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1. Introduction

The concept of a type-2 fuzzy set was first proposed in [1] as an extension of an ordinary fuzzy set. Since then, many
researchers have employed the theory in their studies. For example, Mitchell [2] used the concept of an embedded type-1
fuzzy number to give a method for ranking type-2 fuzzy numbers; Liang and Mendel [3] proposed the concept of an interval
type-2 fuzzy set for dealing with the operations via interval arithmetics; Zeng and Liu [4] described the important advances
concerning type-2 fuzzy sets for pattern recognition, and in [5] explored the calculation of the union and intersection of
concave type-2 fuzzy sets using the minimum t-norm and the maximum t-conorm. From the computational viewpoint,
type-2 fuzziness is more difficult to deal with than type-1 fuzziness because the possibility of a type-2 fuzzy variable taking
on a crisp value is a fuzzy number in [0, 1]. To avoid this difficulty, some type reduction approaches have been proposed
in the literature for dealing with type-2 fuzziness, for example: [6] proposed a defuzzification method with the concept
of a centroid of a type-2 fuzzy set; Liu [7] employed a centroid type reduction strategy for a general type-2 fuzzy logic
system, and Qiu et al. [8] developed a statistical method for deciding on interval-valued fuzzy membership functions and a
probability type reduction reasoning method for use with the interval-valued fuzzy logic system. In this paper, we attempt
to present some novel reduction methods based on CVs of RFVs. According to the fuzzy integral [9], we first define three
kinds of CVs for an RFV, which are referred to as the optimistic CV, the pessimistic CV and the CV. Some numerical examples
are provided to illustrate the concepts, and the properties of CVs of trapezoidal, triangular, normal and gamma RFVs are also
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discussed. Furthermore, we develop three methods of reduction for type-2 fuzzy variables, which are called the optimistic,
the pessimistic and the CV reduction methods, respectively.

In the literature, DEA technology was first proposed in [ 10]. One of the advantages of the DEA method is that it does not
require either a priori weights for the inputs and outputs or the explicit specification of functional relations between the
multiple inputs and outputs; therefore DEA has been widely used in many areas (see, e.g.,[11-15]). A number of researchers
have developed, in addition to the CCR model, some other meaningful DEA models, including the BCC model [16], the
FDH (free disposal hull) model [17], the SBM (slack-based measure of efficiency) model [18], the RAM model [19] and
so on. More advanced treatments may be found in [20,21]. On the basis of these models, some researchers extended the
crisp inputs and outputs of traditional DEA models to stochastic data and developed some stochastic DEA models. For
example, Sengupta [22] incorporated stochastic input and output variations into the DEA model; Banker [23] incorporated
stochastic variables into DEA and developed a nonparametric approach; Cooper et al. [24] and Land et al. [25] developed
a chance-constrained programming for DEA problems in order to accommodate the stochastic variations in the data. On
other hand, fuzzy DEA with the inputs and outputs as fuzzy data has also been an area of active investigation. For instance,
Sengupta [26] explored the use of fuzzy set-theoretic measures in the context of data envelopment analysis, and utilized a
nonparametric approach for measuring efficiency; Triantis and Girod [27] suggested a mathematical programming approach
to transforming fuzzy input and output data into crisp data by using membership function values; Wang and Yang [28], and
Wang et al. [29] developed some methods for measuring the performance of DMUs, in which the efficiency is measured
within the range of an interval; Wen and Li [30] established a DEA model in fuzzy environments and provided a ranking
method for comparing the efficiencies of DMUs. On the basis of fuzzy possibility theory [31], this paper also considers
data variations, and models fuzzy DEA from a new viewpoint, in which the inputs and outputs are characterized by type-2
fuzzy variables with known secondary possibility distributions. From the computational viewpoint, type-2 fuzziness is very
complex compared with type-1 fuzziness. To overcome this difficulty, we first employ the proposed reduction methods in
order to reduce the type-2 fuzzy inputs and outputs, then formulate a generalized credibility DEA model. When the inputs
and outputs are mutually independent type-2 triangular fuzzy variables, we can turn the established DEA model into its
equivalent parametric programming form, where the parameters can be used to characterize the degree of uncertainty
as regards type-2 fuzziness. For any given parameters, the equivalent parametric programming model becomes a linear
programming one that can be solved using standard optimization solvers. At the end of this paper, we provide one numerical
example to illustrate the modeling idea and the efficiency in the proposed model by adjusting parameters with different
values.

The rest of this paper is organized as follows. Section 2 introduces some concepts of type-2 fuzzy theory. In Section 3, we
define three kinds of CVs for a fuzzy variable via the fuzzy integral and discuss the properties of CVs. In Section 4, we first
develop the CV-based reduction methods for type-2 fuzzy variables, then discuss the fundamental properties for generalized
credibility. In Section 5, we apply our reduction methods to the DEA model with type-2 fuzzy coefficients. Section 6 provides
one numerical example to illustrate the modeling idea and the efficiency in the proposed DEA model. Section 7 gives our
conclusions.

2. Fundamental concepts

Let I" be the universe of discourse. An ample field [32] 4 on I" is a class of subsets of I" that is closed under arbitrary
unions, intersections, and complements in I".

Let Pos : 4 +— [0, 1] be a set function on the ample field +. Pos is said to be a possibility measure [32] if it satisfies the
following conditions:

(P1) Pos(¥) = 0and Pos(I") = 1.
(P2) For any subclass {A; | i € I} of « (finite, countable or uncountable),

Pos (U Ai) = sup Pos(A)).

iel iel
The triplet (I", 4, Pos) is referred to as a possibility space, in which a credibility measure [33] is defined as
1
Cr(A) = 5(1 + Pos(A) — Pos(A%)), A € A.

If (I", 4, Pos) is a possibility space, then an m-ary regular fuzzy vector £ = (&1, &, ..., &n) is defined as a measurable
map from I to the space [0, 1]™ in the sense that for every t = (t1, t5, ..., ty) € [0, 1]™, one has

rerléy)=tt={y el &) =t1,&Y) <t ....5n(y) < tu} € A

When m=1, € is called a regular fuzzy variable (RFV).
In this paper, we denote by R ([0, 1]) the collection of all RFVs on [0, 1]. In the following, we provide several common
RFVs.
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Example 1. If £ has the following possibility distribution:

£~ rn Tz - Ty
M1 M2 o Un)’
where foreachi=1,2,...,n,1; € [0, 1], u; > 0,and max}'_; u; = 1, then & is a discrete RFV.
Ifé& = (r1,ry, 13, 14) With0 <1y <1y, <13 <14 <1,thené is a trapezoidal RFV.
If& = (r1, 2, 13) With0 <1 <1 <13 < 1,thené is a triangular RFV.
If the possibility distribution of £ is as follows:

(x — p)?
202

e (X) = exp (— ) , xe€][0,1],

where0 < 4 < 1and o > 0, then £ is a normal RFV.
If the possibility distribution of £ is as follows:

t\' t
ne(t) = (E) exp <r— X)’ t € [0, 1],

where the parameter 0 < r < 1,and 0 < A < 1/r, then £ is a gamma RFV.

Definition 1 (Liu and Liu [31]). Let Pos : A > ¢R~([O, 1]) be a set function defined on + such that {1305(/\) | A > A atom} is
a family of mutually independent RFVs. We call Pos a fuzzy possibility measure if it satisfies the following conditions:

(P1) Pos(®) = 0.
(P2) For any subclass {A; | i € I} of 4 (finite, countable or uncountable),

Pos A; | = sup IBOS(A').
(g l) iel l
Moreover, if Mbos(r (1) = 1, then we call Pos a regular fuzzy possibility measure.

The triplet (I", #, Pos) is referred to as a fuzzy possibility space (FPS), in which a map §~ = (51, 52, e Em) T > RAMis
called an m-ary type-2 fuzzy vector if forany r = (ry, 12, ..., 1) € ™, theset {y € I' | £&(y) < r}is anelement of 4, i.e.,

yelléy)<ri={y el &) <mn&y) <r,....Ex(y) <rm} € A.

Asm = 1, the map § : I' — MNis called a type-2 fuzzy variable.
For example, if £ is defined as

1, with possibility (0.1, 0.2, 0.4)
& = {4, with possibility 1
8, with possibility (0.1, 0.3, 0.5, 0.7),

then § is a type-2 fuzzy variable that takes on the values 1, 4 and 8 with possibilities (0.1, 0.2, 0.4), 1and (0.1,0.3,0.5,0.7),
respectively.

Definition 2 (Liu and Liu [31]). Let é = (51, 52, R Em) be a type-2 fuzzy vector defined on an FPS (I, A, 1305). The
secondary possibility distribution function fiz (x) of & is a map R™ > R[0, 1] such that

fi;®) =Posly € I' | §(y) =x}, xen",
while the type-2 possibility distribution function ,[Lé (x, u) of £ is amap R™ x J, — [0, 1] such that
pg(x, u) = Pos{iiz (x) = u}, (x,u) € R" x Jy,

where Pos is the possibility measure induced by the distribution of /15 (x), and J, < [0, 1] is the support of /15 (%),
ie,Jy={uel0,1]] wg(x, u) > 0}.

