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1. Introduction

Let us consider the following unconstrained optimization problem:
min {f(x) | x € R"}, (1.1)

where f : R" — R is a continuously differentiable function and its gradient is denoted by g(x) = Vf(x).

Conjugate gradient methods constitute an excellent choice for efficiently solving the optimization problem (1.1),
especially when the dimension n is large due to the simplicity of their iteration, convergence properties and their low
memory requirements. These methods generate a sequence of points {x,}, starting from an initial point X, € R", using
the iterative formula

X1 =X +opdy, k=0,1,..., (1.2)
where o > 0 is the stepsize obtained by some line search and d, is the search direction defined by

) —so0. ifk = 0;

di = {—gk + Bidi—1, otherwise, (1.3)
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where g, = g(x) and By is a scalar. Conjugate gradient methods differ in their way of defining the scalar parameter ;.
The most well-known formulas are the Hestenes-Stiefel [ 1], the Fletcher-Reeves [2], the Polak-Ribiére [3] and the Perry [4]
formulas which are specified by
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respectively, where s;_1 = X — Xk—1, Yk—1 = & — Zk—1 and || - || denotes the Euclidean norm. In case the objective function

f is strictly convex and the performed line search is exact, all choices for the update parameter are equivalent but for a
general function, each choice for the update parameter leads to quite different computational efficiency and convergence
properties. We refer to the books [5,6], the survey paper [7] and the references therein for more details about the numerical
performance and the convergence properties of conjugate gradient methods.

Birgin and Martinez [8] introduced a more general form of conjugate gradient methods embedding the spectral
gradient [9] in the conjugate gradient framework, where the search direction is determined by

—8o, ifk = 0;

— 1

dk {_(Sgk + Brdy_1, otherwise, e
k

where § is a scalar. Using a geometric interpretation for quadratic function minimization, Birgin and Martinez suggested
the following expressions for defining the update parameter g in Eq. (1.4)

SHS gy seR _ Ok—1 gkl SPR _ Sk—184 V-1 sp_ 8 k=1 — SkSk—1)
COTsyade” T T gl T T Sllgea 2T T T S der
Clearly, in case 6, = &r_1 = 1 these formulas are reduced to the respective classical formulas. Moreover, the authors
presented some encouraging numerical results, in case Jy is taken to be the spectral quotient [9], namely
5 = 5%-_1ka1 !
Sk—15k=1

which lies between the minimum and the maximum eigenvalue of the average Hessian fol V2f (X¢—1 + 8si_1)ds. The
motivation for this selection of §; constitutes in providing a two-point approximation to the secant equation underlying
quasi-Newton methods [9].

During the last decade, much effort has been devoted to develop new conjugate gradient methods which not only possess
strong convergence properties but are also computationally superior to the classical methods and are categorized in two
classes. The first class utilizes second order information to improve the numerical efficiency of conjugate gradient methods
based on modified secant equations (see [10-13]). Ford et al. [ 14] proposed a multi-step conjugate gradient method which
is based on the multi-step quasi-Newton methods [11,12]. In more recent works, Li et al. [15] and Babaie et al. [10,16]
proposed some conjugate gradient methods which are based on modified secant equations with higher order accuracy in the
approximation of the curvature of the objective function. Under proper conditions, these methods are globally convergent for
general functions and sometimes their numerical performance is superior to classical conjugate gradient methods. However,
the main disadvantage of these methods is that they cannot ensure the generation of descent directions, therefore restarts
are employed in their analysis and implementation in order to guarantee convergence.

The second class focuses on generating descent conjugate gradient methods independent of the accuracy of the line
search. Similar to the spectral conjugate gradient method [8], Zhang et al. [ 17-19] considered to modify the search direction
in order to develop conjugate gradient methods which generate descent directions using any line search. Independently,
Hager and Zhang [20] considered a different approach to develop descent conjugate gradient methods by modifying the
update parameter in Eq. (1.3), namely

il
——g. di_1.
Ol

More specifically, in their proposed method, called CG-DESCENT, the update parameter can be viewed as a modification of
the HS formula by adding the extra term —ugy dx—1 with u = 2||yk_1?/(vi_,dk—1)? in order to ensure sufficient descent.
Along this line, Yu et al. [21] by a method of undetermined coefficient, introduced a new class of spectral conjugate gradient
methods in the following way
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where C is a parameter which essentially controls the relative weight between conjugacy and descent and in case C > 1/4
then the generated directions are always descent. Notice that B} is a special case of B2 with § = 1and C = 2.
Moreover, Yu et al. proved that their proposed methods are globally convergent for uniformly convex functions under the
Wolfe conditions. Recently, Yuan [22] motivated by the previous works [20,21,17] proposed a class of descent conjugate
gradient methods which possess global convergence for general functions and are also computationally competitive to
classical methods.

