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a b s t r a c t

In the paper, we implement relatively new analytical techniques, the variational iteration
method, the Adomian decomposition method and the homotopy perturbation method,
for obtaining a rational approximation solution of the fractional Sharma–Tasso–Olever
equation. The three methods in applied mathematics can be used as alternative methods for
obtaining an analytic and approximate solution for different types of differential equations.
In these schemes, the solution takes the form of a convergent series with easily computable
components. The numerical results demonstrate the significant features, efficiency and
reliability of the three approaches.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, considerable interest in fractional differential equations has been stimulated due to their numerous
applications in the areas of physics and engineering [1]. Many important phenomena in electromagnetics, acoustics, vis-
coelasticity, electrochemistry, cosmology and material science are well described by fractional differential equations [2–5].
The solution of a fractional differential equation is much involved. In general, there exists no method that yields an exact
solution for a fractional differential equation. Only approximate solutions can be derived using the linearization or pertur-
bation method.

During the past decades, both mathematicians and physicists have devoted considerable effort to the study of explicit
solutions to nonlinear integer-order differential equations. Many powerful methods have been presented [6–29]. Among
them, the variational iteration method [21–24] (VIM), the Adomian decomposition method [25–27] (ADM) and the
homotopy perturbation method [28,29] (HPM) are relatively new approaches providing an analytical approximation to
linear and nonlinear problems, and they are particularly valuable as tools for scientists and applied mathematicians, because
they provide immediate and visible symbolic terms of analytic solutions, as well as a numerical approximate solution to both
linear and nonlinear differential equations without linearization or discretization.

Fractional differential equations have caught much attention recently due to the exact description of nonlinear
phenomena. No analytical method was available before 1998 for such equations, not even for linear fractional differential
equations. In 1998, the variational iteration method [30] was first proposed to solve fractional differential equations with
great success. Following the above idea, Draganescu, Momani and Odibat [31,32] applied the variational iteration method
to more complex fractional differential equations, showing the effectiveness and accuracy of the used method. In 2002, the
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Adomian method [33] was suggested to solve fractional differential equations. But many researchers [34,35] found it difficult
to calculate the Adomian polynomial. Ghorbani and Saberi-Nadjafi [36] suggested a very simple method for calculating the
Adomian polynomial using the homotopy perturbation method, and Ghorbani [37] suggested that the He polynomial should
be used instead of the Adomian polynomial. In 2007, Momani and Odibat [38] applied the homotopy perturbation method
to fractional differential equations and revealed that the homotopy perturbation method is an alternative analytical method
for fractional differential equations. Subsequently, Odibat [39,40] applied the homotopy perturbation method to nonlinear
fractional differential equations.

The aim of this paper is to directly apply VIM, ADM and HPM to consider the rational approximation solution of the
nonlinear fractional Sharma–Tasso–Olever (STO) equation with time-fractional derivative of the form

Dαt u+ 3au2
x + 3au2ux + 3auuxx + auxxx = 0, t > 0, 0 < α ≤ 1, (1.1)

where a is an arbitrary constant and α is a parameter describing the order of the fractional time-derivative. The function
u(x, t) is assumed to be a causal function of time, i.e. vanishing for t < 0. The fractional derivative is considered in the Caputo
sense [48]. The general response expression contains a parameter describing the order of the fractional derivative that can
be varied to obtain various responses. In the case of α = 1, Eq. (1.1) reduces to the classical nonlinear STO equation. More
important, the above procedure is just an algebraic algorithm and can be easily applied in the symbolic computation system
Maple.

2. Preliminaries and notations

In this section, let us recall essentials of fractional calculus first. The fractional calculus is a name for the theory of integrals
and derivatives of arbitrary order, which unifies and generalizes the notions of integer-order differentiation and n-fold
integration. There are many books [1–4] that develop fractional calculus and various definitions of fractional integration and
differentiation, such as Grünwald–Letnikov’s definition, Riemann–Liouville’s definition, Caputo’s definition and generalized
function approach. For the purpose of this paper, Caputo’s definition of fractional differentiation will be used, taking the
advantage of Caputo’s approach that the initial conditions for a fractional differential equation with Caputo’s derivatives
take on the traditional form as for an integer-order differential equation.

Definition 2.1. Caputo’s definition of the fractional-order derivative is defined as

Dαf (t) =
1

0(n− α)

∫ t

t0

f (n)(ξ)

(t − ξ)α+1−n dξ, (n− 1 < Re(α) ≤ n, n ∈ N) (2.1)

where the parameter α is the order of the derivative and is allowed to be real or even complex, t0 is the initial value of the
function f . In this paper only real and positive αwill be considered. For Caputo’s derivative we have

DαC = 0, (C is a constant), (2.2)

Dαtβ =


0 (β ≤ α− 1),

0(β+ 1)

0(β− α+ 1)
xβ−α (β > α− 1).

