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using the monotone iterative technique. A concrete example is presented and solved to
illustrate the obtained results.
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1. Introduction

Impulsive differential equations arise naturally from a wide variety of applications, such as control theory, physics,
chemistry, population dynamics, biotechnology, industrial robotic, optimal control, etc. [1–3]. Therefore, it is very important
to develop a general theory for differential equations with impulses including some basic aspects of this theory.
We consider the first order impulsive functional differential equations with deviating arguments:{u′(t) = f (t, u(t), u(α(t))), t ∈ J ′,

1u(tk) = Ik(u(tk)), k = 1, 2, . . . ,m,
g(u(0), u(T )) = 0,

(1.1)

where t ∈ J = [0, T ](T > 0), f ∈ C(J × R × R, R), g ∈ C(R × R, R), Ik ∈ C(R, R), α ∈ C(J, J), 0 = t0 < t1 < · · · < tk <
· · · < tm < tm+1 = T , J ′ = J \ {t1, t2, . . . , tm},1u(tk) = u(t+k ) − u(t

−

k ), where u(t
+

k ) and u(t
−

k ) denote the right and the
left limit of u(t) at t = tk(k = 1, 2, . . . ,m), respectively. Let PC(J, R) = {u : J → R | u(t) be continuous at t 6= tk, left
continuous at t = tk and u(t+k ) exist, k = 1, 2, . . . ,m} and PC

1(J, R) = {u ∈ PC(J, E)|u(t) be continuously differentiable
at t 6= tk, u′(t+k ) and u

′(t−k ) exist, k = 1, 2, . . . ,m}. Evidently, PC(J, R) and PC
1(J, R) are the Banach spaces with respective

norms

‖u‖PC = sup
t∈J
|u(t)|, ‖u‖PC1 = max{‖u‖PC , ‖u

′
‖PC }.

Definition 1.1. We say that u ∈ PC1(J, R) is a solution of (1.1), if it satisfies (1.1).
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Definition 1.2. We say that u ∈ PC1(J, R) is called a lower solution of (1.1) if{u′(t) ≤ f (t, u(t), u(α(t))), t ∈ J ′,
1u(tk) ≤ Ik(u(tk)), k = 1, 2, . . . ,m,
g(u(0), u(T )) ≤ 0,

(1.2)

and it is an upper solution of (1.1) if the above inequalities are reversed.

Themethod of upper and lower solutions coupledwith themonotone iterative technique has been applied successfully to
obtain the existence of solutions for nonlinear differential equations in recent years (see [4–16]). It isworthwhilementioning
that the main theorems in the above papers are formulated and proved in the presence of a lower solution u0 and an upper
solution v0 with u0 ≤ v0. But in many cases, the lower and upper solutions occur in the reversed order, that is u0 ≥ v0.
This is a fundamentally different situation. However, only a few works discuss the existence results for the non-ordered
case [17–22]. In this paper, we have considered boundary value problems for the first order impulsive functional differential
equations with nonlinear boundary conditions and deviating arguments under the assumption of the existing upper and
lower solutions in the reversed order.

Remark 1.1. Note that the nonlinear impulsive boundary value problems (1.1) reduce to periodic boundary value problems
for g(u(0), u(T )) = u(0) − u(T ), anti-periodic boundary value problems for g(u(0), u(T )) = u(0) + u(T ) and nonlinear
boundary value problems without impulse [21] for g(u(0), u(T )) = h(u(0)) − u(T ). Thus, problems (1.1) can be regarded
as a generalization of the boundary value problems mentioned above.

Remark 1.2. It is important to indicate that, compared with other methods, the method of upper and lower solutions
coupledwith its associatedmonotone iteration scheme is an interesting and powerful mechanism that offers the theoretical
as well as constructive existence results for nonlinear problems in a closed set, generated by the lower and upper solutions.
Usually other methods need to satisfy a two-sided Lipschitz condition, but with the methods mentioned above, it is just
needed to satisfy a one-sided Lipschitz condition; for instance, see [4–12].

Remark 1.3. In this paper, we apply the lower and upper solutions in reversed order, which is fundamentally different from
the classical lower and upper solutions used in [4–16].

Remark 1.4. If (1.1) does not contain impulsive arguments Ik(u(tk)), and let g(u(0), u(T )) = h(u(0)) − u(T ), then, as a
particular case of problem (1.1), in 2009, by using the method of upper and lower solutions and a monotone iterative
technique, Wang, Yang and Shen [21] have considered the existence of extreme solutions of the following functional
differential equations without impulse{

u′(t) = f (t, u(t), u(α(t))), t ∈ J,
h(u(0)) = u(T ),

where t ∈ J = [0, T ](T > 0), f ∈ C(J × R × R, R), α ∈ C(J, J). They demand that the nonlinear term f satisfies a one-
sided Lipschitz condition with corresponding constants and the nonlinear term h satisfies strongly restricted conditions
h ∈ C1(R, R), h(0) ≤ 0 and 0 < h′(t) <

(
1+ N

∫ T
0 e

M(α(t)−t)dt
)
eMT . In this paper, we will delete the strongly restricted

condition for the nonlinear boundary value condition and extend their constant coefficients on a one-sided Lipschitz
condition to functional coefficients.

The paper is organized as follows. In Section 2, we establish a new comparison principle and discuss the uniqueness of the
solutions to linear impulsive differential equations. In Section 3, the main theorem is formulated and proved. In Section 4,
we give an example about boundary value problems for impulsive functional differential equations (1.1).

2. Several lemmas

Lemma 2.1. Suppose that u ∈ PC1(J, R) satisfies{u′(t) ≥ M(t)u(t)+ N(t)u(α(t)), t ∈ J ′,
1u(tk) ≥ Lku(tk), k = 1, 2, . . . ,m,
u(0) ≥ ru(T ),

(2.1)

where M,N ∈ C(J, [0,+∞)), Lk ≥ 0, r > 0 satisfy

(i) r
[
1+

∫ T
0 N(s)e

∫ α(s)
s M(τ )dτds+

∑m
k=1 Lk

]
e
∫ T
0 M(τ )dτ > 1,

(ii) H ≤ 1
r+1 , here H ≡

∫ T
0 [M(t)+ N(t)]dt +

∑m
k=1 Lk.

Then u(t) ≤ 0, t ∈ J .
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Proof. Suppose that u(t) ≤ 0, t ∈ J is not true, then, we have the following two possible cases:
(1) u(t) ≥ 0,∀t ∈ J .
(2) There exist t∗, t∗ ∈ J such that u(t∗) > 0 and u(t∗) < 0.

Case (1). Let v(t) = u(t)e−
∫ t
0 M(τ )dτ . Then we have

v′(t) ≥ N(t)v(α(t))e
∫ α(t)
t M(τ )dτ , t ∈ J ′,

1v(tk) ≥ Lkv(tk), k = 1, 2, . . . ,m,

v(0) ≥ rv(T )e
∫ T
0 M(τ )dτ .

(2.2)

By (2.2), we know that v(t) is nondecreasing on J . So, we have

v(t) = v(0)+
∫ t

0
v′(r)dr +

∑
0<tk<t

[v(t+k )− v(tk)]

≥ v(0)+
∫ t

0
N(s)v(α(s))e

∫ α(s)
s M(τ )dτds+

∑
0<tk<t

Lkv(tk)

≥ v(0)+ v(0)
∫ t

0
N(s)e

∫ α(s)
s M(τ )dτds+ v(0)

∑
0<tk<t

Lk

=

[
1+

∫ T

0
N(s)e

∫ α(s)
s M(τ )dτds+

∑
0<tk<t

Lk

]
v(0).

Thus,

v(0) ≥ rv(T )e
∫ T
0 M(τ )dτ ≥ r

[
1+

∫ T

0
N(s)e

∫ α(s)
s M(τ )dτds+

∑
0<tk<T

Lk

]
v(0)e

∫ T
0 M(τ )dτ .