In this work, we propose some new spectral conjugate gradient methods which possess the advantages of the two
previously discussed classes. More specifically, our proposed methods guarantee sufficient descent independent of the
accuracy of the line search and they have the attractive property of achieving a high-order accuracy in approximating the
second-order curvature information of the objective function by utilizing the modified secant condition proposed in [10].
Furthermore, we establish the global convergence of our proposed class of methods provided that the line search satisfies
the Wolfe conditions.

The remainder of this paper is organized as follows. In Section 2, we present our motivation and a modification of Perry’s
spectral conjugate gradient method. In Section 3, we present the global convergence analysis for general functions and
generalize our technique to the rest of the conjugate gradient methods. The numerical experiments are reported in Section 4
using the performance profiles of Dolan and More [23]. Finally, Section 5 presents our concluding remarks and our proposals
for future research.

2. Modified spectral Perry conjugate gradient method

At this point, we recall that for quasi-Newton methods, an approximation matrix B,_; to the Hessian V2f (x;_1) is updated
so that a new matrix By satisfies the following secant condition

BiSk—1 = Yk—1- (2.1)
By expanding condition (2.1), Zhang et al. [24] and Zhang and Xu [25] proposed the following modified secant condition
Bi—1Sk-1 = Zk—1, (2.2)
with
Ok—1
Zk—1 = Yr—1 + u,
k—1 Yik—1 5%,111 (2'3)

Ok—1 = 6(fic1 — fi) + 3(8k + Z—1)"St1-

where u € R" is a vector parameter satisfying sz_lu # 0 and fy = f(x). Notice that this new quasi-Newton equation
contains not only gradient value information but also function value information at the present and the previous step. In
addition, the theoretical advantages of the modified secant equation (2.2) can be seen from the following theorem.

Theorem 2.1 ([24]). Assume that the function f is sufficiently smooth and sy_1 is sufficiently small, then the following two
estimates hold:

St 1 (V2 (x)Sk—1 — Y1) = O(lIsk—11?),
Se_1 (VAF X)Sk—1 — 2k—1) = O(lIsi—111*).

Obviously, the above equations imply that the modified secant equation (2.2) is superior to the classical one (2.1) in the
sense that z,_; better approximates V2f (x;)si_; than y;_1.

Quite recently, Babaie-Kafaki et al. [ 10] noticed that for values of ||s;_1 || greater than one (i.e. ||s,_1|| > 1), the standard
secant equation (2.1) is expected to be more accurate than the modified secant equation (2.2). In order to overcome this
difficulty, the authors considered an extension of the modified secant equation (2.2) as follows:

- - max{6y_1, 0}
Br—1Sk—1 = Zk—1,  Zk-1 =Ye1 F o1 — U, (24)
Sp_qU
where parameter p,_1 € {0, 1} and adaptively switch between the standard secant equation (2.1) and the modified secant
equation (2.4), by setting px—1 = 1if ||sx—1]| < 1 and setting p,—; = 0, otherwise.
By taking into consideration the theoretical advantages of the modified secant equation (2.4), the computational
efficiency of the descent spectral Perry conjugate gradient method [26,21] and the strong convergence properties of the

conjugate gradient methods which have the property 8y > 0[27,28], we propose a modification of formula ;SkDSP as follows:

B = - , gldis (2.5)
82l dk G-

MSP 8 Gie1 — SkSk—1) _ min 8L Gk—1 — Sksk—1) CllZk—1 — Siskll® ¢
(Skzl-{_ldk—l

with C > 1/4. Formula ,3,'(\/[5" satisfies the following lemma whose proof is exactly the same with that of Theorem 2.1in [21],
thus we omit it.
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Lemma 2.1. Consider any iterative method of the form (1.2) and (1.4) in which 5" > 0 and . € [BY*", max{s"", 0}]. If
Zl dy—1 # Othen

le=—(1- ) <l (26)
8tk = 4C Sk Ekll™- .

Moreover, motivated in [8,9,29,21], parameter S, is selectedina spectral manner based on the Rayleigh quotient, namely

P

~ Sp_1Zk—1

8= . (2.7)
Sk—15k—1

Clearly, the above spectral step size minimizes the quantity ||8sx_; — Z¢_1 || providing a scalar approximation to the modified
secant equation (2.4) [30].

Now, based on the above discussion, we present our proposed algorithm called the modified spectral Perry conjugate
gradient algorithm (MSP-CG).

Algorithm 2.1 (MSP-CG).

Step 1: Choose an initial pointxy € R"and 0 < 07 < 03 < 1; Set k = 0.
Step 2: If||gk|l = O, then terminate; Otherwise go to the next step.
Step 3: Compute the descent direction by Eq. (1.4), where gy is defined by (2.5).
Step 4: Determine a stepsize oy, using the Wolfe line search:
F e+ axdi) = F(00) < orougy di, (2:8)
gk + o) di = 028y d. (2.9)
Step 5: LetxXyiq = Xi + opdy.

