) → [0, ∞) defined by

�E(t) = sup{ 1
2 (‖x + y‖ + ‖x − y‖) − 1 : ‖x‖�1, ‖y‖� t}.

A Banach space E is said to be uniformly smooth if

lim
t→0

�E(t)

t
= 0.

E is said to be q-uniformly smooth if there exists a constant c > 0, such that

�E(t)�ctq, q > 1.

Note that Jq is single-valued if E is uniformly smooth.
Xu [36] and Xu and Roach [37] proved the following result.
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Lemma 2.1. Let E be a real uniformly smooth Banach space. Then, E is q-uniformly smooth if and only if there exists
a constants cq > 0, such that for all x, y ∈ E,

‖x + y‖q �‖x‖q + q〈y, Jq(x)〉 + cq‖y‖q .

We recall some definitions needed later.

Definition 2.1 (see Fang and Huang [13]). Let E be a real q-uniformly smooth Banach space, and P, g : E −→ E

be two single-valued operators. P is said to be:
(i) accretive if

〈P(x) − P(y), Jq(x − y)〉�0, ∀x, y ∈ E;

(ii) strictly accretive if P is accretive and

〈P(x) − P(y), Jq(x − y)〉 = 0 if and only if x = y;

(iii) strongly accretive if there exists a constant r > 0 such that

〈P(x) − P(y), Jq(x − y)〉�r‖x − y‖q, ∀x, y ∈ E;

(iv) Lipschitz continuous if there exists a constant s > 0 such that

‖P(x) − P(y)‖�s‖x − y‖, ∀x, y ∈ E;

(v) g-strongly accretive if there exists a constant � > 0 such that

〈P(x) − P(y), Jq(g(x) − g(y))〉��‖x − y‖q, ∀x, y ∈ E.

Definition 2.2 (see Kazmi and Khan [23], Chidume et al. [9]). Let E be a real q-uniformly smooth Banach space,
P : E −→ E and � : E × E −→ E be two single-valued operators. P is said to be �-accretive if

〈P(x) − P(y), Jq(�(x, y))〉�0, ∀x, y ∈ E,

or equivalently,

〈P(x) − P(y), J2(�(x, y))〉�0, ∀x, y ∈ E.

Definition 2.3 (see Fang and Huang [13]). Let E be a real q-uniformly smooth Banach space, P : E −→ E be a
single-valued operator and M : E −→ 2E be a multi-valued operator. M is said to be:

(i) accretive if

〈u − v, Jq(x − y)〉�0, ∀x, y ∈ E, u ∈ M(x), v ∈ M(y);

(ii) m-accretive if M is accretive and (I + �M)(E) = E holds for all � > 0, where I is the identity map on E;
(iii) P-accretive if M is accretive and (P + �M)(E) = E holds for all � > 0.

Definition 2.4 (see Kazmi and Khan [23]). Let E be a real q-uniformly smooth Banach space, P : E −→ E and
� : E × E −→ E be two single-valued operators and M : E −→ 2E be a multi-valued operator. M is said to be:

(i) �-accretive if

〈u − v, Jq(�(x, y))〉�0, ∀x, y ∈ E, u ∈ M(x), v ∈ M(y),

or equivalently,

〈u − v, J2(�(x, y))〉�0, ∀x, y ∈ E, u ∈ M(x), v ∈ M(y);

(ii) �–m-accretive if M is �-accretive and (I + �M)(E) = E holds for all � > 0;
(iii) P –�-accretive if M is �-accretive and (P + �M)(E) = E holds for all � > 0.
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Remark 2.1. (i) If �(x, y)=x−y, ∀x, y ∈ E, then the definition of the P –�-accretive operator is that of the P-accretive
operator introduced by Fang and Huang [13]. If P = I , then the definition of the (I, �)-accretive operator is that of the
�–m-accretive operator introduced by Chidume et al. [9].

(ii) If E = H is a real Hilbert space, then the definition of the P –�-accretive operator becomes that of the P –�-
monotone operator in [17] and the definition of the P-accretive operator becomes that of the P-monotone operator in
[15].

(iii) The following examples illustrate that a P –�-accretive operator maybe neither a P-accretive operators nor an
�–m-accretive operator. And so the definition of the P –�-accretive operator is a real generalization of those of the
P-accretive operator and the �–m-accretive operator and their special cases.