By condition (i), we have v(0) = 0. In addition, rv(T )e
∫ T
0 M(τ )dτ ≤ v(0) = 0 implies v(T ) ≤ 0. Since v(t) is nondecreasing

on J , then we have v(t) ≡ 0,∀t ∈ J , i.e. u(t) ≡ 0,∀t ∈ J .
Case (2). Let inft∈J u(t) = −λ, then λ > 0, and for some i ∈ {1, 2, . . . ,m}, there exists a t∗ ∈ (ti, ti+1], such that

u(t∗) = −λ or u(t+i ) = −λ. We only consider u(t∗) = −λ, for the case u(t
+

i ) = −λ, the proof is similar.
By (2.1), we have

u(t) = u(0)+
∫ t

0
u′(s)ds+

∑
0<tk<t

[u(t+k )− u(tk)]

≥ u(0)− λ

{∫ t

0
[M(s)+ N(s)]ds+

∑
0<tk<t

Lk

}
. (2.3)

Let t = t∗ in (2.3), we have

−λ ≥ u(0)− λ

{∫ t∗

0
[M(s)+ N(s)]ds+

∑
0<tk<t∗

Lk

}

≥ u(0)− λ

{∫ T

0
[M(s)+ N(s)]ds+

∑
0<tk<T

Lk

}
.

Thus,

u(0) ≤ −λ+ λH. (2.4)

On the other hand,

u(t) = u(T )−
∫ T

t
u′(s)ds−

∑
t≤tk<T

[u(t+k )− u(tk)]. (2.5)

Let t = t∗ in (2.5), then

0 < u(t∗) = u(T )−
∫ T

t∗
u′(s)ds−

∑
t∗≤tk<T

[u(t+k )− u(tk)].
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So,

u(T ) >
∫ T

t∗
u′(s)ds+

∑
t∗≤tk<T

[u(t+k )− u(tk)]

≥ −λ

∫ T

0
[M(s)+ N(s)]ds− λ

∑
0<tk<T

Lk

= −λH. (2.6)

By (2.1), (2.4) and (2.6), we have

−λ+ λH ≥ u(0) ≥ ru(T ) > −rλH.

So, H > 1
r+1 , which contradicts condition (ii). Hence, u(t) ≤ 0 on J . �

Corollary 2.1. Assume that M,N ∈ C(J, [0,+∞)),
∫ T
0 M(t)dt > 0, Lk ≥ 0, r ≥ 1 and condition (ii) in Lemma 2.1 hold. Let

u ∈ PC1(J, R) satisfy (2.1). Then u(t) ≤ 0, t ∈ J .

The proof of Corollary 2.1 is easy, so we omit it. �

Remark 2.1. Corollary 2.1 holds for r > 1 if we delete
∫ T
0 M(t)dt > 0.

Consider the problem:{u′(t) = σ(t)+M(t)u(t)+ N(t)u(α(t)), t ∈ J ′,
1u(tk) = γk + Lku(tk), k = 1, 2, . . . ,m,
u(0) = ru(T )+ a,

(2.7)

where σ ∈ PC(J, R), γk, a ∈ R.

Definition 2.1. We say that u ∈ PC1(J, R) is a solution of (2.7), if it satisfies (2.7).

Definition 2.2. We say that u ∈ PC1(J, R) is called a lower solution of (2.7) if{u′(t) ≤ σ(t)+M(t)u(t)+ N(t)u(α(t)), t ∈ J ′,
1u(tk) ≤ γk + Lku(tk), k = 1, 2, . . . ,m,
u(0) ≤ ru(T )+ a,

and it is an upper solution of (2.7) if the above inequalities are reversed.

Lemma 2.2. Let all assumptions of Lemma 2.1 hold. In addition assume that u0, v0 ∈ PC1(J, R) are lower and upper solutions
of (2.7), respectively, and v0(t) ≤ u0(t),∀t ∈ J . Then problem (2.7) has a unique solutionw ∈ PC1(J, R).

Proof. Firstly, we show that (2.7) has a solution through three steps.
Step 1. Consider the equation{u′(t) = σ(t)+M(t)u(t)+ N(t)u(α(t)), t ∈ J ′,

1u(tk) = γk + Lku(tk), k = 1, 2, . . . ,m,
u(T ) = λ,

(2.8)

where λ ∈ Rwe will show that (2.8) has a unique solution u(t, λ) and u(t, λ) is continuous in λ.
Eq. (2.8) is equivalent to the following equation:

u(t) = λ−
∫ T

t
[σ(s)+M(s)u(s)+ N(s)u(α(s))]ds−

∑
t≤tk<T

[γk + Lku(tk)].

Let

Au(t) = λ−
∫ T

t
[σ(s)+M(s)u(s)+ N(s)u(α(s))]ds−

∑
t≤tk<T

[γk + Lku(tk)].