Step 6: Setk =k + 1and go to Step 2.

Remarks. In Algorithm 2.1, since the line search satisfies the Wolfe line search conditions (2.8) and (2.9), it immediately
follows that Z,L]dk_1 > yL]dk_l > 0 for all k, which implies that formula (2.5) is well defined.

3. Convergence analysis

In order to present the global convergence analysis, we make the following assumptions on the objective function f,
which have often been used in the literature [7,5,6] to establish the global convergence of conjugate gradient methods.

Assumption 1. The level set £ = {x € R"|f(x) < f(xo)} is bounded, namely, there exists a positive constant B > 0 such
that

Ix|| <B, VxedL. (3.1)

Assumption 2. In some neighborhood  of £, f is differentiable and its gradient g is Lipschitz continuous, i.e. there exists
a positive constant L > 0 such that

lg@) —gWIl <Llix—yll, Vx,yeN. (3.2)
Since {fi} is a decreasing sequence, it is clear that the sequence {x,} generated by Algorithm MSP-CG is contained in .£.

In addition, it follows directly from Assumptions 1 and 2 that there exists a positive constant M > 0 such that
el <M, Vxe L. (33)

To present the convergence analysis the following lemmas are needed.

Lemma 3.1 ([10]). Suppose that Assumptions 1 and 2 hold. For 6y_ and z,_ defined by equations (2.3) and (2.4), respectively,
we have

2 ~
[Ok—1] < 3LlIsk—111° and ||Zx—1]l < 4LlIsk-1]-

The following lemma is a general result of conjugate gradient methods implemented with a line search that satisfies the
Wolfe conditions (2.8) and (2.9).
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Lemma 3.2. Suppose that Assumptions 1 and 2 hold. Consider any method of the form (1.2) where d, is a descent direction,
ie. d{gk < 0 and «y satisfies the Wolfe line search conditions (2.8) and (2.9), then

(g[z-dk)z
2 T <+

k>0

Obviously, it follows from Lemma 3.2 and Eq. (2.6), that

4
s ladt 54)

£ el

which is very useful for the global convergence analysis.

In the following, we establish that the Algorithm MSP-CG is globally convergent for general nonlinear functions. In the
rest of this section, we assume that the positive sequence {8k} is uniformly bounded, namely there exist positive constants
SMIN and SMAX! such that SMIN < Sk < SMAX-

For the purpose of showing the global convergence, we state some properties for the search direction di, formula ﬁ,’?’lsp
and step s,_1. Firstly, we present a lemma which shows that, asymptotically, the search directions change slowly.

Lemma 3.3. Suppose that Assumptions 1and 2 hold. Let {x,} and {d,} be generated by Algorithm MSP-CG, if there exists a positive
constant u > 0 such that for all k

gkl = . (3.5)
then d, # 0 and

2
D llwe = wia|1? < oo,

k>1
where wy, = di/|ldi].

Proof. Firstly, note that d, # 0, for otherwise (2.6) would imply g, = 0. Therefore, wy, is well defined. Now, let us define

1 8k nd 6 = Msp”dkfln

ST M T A e GO
Then, by Eq. (1.4), we have

wg = T + Owy—1. (3.7)
Using this relation with the identity ||w| = ||wk—1|| = 1, we obtain

Tl = llwe — Gewr—1ll = llwe—1 — Gewell.
Moreover, using this with the condition 6, > 0 and the triangle inequality, we get

lwk — w1l < llwe — Gewi—1ll + lwk—1 — Gewill = 2||7l. (3.8)

Therefore, using this relation with (3.4), we obtain

4 el
D lwe = wial> =) 4llnd)* < > AR
k

=
k>1 k>1 SunM° =T

which completes the proof. O

Next, we present a lemma which shows that ﬂ,’c‘"sp will be small when the step s;_ is small which implies that the

Algorithm MSP-CG prevents the inefficient behavior of the jamming phenomenon [31] from occurring. This property is
similar to but slightly different from Property (x), which was derived in [28].

Lemma 3.4. Suppose that Assumptions 1and 2 hold. Let {x;} and {dy} be generated by Algorithm MSP-CG, if there exists a positive
constant p > 0 such that Eq. (3.5) holds; then there exist constants b > 1 and A > 0 such that for all k:

IBYPI < b (3.9)
and

MSP

Isk—1ll <A = 18| < (3.10)

(S
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Proof. Utilizing Lemma 3.1 together with (2.4), (2.6), (2.9) and (3.5), we obtain

=T T T 1 pw?
Zy g1 =2 Y 11 2 (02— