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a b s t r a c t

Wepresent an iterationmethod for thepolynomial approximation of rational Bézier curves.
Startingwith an initial Bézier curve, we adjust its control points gradually by the scheme of
weighted progressive iteration approximations. The Lp-error calculated by the trapezoidal
rule using sampled points is used to guide the iteration approximation. We reduce the Lp-
error by a predefined factor at every iteration so as to obtain the best approximationwith a
minimum error. Numerical examples demonstrate the fast convergence of ourmethod and
indicate that results obtained using the L1-error criterion are better than those obtained
using the L2-error and L∞-error criteria.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Rational Bézier curves are widely used for the representation of curves in computer aided geometric design (CAGD) [1].
However, the rational form has an inherent shortcoming: it is often difficult to obtain information about derivatives [2].
Therefore, many methods have been proposed for approximating rational Bézier curves by polynomial curves [3–6]. Seder-
berg [5] presented the hybrid polynomial approximation to rational curves for the first time in 1991. Then the convergence
condition of this hybrid approximation was further investigated in [6]. Floater [3] constructed high order approximation of
rational curves by polynomial curves. Recently, Huang [4] presented a simple method for approximating a rational Bézier
curve with a Bézier curve sequence through degree elevation.

Geometric Hermite interpolation (GHI) with parametric polynomial curves or splines has received a lot of attention since
it was first proposed in [7]. The interpolants depend only on geometric quantities such as data points, tangent directions,
curvatures, etc. It often results in a higher approximation order. However, GHI is usually solved from nonlinear systems of
algebraic equations, which makes it somewhat difficult to know the existence of solution and the approximation order. A
nice overview of the methods on GHI is given in [8]. Krajnc [9] presented GHI by planar cubic G1 splines that interpolate
three points and three tangent directions at every segment.

An active contour model for parametric curve and surface approximation was introduced in [10]. The key idea is to
iteratively change the control points of the active curve so that it deforms towards the target shape represented by sampled
points from the given curve. The active curve at each iteration is obtained byminimizing an error criterion, which is defined
by the weighted sum of a distance function to sampled points and a smooth function.

In this paper, we present an iteration method for the polynomial approximation of rational Bézier curves. Our algorithm
is based on the idea of weighted progressive iteration approximations proposed in [11], which is an improved version of
progressive iteration approximations [12–14] and has a faster convergence rate for any normalized totally positive basis.
More specially, a Bézier curve of degree n is initially defined by the n+1 sampled points from the given rational curve. Then
we use an error-driven scheme to iteratively change the control points of the approximating curve. At each iteration, the
Lp-error, defined between the rational curve and the approximating curve, is forced to be reduced by a predefined factor; if
such reduction in error cannot be achieved, the iteration will be terminated. So, the best approximation with a minimum
Lp-error can be obtained by our algorithm.
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2. Iteration approximation

A rational Bézier curve of degreem is defined by the control points ri ∈ Rd and positive weights wi ∈ R in the form

r(t) =

m∑
i=0

Bm
i (t)wiri

m∑
i=0

Bm
i (t)wi

, 0 ≤ t ≤ 1, (1)

where Bm
i (t) =

m
i


(1 − t)m−it i are the Bernstein polynomials.

We consider the problem of approximating the rational Bézier curve in (1) by a degree n Bézier curve using the iteration
approximation. At the beginning of the iteration, the initial approximating curve is expressed as

p0(t) =

n−
i=0

Bn
i (t)p

0
i ,

where

p0
i = r(ti), i = 0, 1, . . . , n. (2)

The n + 1 control points p0
i are sampled from the rational curve r(t) with the parameter values ti, where {ti}ni=0 is a real

increasing sequence and satisfies 0 = t0 < t1 < · · · < tn = 1.
Then by the weighted progressive iteration approximations [11], the curve at the (k + 1)th iteration, pk+1(t), k ≥ 0, can

be constructed as follows

pk+1(t) =

n−
i=0

Bn
i (t)p

k+1
i ,

where

pk+1
i = pk

i + ω∆k
i , ∆k

i = r(ti) − pk(ti), i = 0, 1, . . . , n. (3)

The weight ω in (3) can be taken to be some special value so that the iteration approximation will have the fastest
convergence rate, see [11, Theorem 1].

Therefore, we get a Bézier curve sequence pk(t), k = 0, 1, . . . , which shares the weighted progressive iteration
approximation property, i.e.,

lim
k→∞

pk(ti) = r(ti), i = 0, 1, . . . , n. (4)

It means that the limit curve will interpolate the n + 1 target points sampled from the given rational curve. In [11–14], the
iteration is terminated when max{‖r(ti) − pk(ti)‖: i = 0, 1, . . . , n} is less than a user-defined threshold or the maximum
number of iterations is exceeded. In this paper, we are interested in finding a good approximation to the rational curve rather
than the sampled points. For this purpose, we terminate the iteration process after some steps according to the change of
Lp-errors.

3. Error measurement

Let r(t) and p(t) be a rational Bézier curve and its approximating Bézier curve, respectively. We define the Lp-error for
the approximation as follows:

εp =

∫ 1

0
‖r(t) − p(t)‖p dt

1/p

, 1 ≤ p < ∞, (5)

and when p = ∞,

ε∞ = max
t∈[0,1]

‖r(t) − p(t)‖ . (6)

If p = 2 and r(t) degenerates to a Bézier curve, direct integration of (5) will be possible. However, for a general case, it
is almost infeasible to integrate it explicitly. Thus, numerical integration methods are commonly used which can provide
satisfactory results. We use the trapezoidal rule to tackle it. By dividing [0, 1] into H subintervals of equal length h =

1
H , it

allows
εp

p
=

H−1−
i=0

h
2


‖r(si) − p(si)‖p

+ ‖r(si+1) − p(si+1)‖
p

=
h
2


‖r(s0) − p(s0)‖p

+ ‖r(sH) − p(sH)‖p
+ h

H−1−
i=1

‖r(si) − p(si)‖p , (7)
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where si = ih (i = 0, 1, . . . ,H) are evenly spaced values in the parameter domain [0, 1]. It turns out to be quite
advantageous, because the common factor h can be factored out and ignored when the current error is compared with
the updated one in the iteration process. Similarly, (6) can be estimated by

ε∞ = max
0≤i≤H

‖r(si) − p(si)‖ . (8)

To achieve high accuracy, it is desirable that H be as large as possible. However, since the computation time increases as
H increases, we need to seek a balance between the speed and the accuracy. After our testing, we found that 50 ≤ H ≤ 100
works well.

Three kinds of Lp-errors (p = 1, 2, ∞) have been widely used to measure the quality in many approximation problems.
The L∞-error denotes the maximum distance of the two curves. And the L2-error which includes only squared terms is
preferred for conventional approximationmethods (e.g., the least-squaresmethods) in various fields of CAGD and geometry
processing. Such choice is convenient because it results in a linear theoretical framework and in linear algorithms. Recently,
more results on L1 approximation of differential equations have attracted greater interest. As shown in [15–17], the L1-error
results in much better shape preservation than the L2-error.

4. Algorithm

Based on the preceding analysis, we present the algorithm for approximating the rational Bézier curve r(t) in (1) by a
degree n Bézier curve

p(t) =

n−
i=0

Bn
i (t)pi. (9)

Firstly, we have to determine the parameter values {ti}ni=0 for the iteration process, which are assigned to the n + 1
sampled points of the given rational Bézier curve (see Section 2). It is a basic problem often encountered when interpolating
a sequence of pointswith a parametric polynomial curve.Many choices have been proposed to solve it, e.g., uniform, chordal,
centripetal, and so on. Obviously, the choice has a significant effect on the accuracy of the approximation. Floater [18] have
provided an excellent survey on this topic, thus we refer the interested reader to their paper. In this paper, we choose a
uniform distribution of the parameters,

ti = i/n, i = 0, 1, . . . , n. (10)
This simple assignment has also been used in many literatures [11–14]. Furthermore, by (10), we get t0 = 0 and tn = 1,
which enable the approximating curve (9) to interpolate both end points of the given rational curve.

Secondly, we have to determine the value ofω for the iteration approximation. Note that the Bézier representationmakes
use of the Bernstein basis, which has optimal shape preserving properties. And for the fastest convergence rate, we have
listed its corresponding value for every degree n in [11, Table 1]. From the table, we can set ω = 2 when n ≥ 8.

Finally, we use an error-driven scheme for the iteration approximation. More specifically, we introduce the following
criterion to decide whether the iteration is continued or not,

εk+1
≤ λεk, λ ∈ (0, 1). (11)

The reduction factor λ controls the error reduction for the next iteration, so that the error is forced to reach a minimum.
The value of λ naturally depends on the curve geometry, but there is no obvious way to specify it, since the geometrical
significance in terms of the curve shape is enigmatic. In fact, when λ is low, we can reduce the number of iterations but
lower the quality of the final solution. When λ is high, the approximation requires more iterations but results in a higher
quality approximation. Experimentally, we found that λ ∈ [0.85, 0.95] is a suitable value that gives good results.

We now summarize the algorithm as follows.

Algorithm 1 (Approximation of a rational Bézier curve).
Input: the control points {ri}mi=0 and weights {wi}

m
i=0 of a degreem rational Bézier curve.