Then A : PC(J, R)→ PC(J, R), and for any u, v ∈ PC(J, R), we have

‖Au− Av‖PC

[∫ T

0
[M(t)+ N(t)]dt +

∑
0<tk<T

Lk

]
‖(u− v)‖PC ≡ H‖(u− v)‖PC .
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By assumption (ii) in Lemma 2.1 and the Banach fixed point theorem, we get that (2.8) has a unique solution.
Let u(t, λ1), u(t, λ2) be the solution of{u′(t) = σ(t)+M(t)u(t)+ N(t)u(α(t)), t ∈ J ′,

1u(tk) = γk + Lku(tk), k = 1, 2, . . . ,m,
u(T ) = λi, i = 1, 2,

then

u(t, λi) = λi −
∫ T

t
[σ(s)+M(s)u(s, λi)+ N(s)u(α(s), λi)]ds−

∑
t≤tk<T

[γk + Lku(tk, λi)],

max |u(t, λ1)− u(t, λ2)| ≤
1

1− H
|λ1 − λ2|.

Hence, u(t, λ) is continuous in λ.
Step 2. We show that

v0(0) ≤ u(0, λ) ≤ u0(0), (2.9)

where λ ∈
[ 1
r (v0(0)− a),

1
r (u0(0)− a)

]
, u(t, λ) is the unique solution of (2.8).

Let p(t) = v0(t)− u(t, λ). Assume that u(0, λ) < v0(0), then{p(0) > 0, P(T ) = v0(T )− u(T , λ) ≤ g(v0(0))− u(T , λ) ≤ 0,
1p(tk) ≥ Lkp(tk), k = 1, 2, . . . ,m,
p′(t) ≥ M(t)p(t)+ N(t)p(α(t)), t ∈ J ′.

By Lemma 2.1, we can get p(t) ≤ 0,∀t ∈ J which contradicts p(0) > 0. So, we have v0(0) ≤ u(0, λ). Let q(t) =
u(t, λ)− u0(t). By a similar process as above, we can get u(0, λ) ≤ u0(0).
Step 3. Let F(λ) = 1

r [u(0, λ)− a] − λ, where u(t, λ) is the unique solution of (2.8). We have

F
(
1
r
(v0(0)− a)

)
· F
(
1
r
(u0(0)− a)

)
≤ 0.

Since function F is continuous in λ, then there exists a λ0 ∈
[ 1
r (v0(0)− a),

1
r (u0(0)− a)

]
such that 1r [u(0, λ0) − a] = λ0.

Obviously, u(t, λ0) is a solution of (2.7).
Finally, we show that (2.7) has only a solutionw ∈ PC1(J, R).
Let u, v ∈ PC1(J, R) be two different solutions of (2.7). Put p = u− v, then p satisfies the following problem:{p′(t) = M(t)p(t)+ N(t)p(α(t)), t ∈ J ′,

1p(tk) = Lkp(tk), k = 1, 2, . . . ,m,
p(0) = rp(T ).

By Lemma 2.1, we have p(t) ≤ 0,∀t ∈ J . Similarly, if put p = v − u, by Lemma 2.1, we have p(t) ≥ 0,∀t ∈ J . So, we have
p(t) = 0,∀t ∈ J i.e. u(t) = v(t),∀t ∈ J . �

3. Main result

We list for convenience the following assumptions.
(H1) u0, v0 ∈ PC1(J, R) are lower and upper solutions of (1.1), respectively, and v0(t) ≤ u0(t),∀t ∈ J .
(H2) The functions f , Ik(k = 1, 2, . . . ,m) satisfy

f (t, u, v)− f (t, u, v) ≤ M(t)(u− u)+ N(t)(v − v),
Ik(x)− Ik(y) ≤ Lk(x− y)

where v0(t) ≤ u ≤ u ≤ u0(t), v0(α(t)) ≤ v ≤ v ≤ u0(α(t)), v0(tk) ≤ y ≤ x ≤ u0(tk),∀t ∈ J .
(H3) There exist positive constants K , L such that

g(u, v)− g(u, v) ≥ K(u− u)− L(v − v),

where v0(0) ≤ u ≤ u ≤ u0(0), v0(T ) ≤ v ≤ v ≤ u0(T ), r = L/K .