The support of a type-2 fuzzy vector§ is denoted as
supp € = {(x. u) € R™ x [0, 1] | pz(x, u) > 0},

where ug (x, u) is the type-2 possibility distribution function of £
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Definition 3 (Liu and Liu [31]). Let §i, i=1,2,...,m,be type-2 fuzzy variables defined on an FPS (I, +, Pos). They are said
to be mutually independent if

Pos({y € I' | &(y) € B, 1 <i<m}) = min Pos({y € I' | &(y) € Bi))

foranyB; C M,i= 1,2, ..., m, where the f’os({y el | §i(y) € B;}) are supposed to be mutually independent RFVs.

In the following example, we give three kinds of common type-2 fuzzy variables.

Example 2. A type-2 fuzzy variable  is called triangular if its secondary possibility distribution [Nl,é (x) is

X —1 . X—TI n—X X —n X —n . X—n I, — X
( —011‘1‘111‘1{ } + 6, mm{ })

rp—n Tz—ﬁ"’z—ﬁ 7T2—"17T2—"1 r2—7’17T2—"1

for any x € [rq, 3], and

s —X . m—X X—1 s—X I3s—X . —X X—1n
( — 6 1‘1‘111‘1{ + 6, min

3 —1n; r3—r2’r3—r2 ’r3—r2’r3—r2 r3—r2’r3—r2

for any x € (r,, 3], where 6;, 6, € [0, 1] are two parameters chafacterizing the degree of uncertainty of £ taking the value
x. For simplicity, we denote the type-2 triangular fuzzy variable & with the above distribution by (71, 7>, 73; 6, 6;).
A type-2 fuzzy variable § is called normal if its secondary possibility distribution ﬂg (x) is

=\, (x — p)? (x — pw)? x—w?
exp EEya ymin {1 — exp BTy , exp T oor , exp e
— u)? — )2 PRV
exp(—%)+9rmin{1—exp<—%>,exp (—%)})

forany x € N, where u € M, 0 > 0,and 6,6, € [0, 1] are two parameters characterizing the degree of uncertainty

of § taking the value x. For simplicity, the type-2 normal fuzzy variable é with the above distribution is denoted by
i(w, o2; 61, ;). )
A type-2 fuzzy variable £ is called gamma if its secondary possibility distribution ,&5 (x) is

(GF) e (r=3)—amnfi= () ew(r=3). () ew (=)} (7) e (-3).
() e (r=5) woeminfi= () e (r=3)- (57) e (=5)})

for any x € SRL where A > 0, r is a fixed constant, and 6;, 6, € [0, 1] are two parameters characterizing the degree of
uncertainty of £ taking the value x. For simplicity, the type-2 gamma fuzzy variable & with the above distribution is denoted
by ¥ (A, 15 6, 6;).

3. Critical values for RFVs
In this section, we will define three kinds of CVs for an RFV by using a fuzzy integral [9].

Definition 4. Let & be an RFV. Then the optimistic CV of &, denoted by CV*[£], is defined as

CV*[£] = sup [a APos{§ > a}], (1
«el0,1]

while the pessimistic CV of £, denoted by CV,[£], is defined as

CV,[E] = sup [a A Nec{& > a}]. (2)
«el0,1]

The CV of &, denoted by CV[£], is defined as

CV[E] = sup [a A Cr{& > a}]. (3)
ael0,1]
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Example 3. Let £ be a discrete RFV with the following possibility distribution:
0.1 03 06 0.8
§~lo2 1 05 07)
Then it is easy to compute that

1, if o <0.3
Pos{é > a} =107, if03<a<0.8
0, if 0.8 <a <1,

1, if « <0.1
Nec{é > o} =108, if0.1<w <03
0, f03<a<1,

and

1, if 0 <0.1

09, if01<wu=<03
0.35, if0.3<wo <038
0, if0.8 <o <1

Cr{§ = o} =

Therefore, by the definitions of CVs, we have

CV'[E] = sup [a APos{§ > a}]

a€l0,1]
= sup [aAl]lVv sup [e¢A0.7]V sup [« AO0]
@€l0,0.3] «€(0.3,0.8] «€(0.8,1]

= 03v07v0=0.7,
CV.[§] = sup [a A Nec{§ > a}]

a€l0,1]
= sup [aAl1]lVv sup [e¢A08]V sup [aAO0]
@€[0,0.1] «€(0.1,0.3] «€(0.3,1]

0.1v03v0=0.3,

and
CV[E] = sup [a A Cr{§ > a}]
ael0,1]
= sup [aAl]lv sup [@A09]VvV sup [aA0.35]Vv sup [aAO0]
«€[0,0.1] @€(0.1,0.3] @€(0.3,0.8] @€(0.8,1]

0.1v0.3v0.35v0=0.35.

The following theorem presents the formulas for CVs of a trapezoidal RFV.

Theorem 1. Let & = (rq, 12, I3, I'4) be a trapezoidal RFV. Then we have:

(i) The optimistic CVof & is CV¥*[E] = 14/(1 + 14 — 13).
(ii) The pessimistic CVof & is CV,[E] =12/(1 + 15 — 11).
(iii) The CVof & is

21’2—7'1 . 1
— s >
1+2(r2—r1) 2
1 1
V] =3 =, ifro<-<r
(€] 5 fz_2 3
T4 . 1
—, ifrs <.
1+2(r4—r3) 2

Proof. (i) According to the distribution of &, for any « € [0, 1], we have

1, ifa <r3
Iy — o .

Pos{é > a} = , ifrs<a<ry
g — 13

0, ifa > ry.
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Thus, it follows from the definition of the optimistic CV that

CV*[§] = sup [a A Pos{§ > a}]
a€l0,1]

g — o
= sup [¢ A1]V sup [a/\ ]

a€l0,r3] aE(r3,r4] Ty —1T13
T,
=1V 74
1+ g — 13
- 1+ gy — 13 '
(ii) By the distribution of &, for any @ € [0, 1], we have
], ifa <n
n—o .
Nec{¢ > o} = , ifri<a<n
r—nn
0, ifr > ry.

Thus, according to the definition of the pessimistic CV, we have

CV.[£] = sup [a A Nec{§ > a}]
«el0,1]

n—o
= sup [¢a A1]V sup [a/\ ]

ael0,r1] ae(ry,r] p—n
)
=rnV—
1+ —n
)
1+ I —n ’

(iii) Using the distribution of &, for any @ € [0, 1], we have

1, ifa <n
2rp—rn —a .
— ifrn<a<n
lz(rz—ﬁ)

Cr{i§ > a} =1, ifr, <a <r;

s — o .

_ ifrs<a <r,
2(rg —13) )
0, ifa > ry.

As a consequence,

Qvi§]

sup [a A Cr{§ > a}]
a€[0,1]

2(ry — 1)

ael0,r1] ae(ry,r] ae(ry,r3]
|: 2T2 — I — O{i| |: 1:| [
=Tr Vv sup dCN———— |V |I3ANZ- |V sup o
ae(ry,r] 2(1‘2 - T]) 2 ae(r3,rq]
2T2 —n . 1
—, ifrp> -
1+ 2(1'2 — T']) 2
1 i < 1
= -, I < -<r
2 2=277
r. 1
74, ifr; < —.
1+ 2(T4 — r3) 2

The proof of the theorem is complete. O

27’2—1’1—0{ 1 s —«o
sup [ A1]V sup |[oA—— |V sup [aA=|V sup |oA ———

A
ae(rs.ral 2(rg —13)

g — o i|
/\7
2(rg —13)

Example 4. Let & be the trapezoidal RFV (0.1, 0.3, 0.4, 0.6). Then according to Theorem 1, we have

1 1 3
Vgl = > CV.[¢] = k CV[g] = 7
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As a corollary of Theorem 1, we have:

Corollary 1. Let & = (rq, 12, 13) be a triangular RFV. Then we have:
(i) The optimistic CVof & is CV¥*[£] = r3/(1 4+ 13 — 13).

(ii) The pessimistic CVof £ is CV,[E] =12/(1 + 15 —17).

(iii) The CVof & is

2rp —n 1
T2 "7

CV[E] = 2on 4 (6)
5 frn=s.
1+2(r3 —T'z) 2

Example 5. Let & be the triangular RFV (0.1, 0.6, 0.9). It follows from Corollary 1 that
9 2 11

CV'[E] = 'ER CV,.[E] = = CV[E] = -

The following theorem gives the equations satisfied by CVs of a normal RFV.

Theorem 2. Let £ be a normal RFV with the following possibility distribution:

(x — p)?
202

e (X) = exp <— ) , xel0,1].

(i) If w =1, then CV*[£] = 1, and if 0 < u < 1, then CV*[&] is the solution of the following equation:
(a — ,u)2 +20%lna =0.

(ii) If w =0, then CV,[£] = 0,and if 0 < u < 1, then CV[&] is the solution of the following equation:
(¢ —)? +20%In(1 — ) = 0.

(iii) If 0 < u < 0.5, then CV[£&] is the solution of the following equation:
(¢ — )? +2021In2a = 0;

if w =0.5,then CV[£] = 0.5, and if 0.5 < u < 1, then CV[&] is the solution of the following equation:

(@ — ) =20°In2(1—«a) = 0.

Proof. We only prove (i). The rest can be proved similarly. According to the distribution of &, for any « € [0, 1], we have

1, ifo<a<upu

_ _ 2
Pos{é > a} = exp (_(0[272’“')> , ifpu<a<l.
o

It follows from the definition of the optimistic CV that
CV*[£] = sup [ APos{é > a}]

a€l0,1]
2
o —
= sup [ A1]V sup [a A exp (—(?)ﬂ
a€l0,u] ae(u,1] 20

o — 2
LV sup [a A exp (—(5))]
ae(u,1] 20

enew (-5
sup | Aexp| ————— | |-
ae(u1] 20

Therefore, if © = 1, then CV*[§] = 1;if 0 < u < 1, then CV*[£] is the solution of the following equation:

_ 2
exp <_u> —a = O’

202

(a —u)z +20%lna = 0.

The proof of the theorem is complete. O
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Remark 1. The CVs of a normal RFV can be evaluated by the bisection method (see [34]). Consider the following possibility
distribution:

(x — 0.6)?

Mg (x) = exp (—W> .

Then according to Theorem 2, CV*[£] is the solution of the following equation:
(¢ — ) +20%Ina =0.

With the bisection method, we obtain that CV*[£] = 0.686699.
In a similar way, we have CV,[£] = 0.484825, and CV[£] = 0.552772.

For the case of a gamma RFV, we have:

Theorem 3. Let & be a gamma RFV with the following possibility distribution:

t\" t
e (t) = <ﬂ> exp (r - X)’ t € (0,1],

where the parameters0 < r < 1,and 0 < . < 1/r. Then we have:
(i) CV*[&] s the solution of the following equation:

o' o
(—) exp(r— 7) —a=0.
AT A

(ii) CV,[&] s the solution of the following equation:

o\’ o
1—(—) exp(r—f)—azo.
AT A

(iii) If 0 < Ar < 0.5, then CV[&] is the solution of the following equation:

1 /aNr o
7(—) exp(r—f)—azo;
2 \Ar A

if Ar = 0.5, then CV[£] = 0.5, and if 0.5 < Ar < 1, then CV[£&] is the solution of the following equation:

1 /aNr o
1—7(—) exp(r—f)—oz:O.
2 \Ar A

Proof. We only prove (iii). The rest can be proved similarly. By the distribution of &, for any « € [0, 1], we have

1 /a\" o .
1—7<—) exp(r—f), if0<a <Ar
Gl zaf =11 2 a (7)
7(—> exp(r—f), ifar <o <1.
2 \Ar A

Thus, the CV of £ is

CV[E] = sup [a ACr{§ > a}]

a€[0,1]

|: N (l 1 (Ol r o y N 1 /70N o
= sup |« - - —) exp (r — —) sup |a A = (—) exp (r — —)
ael0,r] 2 \Ar A ae(ir,1] 2 \Ar A
1 /0\" a .
sup |:oz/\() exp (r—)}, if0 < Ar <05
ae(ir,1] 2 \Ar A

= 1 /a\" o .
sup [a A 1—7<—) exp(r—f) , if05 <Ar <1.
ael0,Ar] 2 \Ar A

Consequently, if 0 < Ar < 0.5, then CV[£] is the solution of the following equation:

1 /a\r o
—(—) exp(r——)—a:O,
2 \Ar A

from which we conclude that if A\r = 0.5, then CV[§] = 0.5.1f 0.5 < Ar < 1, then CV[£] is the solution of the following
equation:

1 /a\r o
1—7(—) exp(r—7>—a:0.
2 \Ar A

The proof of the theorem is complete. O
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Remark 2. The CVs of a gamma RFV can be evaluated by the bisection method. Consider the following possibility
distribution:

t 0.2 t

Then according to Theorem 3, CV[£] is the solution of the following equation:

1/ ¢ \02 ¢
1—=-(— exp|{02——-)—a=0.
2\0.8 4

Solving the above equation with bisection method, we obtain that CV[£] = 0.508770.
In a similar way, we have CV*[£] = 0.994903, and CV, [§] = 0.154361.

4. Methods of reduction for type-2 fuzzy variables

4.1. CV-based reduction methods

Due to the fuzzy membership function of a type-2 fuzzy number, the computation complexity is very high in practical
applications. To avoid this difficulty, some defuzzification methods have been proposed in the literature (see [6-8]). In this
section, we propose some new methods of reduction for a type-2 fuzzy variable. Compared with the existing methods, the
new methods are very much easier to implement when we employ them to build a mathematical model with type-2 fuzzy
coefficients. B

Let (I", 4, Pos) be a fuzzy possibility space and & a type-2 fuzzy variable with a known secondary possibility distribution
function ﬂg (x). To reduce the type-2 fuzziness, one approach is to give a representing value for RFV ﬂg (x). For this purpose,
we suggest employing the CVs of Pos{y € I" | £(y) = x} as the representing values.

We call the above methods the CV-based methods of reduction for the type-2 fuzzy variable &.

To specify the proposed reduction methods, we next provide an example as an illustration.

Example 6. Let £ be the type-2 fuzzy variable defined as

B 3, with possibility (0.1, 0.4, 0.7)
&(y) = {4, with possibility (0.9, 1, 1)
5, with possibility (0.1, 0.3, 0.4, 0.6).

That is,§ takes on the values 3, 4 and 5 with possibilities (0.1, 0.4, 0.7), (0.9, 1, 1) and (0.1, 0.3, 0.4, 0.6), respectively. Since

,[:Lé (3) = (0.1,0.4,0.7), /lg (4) = (09,1,1) and /lg (5) = (0.1,0.3,0.4, 0.6), it follows from Theorem 1 and its corollary
that

7 1
VIE@] =5 VIE@I=1 VRG] = .

- 4 - 10 - 1
VEG] = 5. V@] = o LG = .

B 11 . 3
CV[ji; (4] = — CVIps(5)] = 7

N 7
VI (3)] = o =

6’

That is, by the optimistic CV reduction method, the type-2 fuzzy variable é is reduced to the following fuzzy variable:

3 4 5
<7/13 1 1/2)'

By the pessimistic CV reduction method, § is reduced to the following fuzzy variable:

3 4 5
(4/13 10/11 1/4)'

By the CV reduction method, § is reduced to the following fuzzy variable:

3 4 5
(7/16 11/12 3/7)'

In the following, we discuss the reductions for three common type-2 fuzzy variables.
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Theorem 4. Let § be a type-2 triangular fuzzy variable defined as § = (74, Ty, T3; 6, 6;). Then we have:

(i) Using the optimistic CV reduction method, the reduction &, of § has the following possibility distribution:

(1+60)(x—r1) . |: r +r2j|
) lfx € |1,
rp,—r+6(x—r1) 2
(1—=6)x+ 6, — 1 . rn4r ]
r +0,(ry —x)’ Fxe 2 "
2~ P2 —
= s 8
Her @) (=1+6)x—06ry +13 . ( rp+r13 ®
if x € |,
r3—T2+9r(X—r2) 2
(1+0,)(r3 —x) (rz +r3
, ifxe ,
r3 =12+ 6,(r3 —X) 2

(ii) Using the pessimistic CV reduction method, the reduction &, of § has the following possibility distribution:

X—n . |: r+ Tz]
, ifxe|mn,
rp—r1+0(x —r1) 2
X—n . ri+ry ]
o, N’ ifxe —y
_Jn—n (2 — |
He, (%) = s — x . < - 9)
. ifxe|r,
r3—r;+0(x —r3) 2
3 —X . <T2 +r3 ]
, fxe|l——,r13
r3— 1+ 0)(r3 — x) 2 ]
(iii) Using the CV reduction method, the reduction & of & has the following possibility distribution:
(1+6,)(x—r1) . i+
s ifxe|r,
ry—114+ 20, (x —11) 2
(1 —60Dx +6Or — 1y . rn+rn
, ifxel——.,n
ry — 11 4+ 20/(r; — x) 2
e, (0) = - (10)
(=1+6)x—0Ora+r; . r+rs
, ifxe|nr,
r3—1y 4+ 20/(x — 1) 2]
(1+6,)(r3 —x) ) rp4+ry ]
. ifxe , T3
r3 — 1y + 260,(r3 — X) 2 ]

Proof. We only prove (i). The rest can be proved similarly. Note that the secondary possibility distribution ;15 (x) of § is the
triangular RFV

X—n . X—n I —X X —T X —T i X —n I —X
— 6, min s s R + 6, min s
—n Ip—r nn—n rp—nrn n—n rp—nrn n—n
forx € [ry, 2], and
3 —X . —X X—n s—X Ir3—X . 3—X X—1n
— 6, min R R R + 6, min R
3 —n; r3—13 I3—1I r3—T2 I3—1 '3 —T2 I3—1
for x € (ry, r3]. Let & be the reduction of £ obtained by the optimistic CV reduction method. Then according to Corollary 1,
we have

Pos{§; = x}
X—n + 9r min [ X—T r)—X }

ry—r1 rp—r1’ rp—rq

1+6, min{ X IaX }

g (X)

ifx € [ry, 2]

rp—ry’ rp—rq

r3—X . r3—x X—1)
r3—ry + 6 min { 13—’ r3—T)

1+6, min[ 37X XD ]

r3—ry’ r3—rp

ifx € (ry, 13]
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1

09F
08}
o7y (1+0)/(2+0)) ]
06
Z o5t
04f
03
02f

0.1

. .
T Titry T2 Totrs r3

X

Fig. 1. The possibility distribution p¢, (x) of &;.

0.9

0.8

0.7

0.6

0.5

u(x)

0.4 11(1+26)
03

0.2

T1 ritrs T2 rotrs 73
2

Fig. 2. The possibility distribution w, (x) of &;.

r—r+6x—r)’
(1 — Gr)x + 0,1”2 — I (

r—r 46 —x) i
(—=1+6)x — 6,15 + 13 ( r 413 ]

1 +0)(x—r1) . |: B +T2:|
ifx e |r,

, ifxe
r3—r+6(x—r3)
(1+6)(r3 —x)
r3 =T34 6,(r5 —x)’

which completes the proof of assertion (i). O

The possibility distributions of &1, &, and &; are shown in Figs. 1, 2 and 3, respectively.

Example 7. Let § = (2,3,4;0.5, 1), and its support be as shown in Fig. 4. Suppose &1, & and &5 are the reductions of§
obtained by the optimistic, pessimistic and CV reduction methods, respectively. Then according to Theorem 4, we have

2 . 5
2— s 1fxe[2 }
x—1

, ifx e

e (%) = (
1 (
&

s ifx e (3,

7
2
4

, ifxe

)

NN
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1

0.9r

0.8

0.7

0.6

()

0.5 0.5

0.4

0.3

0.2

0.1

1 ritrg ) ratrs r3
2

Fig. 3. The possibility distribution jiz, (x) of &.

091

0.8

0.7

0.6

05

0.4

0.3

0.2r

0.1

0 I I I
2 25 3 35 4

Fig. 4. The support of§ in Example 7.

Mg, (X) =

and

2(x — 2 5
M’ ifx e 2’,
2x—3 2

X) =
Mg (X) 5_

2x—2)’

204—x) 7
—, ifxe | =,4]|.
9 —2x 27

x—1 . 5 7
Pe— ifxel=,3
8 —2x 2

Theorem 5. Let 7 be a type-2 normal fuzzy variable ii(j1, o?; 6,, 6;). Then we have:
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(i) Using the optimistic CV reduction method, the reduction n, of 1 has the following possibility distribution:

(1+9)exp< (e “) )
146, exp (—%) ’

0, + (1—6,) exp (—%)

1+6,—06, exp( &= “)2) ’

ifx<u—o~2ln2orx>pu+o+2In2

Moy (X) =

ifu—o~2ln2 <x<pu+o+2In2.

(ii) Using the pessimistic CV reduction method, the reduction 1, of 1 has the following possibility distribution:

exp (_7@2—%)2)
1 —|—0,exp< &= “)2)

My (X) = e
exp (— —(XZ 4 )

fx<u—o 21n20rxz,u+am

5 ifu—ov2In2 <x<u+o+v2In2.
146, — Glexp( =7 “) )

(iii) Using the CV reduction method, the reduction ns of 1 has the following possibility distribution:
N2
(146, exp (— 5257)
1+ 26, exp( (= "“)2) ’
+ (1 —6)exp ( &= “)2)

1+ 26, — 26 exp( = ”)2)

ifx<pu—ov2In2orx>u+0o4/2In2

:u‘f]3 (X) =

if u—0ov2In2 <x<pu+0o+2In2.

Proof. We only prove (iii). The rest can be proved similarly. Note that the secondary possibility distribution fi;(x) of 7 is
the triangular RFV

(x — p)? o (x — p)? (x — ) (x — p)?
exp —7 — gymin 1— exp —7 , eXp —T , eXp —7 .
_ 2 _ 2 _ 2
exp (—%) + 6; min {l — exp (_(ngzm) , exXp (—W)})

for any x € N. If we denote 73 as the reduction of 7 obtained by the CV reduction method, then by Corollary 1, we have

iy (0) = Pos{ns = x)

— )2 . 2
oo (5 romalt- () o
1+ 26, min{]—exp(—w),exp<_%)} ’ 202 -2
- x—w? #) (x=p) (x—w?
exp (—587) +éumin {1 - exp (587 ) exp (—1547) | x—mw?\ 1
, ifexp|l——) > =
202 2

1—|—29,mm{1—exp< L “) ),exp(—%)]
(1+9)exp( - “)2)
1+ 26, exp( (= “)2)
9,+<1—9,)exp( o)

1+ 26, — 26, exp ( @« a’”z)

, ifx<u—o~2In20rx>pu+o+2In2

ifu—ov2In2 <x<u+o+2In2.

The proof of the theorem is complete. O

The possibility distributions of RFVs 1y, i, and 53 are plotted in Figs. 5, 6 and 7, respectively.

Example 8. Let 7] be the type-2 normal fuzzy variable (3, 1; 0.5, 1), and its support be as shown in Fig. 8. Suppose 711, 1, and
n3 are the reductions of 7 obtained by the optimistic, pessimistic and CV reduction methods, respectively. Then according
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n(x)

u(x)

to Theorem 5, we have

2exp (222

1+ exp (—@)
1

/"Lﬂl (X) =

2 —exp (_ <x—23>2) ’

)

1

0.9F

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

“ +er)/(2+9r)

0

=20 n—0c Iz pto 1+ 20

Fig. 5. The possibility distribution w,, (x) of n;.

09

0.8

0.7

0.6

0.5

0.4r

0.3

0.2r

0.1

. . .
n—20 n—o n n+o w420
X

Fig. 6. The possibility distribution i, (x) of 1.

. . .
n—20 Hn—o Iz pn+o n+20
X

Fig. 7. The possibility distribution /i, (x) of n3.

ifx<3—+2In2orx>3++2In2

if3—+v2In2<x<3++v2In2,

1467
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1

09r
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0.7¢

0.6

0.5

0.4

0.3

0.2

0.1

%5 1 15 2 25 3 85 4 45 5 55
Fig. 8. The support of 77 in Example 8.

2exp <— 7()‘_23)2 )

2+ exp (_7@73)2) ’
Mgy (X) = 2exp( x=3)? 3) )

3—exp< = 3)2)

ifx<3—+2In20orx>3++2In2

if3—+42In2<x<3++2In2,

and

ifx<3—+2In20rx>3++2In2

l’l’ﬂ3 (x) =

if3—+2In2 <x<3++2In2.

Theorem 6. Let { be a type-2 gamma fuzzy variable defined as y (A, 1; 6, 6,). Then we have:

(i) Using the optimistic CV reduction method, the reduction ¢, of E has the following possibility distribution:
(1+6) (&) expr = §) XN X
e OGS B
146, () exp(r— ) Ar .

et ool (x ()
1+6, — 6, (£) exp(r — %) Ar A

My (X) =

N = N =

(ii) Using the pessimistic CV reduction method, the reduction ¢, of E has the following possibility distribution:
x \" X
) exp(r—1% r
() rp( ) , if (i) exp(r—ﬁ) <
146, (57) exp (r = 5) ar .
(%) exp(r—1%) X\" X
- r r ’ lf (7) exp (r - 7) -
1+6—6(%) exp(r—1%) Ar A

M[z (X) =

N = N =

(iii) Using the CV reduction method, the reduction ¢3 of g: has the following possibility distribution:
(146 (%) exp(r -

%) . X\ X 1
1+26, (£) exp( (;) v (E) exp (r_i) =

2
0+ (1—6) () exp (1 XN xy 1
120 —20 (2 ep(r—2) | () ew(r=3) =3

:u{3 (X) =

>\x >x
SN—
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1

09 -

08 r

o7 r (146)/(2+6))
06 |
< 05Ff
04 |
03
0.2

0.1

0

Ar

X

Fig. 9. The possibility distribution p,, (x) of ¢;.

X

Fig. 10. The possibility distribution 11, (x) of &,.

Proof. We only prove (iii). The rest can be proved similarly. Note that the secondary possibility distribution ji; ; (x) of § is
the triangular RFV

() e (=) —omin1= () ew (- 3). (57) e (=)} () oo (- 3)
Mexpr)L ) min Arexpr}\,“exprk,“exprk,
() e (r=3) +ormnfi= () ew(r-3). (5) e (= 7)})
AT P AT P A \ar P A
for any x € 9. Then according to Corollary 1, the distribution of ¢ is as follows:
Hes (%) = Pos{gs = x}
() ool =) fumin 1= (£ exo(r =), (3 e =] (7)1 () L]
_ 126, min {1 - (2) exp (r = ) (%) : | PR
() ool =) ctimin {1 = (5 exp 0 =3). () e 0= 2)] (7))
1+ 26imin {1 (37) exp (r = §). ()" ’ A
Qri(Eenl=3)
)’ AT

% )
el
O+ (=0 (5 r—i (XN P
(2 _Z
1+ 20— 20 (2) exp(r—2) () e (-3) >
) O

which completes the proof of assertion (iii

The possibility distributions of {1, {», and {5 are as described in Figs. 9, 10 and 11, respectively.