Example 2.1. The following new example shows that a P –�-accretive operator may not be a P-accretive operator.
Let E =R and P : E −→ E, � : E ×E −→ E, M : E −→ 2E be defined as follows: P(x)= x5, �(x, y)= x4 − y4

and M(x) = {x2, x4, x8}, ∀x, y ∈ E. It is easy to verify that M is P –�-accretive. However, M is not an accretive
operator, and so M is not a P-accretive operator.

Example 2.2. The following new example shows that a P –�-accretive operator may not be an �–m-accretive operator.
Let E = R and P : E −→ E, � : E × E −→ E, N : E −→ 2E be defined as follows: P(x) = x5, �(x, y) = x4 − y4

and N(x)={x2, x2+1/4, 2x2+3}, ∀x, y ∈ E. It is easy to verify that N is P –�-accretive. However, (I +�M)(E) 	= E,
and so N is not an �–m-accretive operator.

Kazmi and Khan [23] present some properties for P –�-accretive operators as follows.

Lemma 2.2. Let E be a real q-uniformly smooth Banach space, � : E × E −→ E be a single-valued operator,
P : E −→ E be a strictly �-accretive single-valued operator, and M : E −→ 2E be a P –�-accretive operator, and
x, u ∈ E be two given points. If 〈u − v, Jq(�(x, y))〉�0 holds, for all (y, v) ∈ Graph M , then u ∈ M(x), where
Graph M = {(x, u) ∈ E × E : u ∈ M(x)}.

Lemma 2.3. Let E be a real q-uniformly smooth Banach space, � : E × E −→ E be a single-valued operator,
P : E −→ E be a strictly �-accretive single-valued operator, and M : E −→ 2E be a P –�-accretive operator. Then,
the operator (P + �M)−1 is single-valued, where � > 0 is a constant.

Based on Lemma 2.3, we can define the resolvent operator R
P,�
M,� associated with P, �, M, � as follows.

Definition 2.5. Let E be a real q-uniformly smooth Banach space, � : E × E −→ E be a single-valued operator,
P : E −→ E be a strictly �-accretive single-valued operator, and M : E −→ 2E be a P –�-accretive operator, � > 0 be
a constant. The resolvent operator R

P,�
M,� : E −→ E associated with P, �, M, � is defined by

R
P,�
M,�(u) = (P + �M)−1(u), ∀u ∈ E.

Definition 2.6. Let E be a real q-uniformly smooth Banach space, P : E −→ E and � : E × E −→ E be two
single-valued operators. P is said to strongly �-accretive if there exists a constant r > 0 such that

〈P(x) − P(y), Jq(�(x, y))〉�r‖x − y‖q, ∀x, y ∈ E. (2.1)

Remark 2.2. It follows from the definition of generalized duality mapping Jq that 〈P(x) − P(y), Jq(�(x, y))〉 =
‖�(x, y)‖q−2〈P(x) − P(y), J2(�(x, y))〉, Hence, (2.1) is not equivalent to the following formula (see [23,
Definition 2.1(iii)]):

〈P(x) − P(y), J2(�(x, y))〉�r‖x − y‖2, ∀x, y ∈ E, (2.2)

and this is the reason why the following Lemma 2.4 is different from Theorem 2.2 in [23].

Lemma 2.4. Let E be a real q-uniformly smooth Banach space, � : E × E −→ E be Lipschitz continuous with a
constant � > 0 (i.e., ‖�(x, y)‖��‖x − y‖, ∀x, y ∈ E), P : E −→ E be strongly �-accretive with a constant � > 0,
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and M : E −→ 2E be a P –�-accretive operator, � > 0 be a constant. Then the resolvent operator R
P,�
M,� is Lipschitz

continuous with a constant �q−1/�, i.e.,

‖RP,�
M,�(u) − R

P,�
M,�(v)‖�(�q−1/�)‖u − v‖, ∀u, v ∈ E.

Proof. Let u, v be any given points in E, it follows from Definition 2.5 that

R
P,�
M,�(u) = (P + �M)−1(u) and R

P,�
M,�(v) = (P + �M)−1(v).

This implies that

1

�
(u − P(R

P,�
M,�(u))) ∈ M(R

P,�
M,�(u))

and

1

�
(v − P(R

P,�
M,�(v))) ∈ M(R

P,�
M,�(v)).

Since M is P –�-accretive, we have

1

�
〈u − P(R

P,�
M,�(u)) − (v − P(R

P,�
M,�(v))), Jq(�(R

P,�
M,�(u), R

P,�
M,�(v)))〉

= 1

�
〈u − v − (P (R

P,�
M,�(u)) − P(R

P,�
M,�(v))), Jq(�(R

P,�
M,�(u), R

P,�
M,�(v)))〉�0.

The inequality above implies that

‖u − v‖ · ‖�(R
P,�
M,�(u), R

P,�
M,�(v))‖q−1 = ‖u − v‖ · ‖Jq(�(R

P,�
M,�(u), R

P,�
M,�(v)))‖

�〈u − v, Jq(�(R
P,�
M,�(u), R

P,�
M,�(v)))〉

�〈P(R
P,�
M,�(u)) − P(R

P,�
M,�(v)), Jq(�(R

P,�
M,�(u), R

P,�
M,�(v)))〉

��‖RP,�
M,�(u) − R

P,�
M,�(v)‖q . (2.3)

Since � is Lipschitz continuous with a constant �, we have

‖�(R
P,�
M,�(u), R

P,�
M,�(v))‖��‖RP,�

M,�(u) − R
P,�
M,�(v)‖. (2.4)

It follows from (2.3) and (2.4) that

‖u − v‖ · �q−1‖RP,�
M,�(u) − R

P,�
M,�(v)‖q−1 ��‖RP,�

M,�(u) − R
P,�
M,�(v)‖q .

Hence, we get

‖RP,�
M,�(u) − R

P,�
M,�(v)‖�(�q−1/�)‖u − v‖.

The proof is complete. �

Remark 2.3. If E is 2-uniformly smooth Banach space, then Lemma 2.4 becomes Theorem 2.2 in [23]. Hence,
Lemma 2.4 generalizes and unifies Theorem 2.2 in [23], Lemma 2.2 in [17], Theorem 2.3 in [13], Theorem 2.2
in [15].

3. A system of variational inclusions

In this section, we will introduce a new system of variational inclusions with P –�-accretive operators. In what
follows, unless specified otherwise, we always suppose that E1 and E2 are two real q-uniformly smooth Banach
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spaces, P1 : E1 −→ E1, P2 : E2 −→ E2, �1 : E1 × E1 −→ E1, �2 : E2 × E2 −→ E2, F : E1 × E2 −→ E1,
G : E1 × E2 −→ E2 are all single-valued mappings. Let M : E1 −→ 2E1 be a P1–�1-accretive operator and
N : E2 −→ 2E2 be a P2–�2-accretive operator. We consider the following problem of finding (x, y) ∈ E1 × E2 such
that {

0 ∈ F(x, y) + M(x),

0 ∈ G(x, y) + N(y).
(3.1)

Problem (3.1) is called a system of variational inclusions with P –�-accretive operators.
Below are some special cases of problem (3.1).
(i) If �1(x1, y1) = x1 − y1 for all x1, y1 ∈ E1, �2(x2, y2) = x2 − y2 for all x2, y2 ∈ E2, then M and N, respectively,

become a P1-accretive operator and a P2-accretive operator, and problem (3.1) becomes the system of variational
inclusions with P-accretive operators in Banach spaces introduced and studied by Fang and Huang [16]. Moreover,
if E1 = H1 and E2 = H2 are Hilbert spaces, then M and N, respectively, become a P1-monotone operator and a
P2-monotone operator, and problem (3.1) becomes the system of variational inclusions with P-monotone operators in
Hilbert spaces introduced and studied by Fang and Huang [14].

(ii) If E1 = H1 and E2 = H2 are Hilbert spaces, then M and N, respectively, become a P1–�1-monotone operator
and a P2–�2-monotone operator, and problem (3.1) becomes the system of variational inclusions with P –�-monotone
operators in Hilbert spaces introduced and studied by Fang et al. [4].

(iii) Let E1 = H1 and E2 = H2 be two Hilbert spaces, M(x) = ��1
�(x) and N(y) = ��2

�(y) for all x ∈ E1
and y ∈ E2, where � : E1 −→ R ∪ {∞} is a proper lower semi-continuous and �1-subdifferentiable function
and � : E2 −→ R ∪ {∞} is a proper lower semi-continuous and �2-subdifferentiable function, ��1

�(x) is the �1-
subdifferential of � at x and ��2

�(y) is the �2-subdifferential of � at y, then problem (3.1) reduces to the following
system of variational-like inequalities, which is to find (x, y) ∈ E1 × E2 such that

{ 〈F(x, y), �1(a, x)〉 + �(a) − �(x)�0, ∀ a ∈ E1,

〈G(x, y), �2(b, y)〉 + �(b) − �(y)�0, ∀ b ∈ E2.
(3.2)

If �1(a, x) = a − x for all a, x ∈ E1, �2(b, y) = b − y for all b, y ∈ E2, M(x) = ��(x) is the subdifferential of �
at x and N(x) = ��(y) is the subdifferential of � at y, then problem (3.2) becomes the following system of variational
inequalities, which is to find (x, y) ∈ E1 × E2 such that

{ 〈F(x, y), a − x〉 + �(a) − �(x)�0, ∀ a ∈ E1,

〈G(x, y), b − y〉 + �(b) − �(y)�0, ∀ b ∈ E2.
(3.3)

Problem (3.3) was introduced and studied by Cho et al. [10].
If M(x)=�	K1(x) and N(y)=�	K2(y) for all x ∈ K1 and y ∈ K2, where K1 ⊂ E1 and K2 ⊂ E2 are two nonempty,

closed and convex subsets, 	K1 and 	K2 denote the indicator functions of K1 and K2, respectively, then problem (3.3)
reduces to the following system of variational inequalities, which is to find (x, y) ∈ E1 × E2 such that

{ 〈P(x, y), a − x〉�0, ∀ a ∈ E1,

〈Q(x, y), b − y〉�0, ∀ b ∈ E2.
(3.4)

Problem (3.4) is just the problem in [20] with P and Q being single-valued.
If E1 =E2 =H is a Hilbert space, K1 =K2 =K is a nonempty, closed and convex subset, P(x, y)=�T (y, x)+x−y

and Q(x, y) = �T (x, y) + y − x for all x, y ∈ K , where T : K × K −→ H is a mapping on K × K , �, � > 0 are two
numbers, then problem (3.4) reduces to the following problem: find x, y ∈ K such that

{ 〈�T (y, x) + x − y, a − x〉�0, ∀ a ∈ K,

〈�T (x, y) + y − x, a − y〉�0, ∀ a ∈ K.
(3.5)

Problem (3.5) was introduced and studied by Verma [34].
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If E1 =E2 =H is a Hilbert space, K1 =K2 =K is a nonempty, closed and convex subset, P(x, y)=�T (y)+x −y

and Q(x, y) = �T (x) + y − x for all x, y ∈ K , where T : K −→ H is a mapping on K, �, � > 0 are two numbers,
then problem (3.4) reduces to the following problem: find x, y ∈ K such that

{ 〈�T (y) + x − y, a − x〉�0, ∀ a ∈ K,

〈�T (x) + y − x, a − y〉�0, ∀ a ∈ K.
(3.6)

Problem (3.10) was introduced and studied by Verma [31–33,35].

4. Existence and uniqueness

In this section, we will prove existence and uniqueness for solutions of problem (3.1). For our main results, we give
a characterization of the solution of problem (3.1) as follows.

Lemma 4.1. Let E1 and E2 be real q-uniformly smooth Banach spaces, �1 : E1 × E1 −→ E1, �2 : E2 × E2 −→ E2
be two single-valued operators, P1 : E1 −→ E1 be a strictly �1-accretive operator and P2 : E2 −→ E2 be a strictly
�2-accretive operator and M : E1 −→ 2E1 be a P1–�1-accretive operator, N : E2 −→ 2E2 be a P2–�2-accretive
operator. Then (x, y) ∈ E1 × E2 is a solution of problem (3.1) if and only if

x = R
P1,�1
M,� (P1(x) − �F(x, y)),

y = R
P2,�2
N,� (P2(y) − �G(x, y)),

where R
P1,�1
M,� = (P1 + �M)−1, R

P2,�2
N,� = (P2 + �N)−1, � > 0 and � > 0 are constants.

Proof. The fact follows directly from Definition 2.5. �

Theorem 4.1. Let E1 and E2 be real q-uniformly smooth Banach spaces. For i = 1, 2, let �i : Ei × Ei −→ Ei be
Lipschitz continuous with constant �i , Pi : Ei −→ Ei be strongly �i-accretive and Lipschitz continuous with constants
�i and 	i , respectively. Let F : E1 × E2 −→ E1 be a nonlinear operator such that for any given (a, b) ∈ E1 × E2,
F(., b) is P1-strongly accretive and Lipschitz continuous with constants r1 and s1 > 0, respectively, and F(a, .) is
Lipschitz continuous with constant 
1 > 0. Let G : E1 × E2 −→ E2 be a nonlinear operator such that for any given
(x, y) ∈ E1 × E2, G(x, .) is P2-strongly accretive and Lipschitz continuous with constants r2 and s2 > 0, respectively,
and G(., y) is Lipschitz continuous with constant 
2 > 0. Assume that M : E1 −→ 2E1 is a P1–�1-accretive operator
and N : E2 −→ 2E2 is a P2–�2-accretive operator.

If there exist constants � > 0 and � > 0 such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�q−1
1

�1

q

√
	q

1 − q�r1 + cq�qs
q
1 + 
2��q−1

2

�2
< 1,

�q−1
2

�2

q

√
	q

2 − q�r2 + cq�qs
q
2 + 
1��q−1

1

�1
< 1.

(4.1)

Then problem (3.1) admits a unique solution.

Proof. For any given � > 0 and � > 0, define T� : E1 × E2 −→ E1 and S� : E1 × E2 −→ E2 by

T�(u, v) = R
P1,�1
M,� [P1(u) − �F(u, v)] and S�(u, v) = R

P2,�2
N,� [P2(v) − �G(u, v)], (4.2)

for all (u, v) ∈ E1 × E2.
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For any (u1, v1), (u2, v2) ∈ E1 × E2, it follows from (4.2) and Lemma 2.4 that

‖T�(u1, v1) − T�(u2, v2)‖� �q−1
1

�1
‖P1(u1) − P1(u2) − �(F (u1, v1) − F(u2, v2))‖

� �q−1
1

�1
‖P1(u1) − P1(u2) − �(F (u1, v1) − F(u2, v1))‖

+ ��q−1
1

�1
‖F(u2, v1) − F(u2, v2)‖ (4.3)

and

‖S�(u1, v1) − S�(u2, v2)‖� �q−1
2

�2
‖P2(v1) − P2(v2) − �(G(u1, v1) − G(u2, v2))‖

� �q−1
2

�2
‖P2(v1) − P2(v2) − �(G(u1, v1) − G(u1, v2))‖

+ ��q−1
2

�2
‖G(u1, v2) − G(u2, v2)‖. (4.4)

By assumption, we have

‖P1(u1) − P1(u2) − �(F (u1, v1) − F(u2, v1))‖q

�‖P1(u1) − P1(u2)‖q − q�〈F(u1, v1) − F(u2, v1), Jq(P1(u1) − P1(u2))〉
+ �qcq‖F(u1, v1) − F(u2, v1)‖q

�(	q
1 − q�r1 + cq�qs

q
1 )‖u1 − u2‖q (4.5)

and

‖P2(v1) − P2(v2) − �(G(u1, v1) − G(u1, v2))‖q

�‖P2(v1) − P2(v2)‖q − q�〈G(u1, v1) − G(u1, v2), Jq(P2(v1) − P2(v2))〉
+ cq�q‖G(u1, v1) − G(u1, v2)‖q

�(	q
2 − q�r2 + cq�qs

q
2 )‖v1 − v2‖q . (4.6)

Furthermore,

‖F(u2, v1) − F(u2, v2)‖�
1‖v1 − v2‖ (4.7)

and

‖G(u1, v2) − G(u2, v2)‖�
2‖u1 − u2‖. (4.8)