(2.3)

Similarly to integer-order differentiation, Caputo’s fractional differentiation is a linear operation:

Dα(λf (t)+ µg(t)) = λDαf (t)+ µDαg(t), (2.4)

where λ,µ are constants, and satisfies the so-called Leibnitz rule:

Dα(g(t)f (t)) =
∞∑
k=0

(
α

k

)
g(k)(t)Dα−kf (t), (2.5)

if f (τ) is continuous in [t0, t] and g(τ) has n+ 1 continuous derivatives in [t0, t].

In this paper, we consider Eq. (1.1), where the unknown function u = u(x, t) is assumed to be a causal function of time,
and the fractional derivative is taken in the Caputo sense as follows:

Definition 2.2. For n to be the smallest integer that exceedsα, the Caputo time-fractional derivative operator of orderα > 0
is defined as

Dαt u(x, t) =
∂αu(x, t)

∂tα
=


1

0(n− α)

∫ t

0
(t − ξ)n−α−1 ∂

nu(x, ξ)

∂ξn
dξ if n− 1 < α < n,

∂nu(x, t)

∂tn
if α = n ∈ N.

(2.6)

For establishing our results, we also necessarily introduce following Riemann–Liouville fractional integral operator.
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Definition 2.3. The Riemann–Liouville fractional integral operator of order α ≥ 0, of a function f ∈ Cµ, µ ≥ −1, is defined
as

Jαf (t) =
1

0(α)

∫ t

0
(t − ξ)(α−1)f (ξ)dξ, α > 0, t > 0. (2.7)

Properties of the operator Jα can be found in Ref. [4] and we only mention the following properties: For f ∈ Cµ, µ ≥ −1,
α,α ≥ 0, γ ≥ −1:

J0f (t) = f (t), Jαtγ =
0(γ + 1)

0(α+ γ + 1)
tα+γ, (2.8)

JαJαf (t) = J(α+α)f (t), JαJα = JαJαf (t). (2.9)

Also, we need here two of its basic properties. If m− 1 < α ≤ m, m ∈ N and f ∈ Cm
µ , µ ≥ −1, then

DαJαf (t) = f (t), JαDα = f (t)−
m−1∑
i=0

f i(0+)
ti

i!
, x > 0. (2.10)

For more information on the mathematical properties of fractional derivatives and integrals one can consult Ref. [4].

3. Analysis of the variational iteration method

Consider the nonlinear differential equation

Lu+N u = g(t), t ∈ Ω (3.1)

where L is a linear operator of integer order, N is a nonlinear operator, and g(t) is a known analytical function. He has
modified the general Lagrange multiplier method into an iteration method, which is called correction functional, in the
following way [21–24]

un+1 = un +

∫ t

0
λ(Lun(τ)+N ũn(τ)− g(τ))dτ, (3.2)

where λ is a general Lagrange multiplier, which can be identified optimally via the variational theory [41], the subscript n
denotes the nth approximation, and ũn is considered as a restricted variation [21–24], i.e., δũn = 0.

It is obvious now that the main steps of the variational iteration method require first the determination of the Lagrangian
multiplier λ that will be identified optimally. Having determined the Lagrangian multiplier, the successive approximations
un+1, n ≥ 0, of the solution u will be readily obtained upon using any selective function u0. Consequently, the solution

u = lim
n→∞

un. (3.3)

The convergence of the variational iteration method is investigated in [42].

4. Analysis of the Adomian decomposition

Let us discuss a brief outline of the Adomian decomposition method, in general. For this, let us change (3.1) into the
following form:

L1u+L2u+N u = g, (4.1)

where L1 is an easily or trivially invertible linear operator, L2 is the remaining linear part.
From Eq. (4.1), we can write

L1u = g −L2u−N u. (4.2)

Since L1 is invertible, an equivalent expression is

u = L−1
1 g −L−1

1 L2u−L−1
1 N u. (4.3)

The Adomian decomposition method [25,26] suggests that the solution u be decomposed into the infinite series of
components

u =
∞∑
n=0

un, (4.4)

and N u in Eq. (4.3) is decomposed as follows:

N u =
∞∑
n=0

An, (4.5)
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where An are the so-called Adomian polynomials. These polynomials can be calculated for all forms of nonlinearity according
to specific algorithms constructed by Adomian [25,26]. In this specific nonlinearity, we use the general formula for Adomian
polynomials An as

An =
1
n!