Example 9. Let f be the type-2 gamma fuzzy variable y (5, 1; 0.5, 0.8), and its support be as shown in Fig. 12. Suppose
1, &2 and &5 are the reductions of ¢ obtained by the optimistic, pessimistic and CV reduction methods, respectively. Then
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Ar
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Fig. 11. The possibility distribution ji., (x) of ¢3.

0 5 10 15 20 25 30
Fig. 12. The support of £ in Example 9.

according to Theorem 6, we have

) _x
xexp (1 5) , iffexp(l—ﬁ)f1
() = 25 +4xexp (1— %) 5 5 2
Kol = 20+xexp(1—%)  «x x 1
=S 1ffexp(1—f>>f,
45 — 4xexp (1— %) 5 5/ 72
2 1-2
Xexp( S)X , ifiexp (] _ E) < 1
) = 10+ xexp (1 - £) 5 5 2
Holt) = 2xexp (1—%) X X 1
s 1ffexp(1—f)>f,
15 —xexp (1—£) 5 5/ 2
and
9 1-%
xexp (1 - %) , iffexp(l—f)s1
) = 25 +8xexp (1— %) 5 5 2
Mo = 5+xexp(1—%) " X 1
, 1ffexp(1—f)>f.
20 — 2xexp (1— %) 5 5/ 2

4.2. Generalized credibility and its properties

As shown in Example 6, the fuzzy variables obtained via CV-based reduction methods aren’t always normalized. In such
cases, the credibility measure defined in [33] couldn’t be used in the current development; it is necessary to extend the
concept to general fuzzy variables.
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Suppose & is a general fuzzy variable with the distribution . The generalized credibility measure Cr of the event {&€ =1}
is defined by

- 1
Cr{ >r}=- (sup W (x) + sup p(x) — sup u(x)) , e
2 \ xen x>r x<r

Therefore, if £ is normalized, it is easy to check that Cr{§ > r} + Cr{§ < r} = sup,cy ne (X) = 1; then Cr coincides with the
usual credibility measure.

The concept of independence for normalized fuzzy variables and its properties were discussed in [35]. In the following,
we also need to extend independence to general fuzzy variables.

The general fuzzy variables &, &, . . ., &, are said to be mutually independent if and only if

Crig eB,i=1,2,...,n} = min Cr{& € By}
<i<n

for any subsets B;,i = 1, 2, ..., nof ).
Like the o-optimistic value of the normalized fuzzy variable [36], the «-optimistic value of general fuzzy variables can
be defined through the generalized credibility measure. Let £ be a fuzzy variable (not necessary normalized). Then

fap@ =sup{r [Erig =z a), ae@)
is called the a-optimistic value of &, while
(o) =inffr [Crig <r = o), ac@1]

is called the a-pessimistic value of &.
In the following, we discuss the fundamental properties of generalized credibility.

Theorem 7. Let &; be the reduction of the type-2 fuzzy variable Ei = (F], rz, f3, O1i, 6r.;) obtained by the CV reduction method
fori=1,2,...,n Supposeé&s, &, ..., & are mutually independent, and k; > O for i = 1, 2, .

(i) Given the generalized credibility level « € (0, 0.5], if « € (0, 0.25], then Cr{zi":] ki < t} > «is equivalent to

2”: (1= 2a + (1 — 4a)0, Dkirt + 2akir} -

£ 1+ (1—4a)6,,

and if o € (0.25, 0.5], then 6r{Z?=1 ki€ < t} > « is equivalent to

2”: (1= 2a)krt + (2a + (4o — 1)) kir} -t
— 14 (da — 1Oy -

(ii) Given the generalized credibility level « € (0.5, 1], if « € (0.5, 0.75], then ﬁr{Z?:] ki < t} > « is equivalent to

Z": (20 — Dkiry + 21 — o) + 3 — 4)hkiry _

1 + (3 — 40[)91‘,' -

i=1

and if « € (0.75, 1], then 6r{2?=] ki& <t} > «is equivalent to

2": (20 — 1+ (o — 30 Dkir +2(1 —okiry _

— 1+ (4o — 3)0;;

Proof. We only prove (ii), as (i) can be proved similarly. For eachi = 1,2, ..., n, since &; is the reduction of the type-
2 triangular fuzzy variable 5, obtained by the CV reduction method, we know that the fuzzy variable &; has the following
possibility distribution:

Qsape [ ]
ry =1+ 260, i(x—17)

(1= 6,)x + 0,15 — 1 (

=1l 4208 — %)’

(=1+6.)x — 05 + 18 < ATy + ri

1—|—r2 i

ifx €
Mg (x) =

_ . 5,
ry—15+ 20,i(x — r3)
406, )y —x)
rh— 1l +26,(i —x)°
fori=1,2,...,n

r +r3 i'
2
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Write § = Y I | ki&. If @ > 0.5, then we have

. 1 1
Cri§ <t} = 3 (1 + sup pg (x) — supus(X)) =5 <1 +1-— supus(X)) .

X<t x>t x>t

Therefore fﬁr{g <t} > « is equivalent to

sup pe(x) < 2 — 2.

x>t
If we define &, () = sup{r | sup,., pe (x) > o} fora € (0, 1], then we have
é‘_sup(2 —2a) <t.

Since &1, &, . .., &, are mutually independent, we have

Eup(2 — 20) = (Z Iq&-)
i=1 s

Note that ug ((ry +r1)/2) = 0.5.1f2 — 2o > 0.5, i.e,, € (0.5, 0.75], then for each i, & 4,p(2 — 2c) is the solution of the
following equation:

n
2—2a) =) kifiaup(2—20) <t.
i=1

up

(14 91,1‘))( . Gl,iré + Té-
=1 4+ 20(x — 1)

=2 —20o.

Solving the above equation, we have

Qo= Dri+ Q1 —a)+ G —4a)0,)rs

i,su 2-—-2
Siaup(2 = 20) 1+ G — 4a)f,

Therefore, when « € (0.5, 0.75], Er{ZLl ki& < t} > « is equivalent to

2”: (o — Dkl + 2(1 — @) + (3 — 4a)0;)kir} -t

=1 1 + (3 — 40()91’1‘

On other hand, if2 — 2«0 < 0.5,i.e,, ¢ € (0.75, 1], then for each i, &; sup (2 — 2c) is the solution of the following equation:

(146,005 —x)

; : : =2-2a.
r3 — 15 + 20, i(r; — %)

Solving the above equation gives

(o — 1+ (4 — 3)0, )i +2(1 — @)1}

i 2—2a) =
gl,sup( a) 1+ (4o — 3)6,,

Therefore, when o € (0.75, 1], fﬁr{Z:':1 ki& <t} > « is equivalent to

2”: (e — 1+ (4o — 3)6, Dkirk +2(1 — a)kir} -t
1+ (4o — 3)6;; =

i=1

The proof of the theorem is complete. O

Theorem 8. Let &; be the reduction of the type-2 fuzzy variable 51 = n(ui, crl-z; 01.i, 0r.;) obtained by the CV reduction method for
i=1,2,...,n Suppose &1, &, ..., &, are mutually independent, and k; > Ofori=1,2,...,n.

(i) Given the generalized credibility level « € (0, 0.5], if o € (0, 0.25], then Cr{ZL] ki&; <t} > « is equivalent to

n
>k (M,» —o1/2In(1 + (1 — 4a)8,.) — 21n Za) <t
i=1

and if a € (0.25, 0.5], then Cr{ZLl ki& < t} > «a is equivalent to

3k (M,- — o1/2In(1 + (4o — 1)) — 2InCa + (dor — 1)91,,»)) <t
i=1
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(ii) Given the generalized credibility level « € (0.5, 1], if « € (0.5, 0.75], then ﬁr{Z?:] ki& < t} > « is equivalent to

Yk (ui +oiy/2In(1 + (3 — da)f) — 2In2(1 —a) + 3 — 4a)9,,1) <t

i=1

and if « € (0.75, 1], then 6r{2?:1 ki&; < t} > «a is equivalent to

Z k; (Mi + ai\/2 In(1+ (4o — 3)6;;) —2In2(1 — a)) <t.

i=1

Proof. We only prove (i)L as (ii) can be proved similarly. For eachi = 1,2, ..., n, since & is the reduction of the type-
2 normal fuzzy variable &; obtained by the CV reduction method, we know that the fuzzy variable &; has the following
possibility distribution:

(1+6; ;) exp ( = p_h) )
1+ 26, exp (—(";7“2’)

0:,+(1—9,,)exp( (e ;m )

1+291,—291,exp< %)

ifx <ui—ov2In2orx > u;i+o;v2In2

g (%) =

if,u,-—o,-lenZ <X < ,u,-—{—a,-lenZ

fori=1,2,...,n
Write § = Y L, ki&. Then for @ < 0.5, one has

1
(1 + sup pe (x) — 1) = —sup pe(%).
x<t 2 x<t

N | —

~ 1
Cr{§ <t} = 3 (1 + Sgl? Mg (X) — SUI;’ /,LS(X)> =

Therefore, ﬁr{é <t} > «ais equivalent to

sup e (X) > 2a.