It follows from (4.3) and (4.8) that

‖T�(u1, v1) − T�(u2, v2)‖� �q−1
1

�1

q

√
	q

1 − q�r1 + cq�qs
q
1 ‖u1 − u2‖ + 
1��q−1

1

�1
‖v1 − v2‖ (4.9)

and

‖S�(u1, v1) − S�(u2, v2)‖� �q−1
2

�2

q

√
	q

2 − q�r2 + cq�qs
q
2 ‖v1 − v2‖ + 
2��q−1

2

�2
‖u1 − u2‖. (4.10)
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Now (4.9) and (4.10) jointly imply that

‖T�(u1, v1) − T�(u2, v2)‖ + ‖S�(u1, v1) − S�(u2, v2)‖

�
[

�q−1
1

�1

q

√
	q

1 − q�r1 + cq�qs
q
1 + 
2��q−1

2

�2

]
‖u1 − u2‖

+
[

�q−1
2

�2

q

√
	q

2 − q�r2 + cq�qs
q
2 + 
1��q−1

1

�1

]
‖v1 − v2‖

��(‖u1 − u2‖ + ‖v1 − v2‖), (4.11)

where

� = max

{
�q−1

1

�1

q

√
	q

1 − q�r1 + cq�qs
q
1 + 
2��q−1

2

�2
,
�q−1

2

�2

q

√
	q

2 − q�r2 + cq�qs
q
2 + 
1��q−1

1

�1

}
.

Define ‖ · ‖1 on E1 × E2 by

‖(u, v)‖1 = ‖u‖ + ‖v‖, ∀(u, v) ∈ E1 × E2.

It is easy to see that (E1×E2, ‖·‖1) is a Banach space. For any given � > 0 and � > 0, define Q�,� : E1×E2 −→ E1×E2
by

Q�,�(u, v) = (T�(u, v), S�(u, v)), ∀(u, v) ∈ E1 × E2.

By (4.1), we know that 0 < � < 1. It follows from (4.11) that

‖Q�,�(u1, v1) − Q�,�(u2, v2)‖1 ��‖(u1, v1) − (u2, v2)‖1.

This proves that Q�,� : E1 ×E2 −→ E1 ×E2 is a contraction operator. Hence, there exists a unique (x, y) ∈ E1 ×E2,
such that

Q�,�(x, y) = (x, y),

that is,

x = R
P1,�1
M,� (P1(x) − �F(x, y)),

y = R
P2,�2
N,� (P2(y) − �G(x, y)).

By Lemma 4.1, (x, y) is the unique solution of problem (3.1). �

Remark 4.1. If E1 and E2 are 2-uniformly smooth Banach spaces, then (4.1) becomes the following formula:⎧⎪⎪⎨
⎪⎪⎩

�1

�1

√
	2

1 − 2�r1 + c2�
2s2

1 + 
2��2

�2
< 1,

�2

�2

√
	2

2 − 2�r2 + c2�2s2
2 + 
1��1

�1
< 1.

Moreover, if both E1 and E2 are Hilbert spaces, the above formula becomes (4.1) in [17]. Hence, Theorem 4.1
generalizes and unifies Theorem 4.1 in [17] and Theorem 4.1 in [16].

5. An iterative algorithm and convergence

In this section, we construct the Mann iterative algorithm for approximating the unique solution of problem (3.1)
and discuss the convergence of the algorithm.
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Theorem 5.1. Let E1 and E2 be real q-uniformly smooth Banach spaces. For i = 1, 2, let �i : Ei × Ei −→ Ei be
Lipschitz continuous with constant �i , Pi : Ei −→ Ei be strongly �i-accretive and Lipschitz continuous with constants
�i and 	i , respectively. Let F : E1 × E2 −→ E1 be a nonlinear operator such that for any given (a, b) ∈ E1 × E2,
F(., b) is P1-strongly accretive and Lipschitz continuous with constants r1 and s1 > 0, respectively, and F(a, .) is
Lipschitz continuous with constant 
1 > 0. Let G : E1 × E2 −→ E2 be a nonlinear operator such that for any given
(x, y) ∈ E1 × E2, G(x, .) is P2-strongly accretive and Lipschitz continuous with constants r2 and s2 > 0, respectively,
and G(., y) is Lipschitz continuous with constant 
2 > 0. Assume that M : E1 −→ 2E1 is a P1–�1-accretive operator
and N : E2 −→ 2E2 is a P2–�2-accretive operator. If there exist constants � > 0 and � > 0 such that (4.1) holds. For
any given (x0, y0) ∈ E1 × E2, define the Mann iterative sequence {(xn, yn)} by{

xn+1 = �nxn + (1 − �n)R
P1,�1
M,� [P1(xn) − �F(xn, yn)],

yn+1 = �nyn + (1 − �n)R
P2,�2
N,� [P2(yn) − �G(xn, yn)],

(5.1)

where

0��n < 1 and lim sup
n

�n < 1. (5.2)

Then {(xn, yn)} converges strongly to the unique solution (x, y) of problem (3.1).

Proof. By Theorem 4.1, problem (3.1) admits a unique solution (x, y). It follows from Lemma 4.1 that{
x = �nx + (1 − �n)R

P1,�1
M,� [P1(x) − �F(x, y)],

y = �ny + (1 − �n)R
P2,�2
N,� [P2(y) − �G(x, y)].

(5.3)

By (5.1) and (5.3), we have

‖xn+1 − x‖��n‖xn − x‖ + (1 − �n)‖RP1,�1
M,� [P1(xn) − �F(xn, yn)] − R

P1,�1
M,� [P1(x) − �F(x, y)]‖

��n‖xn − x‖ + (1 − �n)
�q−1

1

�1
‖P1(xn) − P1(x) − �[F(xn, yn) − F(x, y)]‖

��n‖xn − x‖ + (1 − �n)
�q−1

1

�1
‖P1(xn) − P1(x) − �[F(xn, yn) − F(x, yn)]‖

+ (1 − �n)
��q−1

1

�1
‖F(x, yn) − F(x, y)‖

��n‖xn−x‖+(1−�n)
�q−1

1

�1

q

√
	q

1−q�r1+cq�qs
q
1 ‖xn − x‖+(1−�n)

�
1�
q−1
1

�1
‖yn − y‖ (5.4)

and

‖yn+1 − y‖��n‖yn − y‖ + (1 − �n)‖RP2,�2
N,� [P2(yn) − �G(xn, yn)] − R

P2,�2
N,� [P2(y) − �G(x, y)]‖

��n‖yn − x‖ + (1 − �n)
�q−1

2

�2
‖P2(yn) − P2(y) − �[G(xn, yn) − G(x, y)]‖

��n‖yn − y‖ + (1 − �n)
�q−1

2

�2
‖P2(yn) − P2(y) − �[G(xn, yn) − G(xn, y)]‖

+ (1 − �n)
��q−1

2

�2
‖G(xn, y) − G(x, y)‖

��n‖yn−y‖+(1−�n)
�q−1

2

�2

q

√
	q

2−q�r2+cq�qs
q
2 ‖yn − y‖+(1 − �n)

�
2�
q−1
2

�2
‖xn − x‖. (5.5)
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It follows from (5.4) and (5.5) that

‖xn+1 − x‖ + ‖yn+1 − y‖��n(‖xn − x‖ + ‖yn − y‖) + (1 − �n)�(‖xn − x‖ + ‖yn − y‖)
= (� + (1 − �)�n)(‖xn − x‖ + ‖yn − y‖), (5.6)

where 0�� < 1 is defined by (4.11). Let

cn = ‖xn − x‖ + ‖yn − y‖ and kn = � + (1 − �)�n.

Then (5.6) can be rewritten as

cn+1 �kncn, n = 0, 1, 2, . . . .

By (5.2), we know that lim supnkn < 1. It follows from Lemma 5.1 in [16] that

‖xn − x‖ + ‖yn − y‖ −→ 0 as n −→ ∞.

Therefore, (xn, yn) converges strongly to the unique solution (x, y) of problem (3.1). �

Remark 5.1. Theorem 5.1 extends and unifies Theorem 5.1 in [17] and Theorem 5.1 in [16].

Remark 5.2. By Theorems 4.1 and 5.1, it is easy to obtain the existence and convergence results for the special cases
of problem (3.1). Hence, Theorems 4.1 and 5.1 generalize the main results in [31–35,24,10,14].
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