[
dn

dλn
N

(
∞∑
n=0
λnun

)]
λ=0

, n ≥ 0, (4.6)

or equivalently

A0 = N (u0),

A1 = u1N
′(u0),

A2 = u2N
′(u0)+

1
2
u2

1N
′′(u0),

A3 = u3N
′(u0)+ u1u2N

′′(u0)+
1
3
u3

1N
′′′(u0),

· · · . (4.7)

It is now well known that these polynomials can be generated for all classes of nonlinearity according to specific
algorithms defined by (4.6). Recently, an alternative algorithm for constructing Adomian polynomials has been developed
in [27].

Substitution of the decomposition series (4.4) and (4.5) into both sides of (4.3) gives

∞∑
n=0

un = Φ +L−1
1 g −L−1

1 L2

∞∑
n=0

un −L−1
1

∞∑
n=0

An, (4.8)

where Φ is determined by its initial (boundary) value problems.
From this equation, the iterates are determined in the following recursive way

u0 = Φ +L−1
1 g,

un = −L−1
1 L2un−1 −L−1

1

∞∑
n=0

An−1. (4.9)

Using the known u0, all components u1, u2, . . . , un, . . . , etc. are determinable by using Eq. (4.9). Substituting these
u1, u2, . . . , un, . . ., in Eq. (4.4), u is obtained.

The convergence of this method has been rigorously established [43–46].

5. Analysis of the homotopy perturbation method

He’s homotopy perturbation technique [28,29] defines the homotopy v(t; p) : Ω × [0, 1] → R which satisfies

H(v; p) = (1− p)(Lv−Lu0)+ p(Lv+N v− g) = 0, (5.1)

or,

H(v; p) = Lv−Lu0 + pLu0 + p(N v− g) = 0, (5.2)

where p ∈ [0, 1] is an embedding parameter, and u0 is an initial approximation which satisfies the initial condition.
Obviously, from (5.1) or (5.2), we have

H(v; 0) = Lv−Lu0 = 0, (5.3)
H(v; 1) = Lv+N v− g = 0. (5.4)

The changing process of p from zero to unity is just that of v from u0 to u. In topology, this is called deformation, and Lv−Lu0,
Lv+N v− g are homotopic.

The basic assumption is that the solution of Eq. (5.1) or (5.2) can be expressed as a power series in p:

v = v0 + pv1 + p2v2 + · · · . (5.5)

The approximate solution of Eq. (2.1), therefore, can be readily obtained:

u = lim
p→1

v = v0 + v1 + v2 + · · · . (5.6)

The convergence of the method has been proved in Ref. [47].
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6. Numerical experiment

The main goals in this section are twofold: the first goal is to apply VIM, ADM, and HPM to find a rational approximation
solution for Eq. (1.1). The second goal is to analyze important features of the three methods on the basis of various numerical
results.

Therefore, we consider Eq. (1.1) with the initial condition

u(x, 0) =
2k(w+ tanh(kx))

1+ w tanh(kx)
, k,w ∈ C. (6.1)

The exact solution of Eq. (1.1), for the special case α = 1, is given by

u(x, t) =
2k(w+ tanh(k(x− 4ak2t)))

1+ w tanh(k(x− 4ak2t))
. (6.2)

6.1. Application of the variational iteration method

Following the variational iteration method, the correction variational functional of Eq. (1.1) in the x-direction for the
special case α = 1 can be expressed as follows:

un+1(x, t) = un(x, t)+
∫ t

0
λ[unτ + 3aũ2

nx + 3aũ2
n ũnx + 3aũnũnxx + aũnxxx]dτ, (6.3)

δũn is considered as a restricted variation, i.e., δũn = 0. Making the correction functional, Eq. (6.3), stationary, noticing that
δũn = 0,

δun+1(x, t) = δun(x, t)+ δ
∫ t

0
λ[unτ + 3aũ2

nx + 3aũ2
n ũnx + 3aũnũnxx + aũnxxx]dτ, (6.4)

δun+1(x, t) = δun(x, t)+ δ
∫ t

0
λunτdτ, (6.5)

δun+1(x, t) = δun(x, t)+ λ |τ=t δun −

∫ t

0
λ′(τ)δundτ, (6.6)

yield the following stationary conditions:

δun : 1+ λ(τ) |τ=t = 0,

δun : λ
′(τ) = 0. (6.7)

The Lagrange multiplier, therefore, can be identified:

λ = −1. (6.8)

As a result, we obtain the following iteration formula of Eq. (1.1) in the x-direction:

un+1(x, t) = un(x, t)−
∫ t

0
[Dατ un + 3au2

nx + 3au2
nunx + 3aũnunxx + aunxxx]dτ. (6.9)