X<t

If we define &r(a) = inf{r | sup,-, ue (x) > a} fora € (0, 1], then we have

&int(2a) < t.

Since &1, &9, .. ., &, are mutually independent, we have

&inf(200) = (Z kifi) (20) = ) kikijnf2e) < t.
i=1 inf i=1

Note that pg (i — 0i4/21n2) = 0.5.1f 20 < 0.5,1i.e,, @ € (0, 0.25], then for each i, ; j»r(2c) is the solution of the following
equation:

(1+9r:)eXP( x= Mz) )

= 2a.
1+20r,exp( @ ;l) )

Solving the above equation, we have

Einf(20) = i — 03y/2In(1 + (1 — 4a)6,.)) — 2In 20

Therefore, if « € (0, 0.25], then Cr{Z?:1 ki& < t} > « is equivalent to

n
> ki(ui = 01y/2In(1 + (1 = 4)f,5) — 2In20) <t
i=1

On other hand, if 2o > 0.5, i.e., ¢ € (0.25, 0.5], then for each i, &; j,s(2¢) is the solution of the following equation:
O+ (1 —0,,)exp( e u’) )

B = 2ax.
1—|—29,,—29,,exp( %)
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Solving the above equation, we have

& inf(20) = i — 07/2In(1 + (4o — 1)0;) — 2InQar + (4 — 1)y).

Therefore, if « € (0.25, 0.5], then 61‘{2;[:1 ki& <t} > « is equivalent to

n
3k (ui — o1/2In(1 + (4o — 1)) — 2In2a + (o — 1)9,,,»)) <t
i=1
The proof of the theorem is complete. O

5. Formulation of generalized credibility DEA models

DEA is a method for assessing the productive efficiency of DMUs which use the same kinds of resources (inputs) to
produce the same kinds of goods or services (outputs). The traditional CCR model [10] was built as

v'yo

max —

uv uTxq

. UT}’;‘ .

subjectto  ——= <1,i=1,2,...,n (11)
u' X;
u>0,u#0
v>0,v#0

The CCR model (11) can be used to evaluate the efficiency for each DMU when the inputs and outputs are known
precisely. However, in many cases, the data cannot be known with certainty, and very often one can only obtain incomplete
information about the data such as the distributions. In this section, we assume that we can only obtain the type-2
distributions of the data, i.e., the inputs and outputs are characterized by type-2 fuzzy variables. In such a case, the CCR
model (11) becomes

7o
max =
Y u'&
. UTﬁi . 12
subjectto — <1,i=1,2,...,n (12)
u'g;
u>0,u#0
v>0,v#0,
where the éi (i=1,2,...,n)represent the type-2 fuzzy input column vector of DMU;, 50 represents the type-2 fuzzy input
column vector of DMUy; the ; (i = 1, 2, ..., n) represent the type-2 fuzzy output column vector of DMU;, and 7o represents

the type-2 fuzzy output column vector of DMUj.

However, problem (12) is not well-defined since the meanings of “max” as well as of the constraints are not clear at
all, if we think of taking a decision before knowing the values of uncertain parameters involved in the problem. Therefore a
revision of the modeling process is necessary, by applying the proposed CV-based reduction method, leading to the following
generalized credibility DEA model:

max f
u, v
: = fvino _ 2
subjectto Cr T >fr>a
|l u'é (13)
Cr{—uTéi—f—vaSO}zai,izl,Z,...,n
u>0,u#0
v>0,v#0,

where the notation in the model (13) are collected in Table 1.

In traditional CCR model (11), we use the value of vy, /u’x, to illustrate the efficiency of DMU,. DMUj is efficient if
and only if the optimal value is equal to 1 and there exists at least one optimal solution (u*, v*) with u* > 0, v* > 0. But
in model (13), we cannot define such efficiency due to the existence of uncertainty. So in model (13), we use the optimal
value f as the «g-efficient value of DMUj to illustrate the efficiency of DMUj, and the bigger the value is, the more efficient
itis.

In the following, we focus our attention on the equivalent forms of model (13) in some special cases.
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Table 1
List of notation for model (13).
Notation Definition
& the reduction off—, according to the CV-based reduction methods,i =1,2,...,n
& the reduction of §0 according to the CV-based reduction methods
ni the reduction of 7; according to the CV-based reduction methods,i = 1,2,...,n
No the reduction of 77y according to the CV-based reduction methods
uenRm the weights of the type-2 fuzzy input column vector
ve N° the weights of the type-2 fuzzy output column vector
a; € (0, 1] the predetermined generalized credibility levels,i =0, 1, ..., n

Suppose the Si, ni (i=1,2,...,n) in model (13) are mutually independent type-2 triangular fuzzy vectors with their
elements defined as

éj,l' = (%r; ) g?v ér?; el,j,is Qr,j,i)» .] - 1s 27 cele,m,
)i ? Sii? Sj,

and

i = (e & e Ok Orae)s k=1,2,....s
fori =1,2,...,n Then we have

—&i= (—éjt?, —éjrf _éjt}; OrjirO1ji)s J=1,2,...,m,
and

— ki = (=02, =2, =k O ki Orei), k=12

Nk,i = ( Miis = NMiis —Mk,i> Ur.kiis l,l<,1)7 K=12,...,8

fori=1,2,...,n

Suppose & and 7 are the reductions of§ and 7 obtained by the CV reduction method. Then &;; and —ny ;, —&;,; and 1 ; are
mutually independent fuzzy variables as shown in Fig. 3.

According to Theorem 7, when o; > 0.5,i = 0, 1, 2, ..., n, we can turn model (13) into its crisp equivalent parametric
form.

Definel = {i | 0.5 < o; < 0.75,i = 1,2,...,n},and]J = {i | 0.75 < o; < 1,i = 1,2,...,n}. According
to the above discussion, when 0.5 < ¢y < 0.75, model (13) can be turned into the following parametric programming
problem:

N - -
2 ((Rap — 1)”1(’7120 +CA—a)+G— 4ao)9r,k,o)vkmrfo)/(1 + (3 — 420)0; k.0)
max k=1
h %((206 — Dugy + 21 — o) + (3 — 40)b1.0)u5E5) /(1 + (3 — 4ato)b.0)
,1 0 15j,0 0 0)Y1,j,0)Uj; o 0)01j.0
J:
M Qa; — DwiE L+ (1 — o) + (3 — 4a)6r )€ 2
subjectto — Z : it : D0 iU
= 1+3-— 40(1')9”1
N XS: (2a; — 1)Uk771?i +CA—a)+ G- 4ai)91.k,i)vk'7/rj,‘ oiel
k=1 1+ (3 —4a)byi - (14)
i Qai — 1+ (4o — )0 0)uEl | +2(1 — a)u&;?
= 1+ (40[,‘ — 3)9[’]',,'
N i (ot — 1+ (4a; — 3)9r,k,i)vk77?,' +2(1 — ap)ven; <0iej
k=1 1+ (4oti — 3)0r ki
u>0,u#0,j=1,2,...,m
Vg >0,Uk#0,k= 1,2,...,s,
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which is equivalent to

max

v k; 1+ (3 — 400)br k0
m
>

Qao — Duigy + (1 — ao) + (3 — 4a0)6yj.0)ui; 5
1+ (3 — 40[0)9[,]‘,0

subject to

=1
3 i Co; — 1)uj$jf} +CO—a)+ G- 40!i)9r,j,i)uj$jrf
= 14+ (3 —4a;)0; ;i
N Z Qo — Doen; + (1 — o) + G- 4001 k) vy coiel (15)
= 1+ 3 —4a)b, -
B Xm: Qo — 1+ (4o — 3)0)uE | +2(1 — a)ué?
= 1+ (4o — 3)0y
I i Qoj — 1+ (4o — 3)ér,k.i)vk77g?i +2(1 - Oli)kal,rfi <0iej]
1 14 (4ot; — 3)6; ki -

k=
UjZO,Uj;ﬁO,j=1,2,~-~am
kaO,Uk;éO,k:‘lyza"'7s'

On other hand, when 0.75 < «p < 1, model (13) can be turned into the following equivalent parametric programming
problem:

N - -
> (o — 14 (4ao — 3)91,k.0)vk77/20 +2(1 - Olo)Ukﬂ;:?o)/(l + (dotg — 3)01k0)

max kzrl
u,v
> (QRag — 14 (4o — 3)6, j.0)&] s + 2(1 — ao)u&5) /(14 (4o — 3)6;.0)
j=1
M Qo — DuE ! + Q21 — o) + (3 — 400, Uik
subjectto — Z ! ]é:J*’ e :1 T iV, JE],I
( — 400, : :
j=1 i)Vr.j,i _
N i Qo — Doy + (1 — ) + (3 — 4B vinmy “0ic] (16)
=1 1+ (3 — 40y -
Z Qai — 1+ (4o — )0 DuEl | +2(1 — a)ué;
° 1+(40lj—3)91ji
j=1 _ R
N Z (204 — 1+ (o — 3, k) venis + 21— evans _ <
k=1 1+ (4o — 3)0r i -7
U >0,u;#0,j=1,2,...,m
vkzO,vk¢0,k= 1,2,...,s,
which is equivalent to
S\ oo — 1+ (4o — 3)610) vy + 2(1 — o) ey
max Z 2
v =1 1+ (4dag — 3)01k,0
M (2o — 14 (4ag — 3)6j0)uiE S + 2(1 — ag)u;E >
subject to Z 0 (; T @ r-0 ?fgo 0o =1
i ®o — 3)Urj.0
= s
Xm: Qai — D} + (1 — ) + (3 — 40 j Ui
— 1 + (3 — 40(,‘)9”'[
j=1 s _
i (204 = Dviarg + (1 — ) + G — dadbudvins _ o (17)
k=1 1 + (3 - 4()[,')@“",' -
B Z Qai — 1+ (4o — 300Ul | +2(1 — @&
= 1+ (4a; —_3)91,j,i
n XS: Qo — 1+ (4o — 3)9r,k,i)vk771?i +2(1 - Oli)vkmrff <0ieJ
k=1 1 + (4051' - 3)9r,k,i -
u>0,u;#0,j=1,2,...,m
>0, #0,k=1,2,...,s.
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Table 2
Input data for five DMUs.
DMU; Input 1 Input 2 Input 3 Input 4
i=1 (28.30.31: 6111, 6r.1.1) (37.38.40:612.1.6,2.1) (38.41,42:0131.6r3.1) (34.37.42: 0141, 6r01)
i=2 (1-2 1417 011,25 0r.1.2) (1.9,2.0,2.3; 622, 6r2.2) (20 23 24 0132, 0r 32) (1.7,2.0,2.1; 6,42, br,4,2)
i=3 (2-1 24 25 01,135 0r.1.3) (3.1,3.2,3.4, 023, 6r23) (24 26 29 0133, 0r,3.3) (2.4,2.8,3.0; 643, r,4,3)
i= (1~6 18 20 01,4 6r,1,4) (2.2,2.4,2.5; 02,4, 0r2.4) (25 28 30 01.3,4, 0r.3,4) (3.3,3.4,3.7; 6.4.4, 0r,44)
i=5 (31,35,37; 60,15, 6r.1.5) (2.0,2.5,2.8; 6255, 6 25) (319,4.0,42: 6,35, 0,.35) (3.6,4.1,4.3; 0145, 6 45)
Table 3
Output data for five DMUs.
DMU; Output 1 Output 2 Output 3 Output 4
i=1 (5:4},5:5»5:7;@1,1,1,@,1.1) (‘»3:2,53, Szi 012.1,6r2.1) (61 52 64 Oi3.1s r31) (428,5:2,5:5@1,4.1,@.441)
i= (4.0,4.1,4.3: 0,12, 0r,1,2) (3.9,4.4,4.7: 02,2, 0r,2,2) (5 0, 5 1, 5 2; 0132, 0r.3.2) (3.0,3.3,3.4: 61.4.2, 0r,4,2)
i=3 (44,4.5,4.7: 0,13, 0r,1,3) (4.0,4.1,4.4: 0,23, 0r,2,3) (5~2 5~5 5~6 6133, 0r3.3) (3.2,3.3,3.5: 61,43, 0r,4,3)
i= (42,4.3,44:0,14,0r1,4) (3.9,4.0,4.2; 62,4, 0r,2,4) (5.1,5.3,5.5: 01,34, 0r,3.4) (3.6,3.7,3.9; 61.4.4, 0r,4.4)
i=5 (5.5,5.7,6.0; 01,15, 6r,1,5) (5.3,5.5,5.8; 02,5, 6r2,5) (6.6,6.7,7.0; 0135, 6r35) (5.0,5.3,5.7; 0,45, 0r,a5)

Problems (15) and (17) are parametric programming problems. Given parameters 6 ;, é,,k.,-, 0y jiand é,,k,,», both problems
become linear programming ones that can be solved using standard optimization solvers.

6. Numerical experiments

To demonstrate the modeling idea and the efficiency of the proposed DEA model, we now consider a system composed
of five DMUs, and each DMU with four inputs and four outputs that are characterized by type-2 triangular fuzzy vectors as
shown in Tables 2 and 3. For convenience, we adopt the following notation in this system: ¢g = @y = @3 = o5 = « and
Oy = 0y = ,B

When o« € (0.75, 1]and 8 € (0.5, 0.75], the system can be modeled as the following parametric programming problem:

n;al)x Jo(ur, ua, us, ug, vy, v2, V3, v4)
subjectto  g;(uy, Uz, U3, Ug, V7, U2, U3, Ug) < 0 (18)
u>0,u;#0,j=1,2,3,4
v >0,v,#0,k=1,2,3,4,
where the objective is as follows when the ith DMU,i = 1, 2, ..., 5, is modeled as the target UMUg:
= 5.1Qa — 14 (4a — 3)01.1) + 2 x 5.5(1 — a) +52(2a—1+(4a—3)9121)+2x53(1—a)
1+ (4o — 3)0;,1,1 1+ (4 — 3)012,1
+61(2a—1—|—(4a—3)9,31)+2x62(1—a) +48(2a—1—|—(4a—3)9,41)+2x52(1—a)
14 (4o —3)0;31 14+ (4o — 3)0141
such that
31Qa — 14 (4o — 3)6r1.1) +2 x 3.0(1 — ) +40(20{—1—1—(405—3)9”1)—!—2><38(1—oc)
14 (4o — 3)6;1.1 14 (4o — 3)6r2.1
+42(20¢—1+(4oe—3)9r31)+2><41(1—oe) +42(20{—1+(4a—3)9r41)+2><37(1—a) _1
14 (4o —3)6;31 14 (4o — 3)6r.41
f = 402 — 14 (4a — 3)0,12) +2 x 41(1 — a) +39(2a—1+(4a—3)9,22)+2x44(1—a)
1+ (4o —3),,1. 1+ (4a —3)012.2
+5O(20¢—1+(4oc—3)9132)—|—2><5l(l—a) +30(2a—l+(4oc—3)9142)+2x33(1—a) o
1+ (4o — 3)0;32 1+ (4o — 3)01 4.2
such that
1.7Qa — 1+ (4 — 3)0,.12) + 2 x 1.4(1 — ) +23(2a—]+(4a—3)9r22)+2x20(1—(x)
14+ (4o —3)6;.12 14+ (4o —3)6;22
+24(2a—1+(4a—3)9r32)+2><23(1—(x) +2.1(2a—1+(4a—3)9r,4,2)+2><2.0(1—oz)u4:].

1+ (4a — 3)0; 32 1+ (4 — 3)0; 42



1478 R. Qin et al. / Journal of Computational and Applied Mathematics 235 (2011) 1454-1481

44(205—1—1—(401—3)9,13)4—2><45(1—oz) 40(2a—1+(4a—3)9,23)+2><41(1—a)

f =
’ 1+ (4o — 3)0,15 1+ (4o — 3)0125
+52(2(x—1+(4a—3)9133)+2X55(1—Ol) +32(2a—1+(4a—3)9143)+2x33(1—a)
1+ (4a — 3)0,33 1+ (4a — 3)0,43
such that

25(20[—1-}—(40[—3)@13)4—2X24(]—0{)
14+ (4o —3)6,13
2920 — 14 (40 = 3132 +2 x 26(1 — )
+ 1+ (4o — 3)6r3.5
42Qa — 14 (4o — 3)f14) +2 x 43(1 — )
1+(4ot—3)0,14
5120 — 1+ (4o =350 +2 x 531 —a)
* 1+ (4 — 3)013.4

34(20[—1+(40l—3)9r23)+2X32(1—a)
¥ 1+ (4ot — 3)6, 25
3.020 — 1+ (4o — 3).03) +2 x 2.8(1 — @)
3+ 1+ (4o — 3),.05
+39(204—1—|—(4a—3)9124)+2x40(1—a)
1+ (4o —3)02,4
36(2()1—1+(4a—3)9144)+2X37(1—Ot)
3 1+ (4o — 3)0144

U4—1.

4 =

V4

such that

2.0 — 1+ (4o = 3r.14) +2 x 1801 =)
14 (4o —3)6;1.4

3.0 — 14 (40 = 36r04) +2 x 28(1 =)
+ 1+ (4o — 3)0r24

25Qa — 14 (0 = Ph20) +2x 240~ )
i 1+ (4o — 3)0r24

37(2(1—1+(4ot—3)9,44)+2><34(1—a)
3t 1+ (42 — 3)0,.44

and
f = 55(2a—1+(4a—3)9115)+2><57(1—oz) 53(2a—1+(4a—3)9125)+2x55(1—oz)
° 1+ (4o — 3)f,15 1+ (4o — 3)f,5
+66(2a—1+(4¢x—3)9135)+2><67(1—a) 50(2a—1+(4a—3)9145)+2x53(1—a)
1+(40l—3)9135 1+(40l—3)9[45
such that

37Qa — 14 (4a — 3)0r15) +2 x 3.5(1 — )
1+ (4a —3)0; 15
+42(2a—]+(4oz—3)0r35)+2><40(1—ot)

+28(2a—1+(4a—3)9r25)+2x25(1—a)
1+ (4a —3)0 25
+43(2a—1+(4a—3)9,45)+2x41(1—a)

=1.

1+ (4o —3)0r 35

1+ (4o —3)0r 45

In addition, the analytical expressions for the constraint functions g; in model (18) are as follows:

28(2a—1—|—(4a—3)9111)+2><30(1—a)

37(2a—1+(4a—3)«9121)+2><38(]—a)

f1 = 1+ (4o — 30111 1+ (4o — 3)0,5,
38001+ (e =030 F2x 410 -0)  3A4Q — 14 (o= D) +2x370 @)
1+(4(X—3)0131 1+(40[—3)0[4]
+57(2a—1+(4a—3)6r11)+2><55(1—oz) +56(2a—1+(4oz—3)9r21)+2><53(1—a)
T+ (4o —3)0r 11 1+ (4o — 3)0r 2,1
+64(2a—1+(4oc—3)9r31)+2><62(1—oc) +55(2a—1+(4a—3)9,41)+2x52(1—a)
1+ (4o — 3)6, 34 1+ (4o — 3)0r.41 o
g 1228 - 1) 4+ 1.42(1 —,3)+(3—4,3)9r12) 192 -1 +2.021 —/3)+(3—4/3)9r22)
=

1+ (3 —48)0r 1,2
2028 1) +2320 -p)+ (3 —-48)6,, 32)

1+ (3 —48)0: 22
172 -1 4+2.02(0-8)+ B — 413)9r42)

1+ (3—48)0: 32

n 4328 —1)+4.120 - )+ (3 —4B)6.1, 2)

1+ (3 —48)0 42

. 4728 - 1) +4421-p)+ G- 413)9122)

1+G - 45)9112

1+(3—4,3)9122

n 5228 -1 +512(0-p)+ 3 — 4/3)9132)

1+ (3 —4B)0;3,

- 3428 — 1) +33201 = B) + 3 —4)0142)

Vg,
1+@3 —4,3)9142
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Table 4
Evaluation result for each DMU with (6;, 6,) = (0.5, 0.5) undero = 0.9 and 8 = 0.7.
DMUs Optimal solution (u, v) a-efficient value
DMU; (0.0000, 0.0000, 0.2390, 0.0000, 0.0000, 0.0000, 0.0000, 0.1569) 0.7629027
DMU, (0.0000, 0.0000, 0.4194, 0.0000, 0.0000, 0.0000, 0.1789, 0.0000) 0.8971282
DMU, (0.0000, 0.0077, 0.3413, 0.0000, 0.1828, 0.0000, 0.0000, 0.0000) 0.8072445
DMU,4 (0.0000, 0.0505, 0.2946, 0.0000, 0.0000, 0.0000, 0.0000, 0.2231) 0.8067061
DMUs (0.0000, 0.0369, 0.2155, 0.0000, 0.0000, 0.0000, 0.0000, 0.1632) 0.8236366
Table 5
Evaluation results for each DMU with different parameters (6;, 6,) under « = 0.9 and g = 0.7.
(6,6;) (0,0) (0.1,0.2) (0.3,0.4) (0.5,0.5) (0.7,0.6) (0.9,0.8) (1,1)
DMU, 0.7619975 0.7626904 0.7630024 0.7629027 0.7629323 0.7635817 0.7644179
DMU, 0.8945820 0.8956042 0.8966210 0.8971282 0.8976606 0.8987352 0.8997756
DMU; 0.8116787 0.8114339 0.8087777 0.8072445 0.8059549 0.8044095 0.8033815
DMUy4 0.8069665 0.8068084 0.8067367 0.8067061 0.8067528 0.8070330 0.8073965
DMUs 0.8291510 0.8271533 0.8249915 0.8236366 0.8225233 0.8213728 0.8207225
. 2](201—]—}-(4(:(—3)0113)—}-2X24(1—ot) 31(2a—1+(4a—3)9123)+2X32(1—a)
&= 1+ (4o — 3)011 5 1+ (4o — 3)012.5
 2.4Qa — 1+ (4o —3)0133) +2 x 2.6(1 —a)  24Qa — 14 (4o — 3)643) +2 x 2.8(1 —a)
1+ (4a —3)033 T+ (4o —3)04,3
+47(20{—1+(4a—3)9,13)—|—2 x 4.5(1 — ) +44(2a—1+(4oc—3)0r23)+2 x 4.1(1 — &)
V2
1+ (4o —3)6r13 1+ (4o —3)br23
+56(2a—1+(4a—3)9r33)+2 x 5.5(1 —a) - 35(2a—1+(4a—3)9r43)+2 X 3.3(1 — @)
V4,
1+ (4o — 3)033 1+ (4o —3)0r 43
g — _1E@B-D+18CA—P+G=4p)0n0) 2201 +24Q1 =P+ B =4P)r20)
4 =
14+ (3 —48)6r14 1+ (3 —48)0:24
252 = 1) +2.8(1—B)+ B —4B)br3, 4) _ 338 -1 434230 - B) + (B —4P)0r4, 4)
1+ 3 —48)0r 34 1+ 3 —48)0r 44
+ 4428 —1)+4320 - B) + (3 —4p)0;1, 4) . 42028 — 1) +4.02(1 — B) + (3 — 4B)6, 4)
1+ (B —4B)014 1+ (B —4B)024
+ 5528 — 1) +5.32(1 — B) + (3 — 4B)0;3, 4) s+ 3928 — 1)+ 3.72(1 — ) + (3 — 4B)0,.4.4)
Vg,
1+ (3 —48)034 1+ (3 —48)0aa
and
g 31(2a—1+(4a—3)9115)+2x35(1—a) 20(201—]+(4a—3)0125)+2x25(1—a)
5 —

1+(40l—3)9115
39(2a—]+(4(x—3)9135)+2><40(1—01)

l+(40l—3)9125
36(20{—1+(4a—3)9145)+2X41(1—a)

l+(4a—3)0,35

+60(2a—1—|—(4oc—3)9r15)+2><57(1—oc)

1+ (4a —3)045

+58(2a—l+(4¢x—3)9r25)+2><55(1—oz)

1+(4a—3)0r15

+7O(2a—1—|—(4oc—3)9r35)+2><67(1—oc)

1+(40l—3)9r25

+57(2a—1+(4a—3)9,45)+2x53(1—a)

1+ (4a — 3)0; 35

1+ (4a — 3)0; 45

To solve model (18), we set parameters 6 ; = 6;x; = 6, and 6, j; = 6, «; = 6, for each i, j, k. When (6, 6,) = (0.5, 0.5),
and the credibility levels are « = 0.9 and 8 = 0.7, we can get the evaluation results shown in Table 4 for each DMU with
Lingo software. From the solution results, we can learn information about each DMU. DMU, has the biggest «-efficient value
0.8971282, followed by DMUs and DMUs, which implies that DMU, is the most efficient DMU.

Furthermore, the evaluation results as regards the efficiency for each DMU with different values of parameters 6; and
0, are reported in Table 5, from which we can see that the efficiency for each DMU varies when we adjust the values of
parameters 6; and 0, in the unit interval [0, 1]. The most efficient values or the least efficient values for all the DMUs aren’t
reached at the same parameters (6}, 6;). Therefore, with the method proposed in this paper, the decision makers can obtain

more precise information so that they can take a better decision.
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7. Conclusions and future work

In fuzzy possibility theory, the type-2 fuzzy variable is an appropriate tool for describing type-2 fuzziness. This paper
attempted to propose some methods of reduction for type-2 fuzzy variables, and applied the methods to the DEA model
with type-2 fuzzy inputs and outputs. The major new results of the paper include the following four aspects.

(i) The optimistic CV, pessimistic CV and CV for RFVs were presented, and the properties of CVs for trapezoidal, triangular,

normal and gamma RFVs were discussed (Theorems 1-3, and Corollary 1).

(ii) On the basis of the properties of the CVs, the optimistic, pessimistic and CV reduction methods were proposed. The
reductions for type-2 triangular, normal and gamma fuzzy variables were discussed in Theorems 4-6.

(iii) For general fuzzy variables, we defined a generalized credibility measure, and discussed the properties of the reduced
fuzzy variables of type-2 triangular and normal fuzzy variables (see Theorems 7 and 8).

(iv) Using the proposed reduction methods, a new class of generalized credibility DEA models was established. According
to the properties of the generalized credibility measure, when the inputs and outputs are mutually independent type-
2 triangular fuzzy variables, we can turn the proposed DEA model into its equivalent parametric programming form.
One numerical example was also provided to demonstrate the modeling idea and the efficiency of DMUs via different
parameter values involved in the proposed DEA model.

Type-2 fuzzy theory is a fertile field for research. This paper focuses on theoretical and computational issues as regards type-
2 fuzzy variables. While some issues have been resolved, some new ones have been exposed, such as that we may consider
how to reduce a general type-2 fuzzy variable, and apply the proposed reduction methods in various practical management
problems.
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