Theorem 3.1. Let all assumptions of Lemma 2.1 and (H1)–(H3) hold. Then there exist monotone iterative sequences {un}, {vn},
which converge uniformly on J to the extremal solutions of (1.1) in [v0, u0] = {u ∈ PC1(J, R) : v0(t) ≤ u(t) ≤ u0(t)}.
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Proof. For any η ∈ [v0, u0], we consider the problem:{u′(t) = ση(t)+M(t)u(t)+ N(t)u(α(t)), t ∈ J ′,
1u(tk) = γk + Lku(tk), k = 1, 2, . . . ,m,
u(0) = ru(T )+ a,

(3.1)

where ση(t) = f (t, η(t), η(α(t)))−M(t)η(t)−N(t)η(α(t)), γk = Ik(η(tk))− Lkη(tk), a = η(0)− rη(T )− 1
K g(η(0), η(T )).

By (H1)–(H3), we have

u′0(t) ≤ f (t, u0(t), u0(α(t)))
≤ f (t, η(t), η(α(t)))−M(t)η(t)− N(t)η(α(t))+M(t)u0(t)+ N(t)u0(α(t))
= ση(t)+M(t)u0(t)+ N(t)u0(α(t)), t ∈ J ′,

1u0(tk) ≤ Ik(u0(tk)) ≤ Ik(η(tk))− Lkη(tk)+ Lku0(tk) = γk + Lku0(tk), k = 1, 2, . . . ,m,

u0(0) ≤ η(0)+
L
K
(u0(T )− η(T ))+

1
K
(g(u0(0), u0(T ))− g(η(0), η(T )))

≤ ru0(T )+ η(0)− rη(T )−
1
K
g(η(0), η(T ))

= ru0(T )+ a,

and {
v′0(t) ≥ ση(t)+M(t)v0(t)+ N(t)v0(α(t)), t ∈ J ′,
1v0(tk) ≥ γk + Lkv0(tk), k = 1, 2, . . . ,m,
v0(0) ≥ rv0(T )+ a.

So, u0, v0 are lower and upper solutions of (3.1). By Lemma 2.2, we know that (3.1) has a unique solutionw ∈ PC1(J, R).
Now, we prove thatw ∈ [v0, u0]. Since u0, v0 are lower and upper solutions of (3.1), let p = w − u0, we can get{p′(t) ≥ M(t)p(t)+ N(t)p(α(t)), t ∈ J ′,

1p(tk) ≥ Lkp(tk), k = 1, 2, . . . ,m,
p(0) ≥ rp(T ).

By Lemma 2.1, we have that p(t) ≤ 0,∀t ∈ J . That is, w ≤ u0. Similarly, we can show that v0 ≤ w. Therefore, we have
w ∈ [v0, u0].
Next, we denote an operator A : [v0, u0] → [v0, u0] by u = Aη. Let η1, η2 ∈ [v0, u0] such that η1 ≤ η2. Setting

p = u1 − u2, u1 = Aη1, u2 = Aη2, by (H2) and (H3), we obtain

p′(t) = f (t, η1(t), η1(α(t)))−M(t)η1(t)− N(t)η1(α(t))+M(t)u1(t)+ N(t)u1(α(t))
− f (t, η2(t), η2(α(t)))+M(t)η2(t)+ N(t)η2(α(t))−M(t)u2(t)− N(t)u2(α(t))
≥ M(t)p(t)+ N(t)p(α(t)), t ∈ J ′,

1p(tk) = Ik(η1(tk))− Lkη1(tk)+ Lku1(tk)− Ik(η2(tk))+ Lkη2(tk)− Lku2(tk)
≥ Lkp(tk), k = 1, 2, . . . ,m,

p(0) = ru1(T )+ η1(0)− rη1(T )−
1
K
g(η1(0), η1(T ))− ru2(T )

− η2(0)+ rη2(T )+
1
K
g(η2(0), η2(T ))

≥ rp(T )+ η1(0)− η2(0)− rη1(T )+ rη2(T )+ (η2(0)− η1(0))− r(η2(T )− η1(T ))
= rp(T ).

By Lemma 2.1, we know that p(t) ≤ 0 on J , i.e. A is nondecreasing.
Now, let un = Aun−1, vn = Avn−1, n = 1, 2, . . . , then we have

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ un ≤ · · · ≤ u1 ≤ u0, n = 1, 2, . . . . (3.2)

Obviously, un, vn(n = 1, 2, . . .) satisfy
u′n(t) = f (t, un−1(t), un−1(α(t)))+M(t)(un − un−1)(t)+ N(t)(un − un−1)(α(t)), t ∈ J ′,
1un(tk) = Ik(un−1(tk))+ Lk(un − un−1)(tk), k = 1, 2, . . . ,m,

(un − un−1)(0) = r(un − un−1)(T )−
1
K
g(un−1(0), un−1(T )),

and 
v′n(t) = f (t, vn−1(t), vn−1(α(t)))+M(t)(vn − vn−1)(t)+ N(t)(vn − vn−1)(α(t)), t ∈ J ′,
1vn(tk) = Ik(vn−1(tk))+ Lk(vn − vn−1)(tk), k = 1, 2, . . . ,m,

(vn − vn−1)(0) = r(vn − vn−1)(T )−
1
K
g(vn−1(0), vn−1(T )).
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Therefore, there exist u∗, v∗ such that

lim
n→∞

un(t) = u∗(t), lim
n→∞

vn(t) = v∗(t)

uniformly on J , and the limit functions u∗, v∗ satisfy (1.1). Moreover, u∗, v∗ ∈ [v0, u0].
Finally, we prove that u∗, v∗ are the extremal solutions of (1.1) in [v0, u0]. Letw ∈ [v0, u0] be any solution of (1.1), then

Aw = w. By v0 ≤ w ≤ u0 and the properties of A, we have

vn ≤ w ≤ un, n = 1, 2, . . . . (3.3)

Thus, taking limit in (3.3) as n → ∞, we have v∗ ≤ w ≤ u∗. That is, u∗, v∗ are the extremal solutions of (1.1) in
[v0, u0]. �

Theorem 3.2. Let all assumptions of Corollary 2.1 and (H1)–(H3) hold. Then there exist monotone iterative sequences {un}, {vn},
which converge uniformly on J to the extremal solutions of (1.1) in [v0, u0] = {u ∈ PC1(J, R) : v0(t) ≤ u(t) ≤ u0(t)}.

Proof. The proof is almost the same as that of Theorem 3.1, so we omit it. �

4. Example

Example 4.1. Consider the following boundary value problem:
u′(t) =

2
3
t3u2(t)+ t2u(t)+

1
10
t3eu(

√
t), t ∈ J = [0, 1], t 6=

1
2
,

1u
(
1
2

)
=
1
10
u
(
1
2

)
,

1
2
u3(0)+ 8u(0)− 9u(1)− c = 0, 0 ≤ c ≤

1
2
,

(4.1)

wherem = 1, t1 = 1
2 , α(t) =

√
t, ∀t ∈ J .

Obviously, u0 = 0, v0 = −1 are lower and upper solutions of (4.1), respectively, and v0 ≤ u0.
Let

f (t, u, v) =
2
3
t3u2 + t2u+

1
10
t3ev,

g(u, v) =
1
2
u3 + 8u− 9v − c,

we have

f (t, u, v)− f (t, u, v) ≤ t2(u− u)+
1
10
t3(v − v),

where v0(t) ≤ u ≤ u ≤ u0(t), v0(α(t)) ≤ v ≤ v ≤ u0(α(t)), ∀t ∈ J .

g(u, v)− g(u, v) ≥ 8(u− u)− 9(v − v),

where v0(0) ≤ u ≤ u ≤ u0(0), v0(1) ≤ v ≤ v ≤ u0(1).
ForM(t) = t2, N(t) = 1

10 t
3, L1 = 1

10 , r = L/K =
9
8 , it is easy to verify that conditions (i) and (ii) hold. Therefore, (4.1)

satisfies all conditions of Theorem 3.1. By Theorem 3.1, there exist monotone iterative sequences {un}, {vn}, which converge
uniformly on J to the extremal solutions of (4.1) in [v0, u0].

Example 4.2. Consider the following boundary value problem:

u′(t) =
t3

5π
arctan

[
t

t2 + 1
e
t
2 +

t3

10
sin2(ln(1+ t))u(t)

]
+

t3eu(t) sin t

5[2+ e(
t
2+cos ln(1+t))]

+
t4u(α(t))
10(1+ sin t)

−
t3

5π
arctan

1+ e−t

2
u2(α(t)), t ∈ J = [0, 1], t 6= t1,

1u(t1) = a sin u(t1), 0 ≤ a ≤
8
19
,

cos u(0)+ 9u(0)− 10u(1)+ eu(1) − c = 0, 2 ≤ c ≤ 2+
1
e
,

(4.2)

where α ∈ C(J, J), 0 < t1 < 1, m = 1.
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It is not difficult to verify that u0 = 0, v0 = −1 are lower and upper solutions of (4.2), respectively, and v0 ≤ u0.
Let

f (t, u, v) =
t3

5π
arctan

[
t

t2 + 1
e
t
2 +

t3

10
sin2(ln(1+ t))u

]
+

t3eu sin t

5
[
2+ e(

t
2+cos ln(1+t))

]
+

t4v
10(1+ sin t)

−
t3

5π
arctan

1+ e−t

2
v2,

I1(u) = a sin u,
g(u, v) = cos u+ 9u− 10v + ev − c,

we have

f (t, u, v)− f (t, u, v) ≤
t3

5
(u− u)+

t3

5
(v − v),

where v0(t) ≤ u ≤ u ≤ u0(t), v0(α(t)) ≤ v ≤ v ≤ u0(α(t)), ∀t ∈ J .

I1(x)− I1(y) ≤ a(x− y),

where v0(t1) ≤ y ≤ x ≤ u0(t1).

g(u, v)− g(u, v) ≥ 9(u− u)− 10(v − v),

where v0(0) ≤ u ≤ u ≤ u0(0), v0(1) ≤ v ≤ v ≤ u0(1).
For M(t) = N(t) = t3

5 , L1 = a, r = L/K =
10
9 , we see that conditions (i) and (ii) hold. Therefore, (4.2) satisfies all

conditions of Theorem 3.1. By Theorem 3.1, there exist monotone iterative sequences {un}, {vn}, which converge uniformly
on J to the extremal solutions of (4.2) in [v0, u0].

Remark 4.1. For appropriate and suitable choices of a, c, t1 and α(t), it is easy to see that problem (4.2) includes a number
of differential equations, differential equations with deviating arguments.

Example 4.3. Consider the following Logistic model with a variable coefficient which is widely used in biology:
u′(t) = t3u(t)−

t4 sin t
10

u2(t)+
t2 cos t
5

u(α(t)), t ∈ J = [0, 1], t 6= t1,
1u(t1) = L1u(t1),
bu2(0)+ u(0)− u(1)+ c = 0,

(4.3)

where α ∈ C(J, J), 0 < t1 < 1, m = 1, 0 ≤ L1 ≤ 11
60 , 0 ≤ b ≤

1
4 , 0 ≤ c ≤

1
4 − b.

Put u0(t) = 1 + t4
4 , v0(t) = 0,∀t ∈ J . Then u0(t), v0(t) are lower and upper solutions of (4.3), respectively, and

u0(t) ≥ v0(t).
Let

f (t, u, v) = t3u−
t4 sin t
10

u2 +
t2 cos t
5

v, g(u, v) = bu2 + u− v + c,

then

f (t, u, v)− f (t, u, v) ≤ t3(u− u)+
t2

5
(v − v),

where v0(t) ≤ u ≤ u ≤ u0(t), v0(α(t)) ≤ v ≤ v ≤ u0(α(t)), ∀t ∈ J .

g(u, v)− g(u, v) ≥ (u− u)− (v − v),

where v0(0) ≤ u ≤ u ≤ u0(0), v0(1) ≤ v ≤ v ≤ u0(1).
For M(t) = t3, N(t) = t2

5 , r = L/K = 1, we see that conditions (i) and (ii) hold. Thus, (4.3) satisfies all conditions of
Theorem 3.1. By Theorem 3.1, there exist monotone iterative sequences {un}, {vn}, which converge uniformly on J to the
extremal solutions of (4.3) in [v0, u0].

Remark 4.2. For appropriate and suitable choices of b, c, t1, L1 and α(t), we see that problem (4.3) has a very general form.
For example, we can take b = 1

8 , c =
1
9 , t1 =

2
3 , L1 =

1
6 and α(t) = t

3,∀t ∈ J .

Remark 4.3. The three examples mentioned above satisfy all conditions of Theorem 3.2. Thus, by Theorem 3.2, there exist
monotone iterative sequences {un}, {vn}, respectively, which converge uniformly on J to the extremal solutions of the
corresponding problem in [v0, u0].
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