By the iteration formula (6.9) and initial condition (6.1), we can obtain:

u0 =
2k(w+ tanh(kx))

1+ w tanh(kx)
,

u1 = 2
k(w+ tanh(kx))

1+ w tanh(kx)
− 8

ak4sech2(kx)(1− w2)t

(1+ w tanh(kx))2 ,

u2 = 2
k(w+ tanh(kx))

1+ w tanh(kx)
+ 8

ak4(1− w2)sech2(kx)t2−α

(1+ w tanh(kx))20(3− α)
− 16

ak4(1− w2)(sech(kx))2t

(1+ w tanh(kx))2

+ 32
a2k7(−1+ w2)(w+ tanh(kx)) sech2(kx)t2

(1+ w tanh(kx))3 + 768
a4k13(1− w2)3 sech6(kx)(w+ tanh(kx))t4

(1+ w tanh(kx))7 . (6.10)

The rational approximation solution of Eq. (1.1) by the VIM is

u = lim
n→∞

un. (6.11)
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6.2. Application of the Adomian decomposition method

We first rewrite Eq. (1.1) in an operator form

L1u = −(3au2
x + 3au2ux + 3auuxx + auxxx), (6.12)

where the differential operator L1 is

L1 = Dαt . (6.13)

The inverse L−1
1 is assumed to be an integral operator given by

L−1
1 (·) = Jα(·) =

1
0(α)

∫ t

0
(t − ξ)α−1(·)dξ. (6.14)

Using the Adomian decomposition method (4.9) we have

u0 =
2k(w+ tanh(kx))

1+ w tanh(kx)
,

un+1 = Jα(An + Bn + Cn − aunxxx), (6.15)

where

An =
−3a
n!

 dn

dλn

(
∞∑
n=0
λnun

)2

x


λ=0

,

Bn =
−3a
n!

 dn

dλn

(
∞∑
n=0
λnun

)2 (
∞∑
n=0
λnun

)
x


λ=0

,

and

Cn =
−3a
n!

[
dn

dλn

(
∞∑
n=0
λnun

)(
∞∑
n=0
λnun

)
xx

]
λ=0

. (6.16)

Using above recursive relationship and the symbolic computation system Maple, the first few terms of the decomposition
series are given by

u0 =
2k(w+ tanh(kx))

1+ w tanh(kx)
,

u1 = −8
ak4 sech2(kx)(1− w2)tα

(1+ w tanh(kx))20(α+ 1)
,

u2 = 64
a2k7 sech2(kx)(−1+ w2)(w+ tanh(kx))t2α

(1+ w tanh(kx))30(2α+ 1)
. (6.17)

The rational approximation solution of Eq. (1.1) by the ADM is

u = u0 + u1 + u2 + · · · . (6.18)

6.3. Application of the homotopy perturbation method

According to the homotopy perturbation method, we construct the following simple homotopy:

(1− p)Dαt u+ p(Dαt u+ 3au2
x + 3au2ux + 3auuxx + auxxx) = 0, (6.19)

or

Dαt u+ p(3au2
x + 3au2ux + 3auuxx + auxxx) = 0. (6.20)

In view of the homotopy perturbation method, we use the homotopy parameter p to expand the solution

u = u0 + pu1 + p2u2 + · · · . (6.21)

Substituting (6.21) into (6.19) or (6.20), and equating the terms with identical powers of p, we can obtain a series of
linear equations. These linear equations are easily obtained by using Maple or by writing a computer code to get as many
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Table 1
Comparison of the exact and numerical values for Eq. (1.1) at a = k = α = 1,w = 1

2 , t = 0.001

x uVIM uADM uHPM Exact solution (6.2)

0 .9387983800 .9388000000 .9388000000 .9388088080
1 1.813642383 1.813642415 1.813642415 1.813631681
2 1.973721044 1.973721044 1.973721044 1.973719022
3 1.996423221 1.996423221 1.996423221 1.996422935
4 1.999515561 1.999515561 1.999515561 1.999515521
5 1.999934431 1.999934431 1.999934431 1.999934426
6 1.999991127 1.999991127 1.999991127 1.999991125
7 1.999998799 1.999998799 1.999998799 1.999998799
8 1.999999839 1.999999839 1.999999839 1.999999837
9 1.999999978 1.999999978 1.999999978 1.999999977

10 1.999999997 1.999999997 1.999999997 1.999999997

equations as we need in the calculation of the numerical as well as explicit solutions. Here we only write the first few linear
equations:

Dαt u0 = 0,

Dαt u1 + 3au2
0x + 3au2

0u0x + 3au0u0xx + au0xxx = 0,

Dαt u2 + 6au0xu1x + 3a(2u0xu0u1 + u2
0u1x)+ 3a(u0u1xx + u1u0xx)+ au1xxx = 0,

· · · . (6.22)

Firstly, we apply the operator Jα, the inverse of the operator Dαt , on both sides of the first equation of (6.22) to obtain
u0. For avoiding difficult fractional differentiation and to show the efficiency of the method for solving nonlinear fractional
partial differential equations, we assume, without loss of generality,

u0 =
2k(w+ tanh(kx))

1+ w tanh(kx)
. (6.23)

Then we apply the operator Jα on both sides of the other equations in (6.22) to obtain

u1 = −8
ak4 sech2(kx)(1− w2)tα

(1+ w tanh(kx))20(α+ 1)
,

u2 = 64
a2k7 sech2(kx)(−1+ w2)(w+ tanh(kx))t2α

(1+ w tanh(kx))30(2α+ 1)
. (6.24)

The rational approximation solution of Eq. (1.1) by the HPM is

u = u0 + u1 + u2 + · · · . (6.25)

In the same manner, we achieved the higher-order rational approximation solution of Eq. (1.1) with high accuracy by
using the iteration formulas (6.9), (6.15) and (6.22) and the software package Maple.

Remark 1. In light of (6.10), (6.17) and (6.24), VIM gives several successive approximations with exact solution (6.2) at
α = 1 through using the iteration of the correction functional. However, ADM and HPM provide the components of the
exact solution at α = 1, where these components should follow the summation given in (6.2). Furthermore, (6.17), (6.23)
and (6.24) indicate that the components of approximation solutions by ADM and HPM achieve identity under properly
constructed homotopy. Figs. 2 and 3 illustrate that the approximation solution using VIM, ADM and HPM are identical at
most points. In particular, the figures obtained by ADM and HPM totally lap over.

Remark 2. According to the given analysis of VIM, ADM and HPM in Sections 3–5, one might think that VIM and HPM do
not need the so-called Adomian polynomials. However, the induced linear equations (6.22) by the homotopy parameter p
suggest the existence of Adomian polynomials. So, VIM is more direct than ADM and HPM under iteration formula (6.9), the
simple operator L (6.13) and the simple homotopy (6.19) or (6.20).

Remark 3. According to the data in Table 1 and Fig. 1, we draw several conclusions:
�VIM, ADM and HPM provide straightforward and powerful mathematical tools for obtaining rational approximate solution
of the given fractional differential equation.
� Table 1 and Fig. 1 show that the approximation solution by VIM, ADM and HPM are in good agreement at most points (x, t)
under iteration formula (6.9), the simple operator L (6.13) and the simple homotopy (6.19) or (6.20).
� Fig. 1 indicates that the common ground of the three methods is that the absolute error increases around x = 0.
Furthermore, the absolute error by VIM is higher than that by ADM and HPM. So ADM and HPM are slightly better than
VIM.

In addition, we remark that ADM and HPM need less computing time than VIM.
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Fig. 1. The figures show the absolute error u between the second-order approximation solution and exact solution (6.2) of Eq. (1.1) when a = k = α =
1,w = 1

2 , (a) u = |uexact − uVIM|, (b) u = |uexact − uADM(or uHPM)|.

Fig. 2. The figures show the second-order rational approximation solution to Eq. (1.1) when a = k = 1,w = 1
3 ,α = 0.8, (c) uVIM , (d) uADM(or uHPM).

Fig. 3. The figures show the second-order rational approximation solution to Eq. (1.1) when a = ln(10), k = − π2 ,w = − 1
5 ,α = 0.5, (e) uVIM ,

(f) uADM(or uHPM).

7. Conclusions

In this paper, based on the symbolic computation package Maple, we apply VIM, ADM and HPM to derive a rational
approximation solution of the fractional STO equation with an initial condition. The obtained results demonstrate the
reliability of the VIM, ADM and HPM and their wider applicability to fractional differential equations. Therefore, they provide
more realistic series solutions that generally converge very rapidly for real physical problems. Moreover, VIM requires the
evaluation of the Lagrangian multiplier λ, ADM requires the evaluation of the Adomian polynomials and HPM requires
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a homotopy with an embedding parameter p ∈ [0, 1]. Finally, the recent appearance of nonlinear fractional differential
equations as models in some fields such as the thermal diffusion in fractal media [4] makes it necessary to investigate the
method of solutions for such equations and we hope that this work is a step in this direction.
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