Output: the control points {pi}
n
i=0 of the degree n Bézier curve, the number of iterations k, and the error ε.

Step 1. Let k = 0, λ = 0.9 and H = 100.
Step 2. Compute p0

i for i = 0, 1, . . . , n by (2) and ε0 by (7) or (8).
Step 3. Compute pk+1

i for i = 0, 1, . . . , n by (3) and εk+1 by (7) or (8).
Step 4. If εk+1

≤ λεk, then set k = k + 1 and go to Step 3. Otherwise, set pi = pk
i for i = 0, 1, . . . , n and ε = εk, and stop.

5. Examples and applications

We will present computational results for the following two curves. Note that the polynomial curve in Example 2 is
non-rational. But it can also be considered as a rational Bézier curve by setting all the weights to the same nonzero value,
e.g., 1.

Example 1. A planar rational Bézier curve of degree 7 is defined by the control points (0, 0), (0.5, 2), (1.5, 2), (2.5, −2), (3.5,
−2), (4.5, 2), (5.5, 2), (6, 0) and the associated weights 1, 2, 1/3, 2, 2, 1/3, 2, 1.
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Fig. 1. The approximation sequence and the error plot for the curve in Example 1.

Fig. 2. The approximating curve after 15 iterations.

Example 2. A planar Bézier curve of degree 15, which is the outline of the font ‘‘S’’, is defined by the control points (0, 0),
(1.5, −2), (4.5, −1), (9, 0), (4.5, 1.5), (2.5, 3), (0, 5), (−4, 8.5), (3, 9.5), (4.4, 10.5), (6, 12), (8, 11), (9, 10), (9.5, 5), (7, 6), (5, 7).

In Fig. 1, we consider the polynomial iteration approximation to the rational Bézier curve in Example 1 by Bézier curves
of degree n = 5. We use the L1-error and set λ = 0.9 in Algorithm 1, then the iteration will be terminated when k = 7.
However, the error measurement adopted in Algorithm 1 is not limited to the L1-error, it can also be the L2-error and L∞-
error. Table 1 lists the Lp-error of approximation for this case after specific number of iterations k. Clearly, we can see from
the results that the Lp-error first decreases and then, after reaching a minimum, increases slightly. Therefore, we can obtain
the optimal approximation when the Lp-error reaches its minimum. Obviously, this goal will be easily achieved if one sets
λ = 1 when using Algorithm 1. However, we take a different approach by setting λ = 0.9. Our main consideration is to
reduce the error significantly after every iteration, which is controlled by the factor λ. So, the algorithm terminates when
the error has no remarkable reduction or it starts to increase. Note that such a situation cannot be dealt with by previous
methods [11–14], since their error only measures the maximum variation of n + 1 sampled points to the target points,
where n is the degree of approximating polynomial curves. The approximating curve after 15 iterations shown in Fig. 2
clearly verifies this observation. Thus, in order to achieve a high quality approximation to the whole rational Bézier curve,
we have to choose the Lp-error as the error measurement.

For the curve in Example 1, we have implemented its polynomial approximations by Bézier curves of different degrees
n = 5, 6, . . . , 18. Table 2 lists the number of iterations required and the L1-error obtained by Algorithm 1 for each n.
Huang [4] presented a simplemethod for approximating a rational Bézier curvewith a Bézier curve sequence, whose control
points are those of degree-elevated rational Bézier curves. ByHuang’smethod, the rational Bézier curve can be approximated
by a Bézier curve sequence with degrees n from 8 to 18, with the corresponding L1-errors shown in Table 2. By comparison,
our algorithm can produce better approximation results. However, we should notice the fact that the Bézier curve sequence
generated by Huang’s method converges uniform to the given rational Bézier curve, which means that the L1-error can be
infinitely small if n is large enough. So, the conclusion is that our algorithm is better when n is small (e.g., n ≤ 50). Moreover,
polynomials of lower degree are preferred and occur frequently in practical applications.

In Fig. 3, we consider the polynomial iteration approximation to the Bézier curve in Example 2 by Bézier curves of degree
n = 6. If we set λ = 0.9, the iteration will be terminated after 3 iterations and the L1-error is 0.4364. And if we set λ = 0.95,
the iteration will be terminated after 6 iterations and the L1-error is 0.3472.
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Fig. 3. The approximation sequence and the error plot for the curve in Example 2.

Fig. 4. The improved results by subdivision.

Fig. 5. Comparison of our algorithm (red) and the degree reduction method (blue). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

To improve the approximation effect, we subdivide the given curves at the midpoint (t = 0.5) of the parameter domain
[0, 1], with the results shown in Fig. 4. It is clearly visible that better approximations can be obtained by combining our algo-
rithm with subdivision. Furthermore, we find that after one or two steps of subdivision, satisfactory approximation results
can usually be obtained by setting λ = 0.9. However, there is a limitation for its use: the number of subdivisions is unknown
a priori. So, we may have to repeat several times of subdivision if the error is not less than the user-prescribed tolerance.

The number of iterations required by Algorithm 1 depends on the choice of the Lp-error and the reduction factor λ.
We have tested our algorithm on various examples. Numerical experiments indicate that the L1-error is generally a more
reasonable choice. And for the value of λ, 0.9 is an appropriate value. In case the number of iterations is too small, 0.95
always works and can improve the approximation by increasing the number of iterations, such as Fig. 3. But usually, an
obvious disadvantage of λ = 0.95 is that it will lead to too many iterations.

Our algorithm can be applied to degree reduction of polynomial curves, which is an important and widely studied
approximation problem in CAGD. It consists of approximating a given curve by another one of lower degree. Manymethods
have been proposed for degree reduction of Bézier curves, see e.g. [19] and the references therein. However, very few studies
have been done for rational Bézier curves since their weightsmake it very difficult to handle. In Fig. 5, the curve in Example 2
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Table 1
The Lp-error (p = 1, 2, ∞) at the number of iterations k.

k L1-error L2-error L∞-error k L1-error L2-error L∞-error

0 0.587966 0.647934 0.935783 20 0.047859 0.068542 0.160826
1 0.373380 0.407808 0.587285 25 0.050398 0.073691 0.171592
2 0.241066 0.260254 0.363333 30 0.052459 0.077382 0.179292
3 0.157436 0.167993 0.226607 35 0.054022 0.079970 0.184779
4 0.106211 0.112379 0.159531 40 0.055173 0.081764 0.188518
5 0.075101 0.080172 0.133376 45 0.056003 0.082998 0.191065
6 0.057160 0.063431 0.122700 50 0.056592 0.083845 0.192800
7 0.047549 0.055955 0.119377 55 0.057004 0.084424 0.193982
8 0.043439 0.053469 0.119790 60 0.057291 0.084820 0.194787
9 0.042285 0.053323 0.122125 65 0.057488 0.085090 0.195335

10 0.042231 0.054212 0.125328 70 0.057624 0.085274 0.195708
11 0.042623 0.055541 0.128893 75 0.057717 0.085399 0.195962
12 0.043149 0.057048 0.133137 80 0.057781 0.085485 0.196135
13 0.043773 0.058615 0.137381 85 0.057824 0.085543 0.196253
14 0.044373 0.060183 0.141424 90 0.057854 0.085583 0.196334
15 0.044958 0.061721 0.145237 95 0.057874 0.085610 0.196388

Table 2
The L1-errors of the approximations using Bézier curves of degree n.

n Our algorithm (λ = 0.9) Our algorithm (λ = 0.95) Huang’s method
Iterations L1-error Iterations L1-error

5 7 0.047549 8 0.043439 N/A
6 5 0.040826 5 0.040826 N/A
7 4 0.037923 4 0.037923 0.538050
8 3 0.035547 3 0.035547 0.261699
9 2 0.034865 8 0.023335 0.165832

10 3 0.027749 10 0.016259 0.130822
11 5 0.018826 9 0.013806 0.110264
12 5 0.015641 8 0.012295 0.095444
13 5 0.013274 7 0.011220 0.084161
14 5 0.011592 7 0.009933 0.075275
15 5 0.010376 7 0.008897 0.068084
16 5 0.009484 12 0.006065 0.062141
17 6 0.007859 25 0.002309 0.057146
18 7 0.006434 27 0.001462 0.052890

is degree reduced to degree 6. We have compared the result by our algorithm with that by the degree reduction method
in [19]. The L1-errors are 0.3472 and 0.1637, respectively. It is clearly seen that our algorithm is comparable to the best
method for degree reduction. In fact, all the results shown in Figs. 1–5 can be considered as the approximating curves
obtained after degree reduction of rational Bézier curves.

6. Conclusion and future work

In this paper, we have proposed an iteration algorithm for approximating rational Bézier curves. Our attention is focused
on the error reduction at every iteration, which guides the iteration approximation to output a high quality result. We use
a global Lp-error criterion to adjust the control points so that the entire curve is approximated well. In the computational
experiments, the L1-error criterion generated better approximation results than the L2-error and L∞-error criteria.

We only consider the positions of points in the iteration approximation. In practice, the derivatives of points are also
very important information. So, generally speaking, our method cannot do better than those methods using derivatives,
such as [3]. While rational Bézier curves are important, the truly ubiquitous curve tools in CAD are B-spline curves or NURBS
curves. We will generalize our results to these curves.
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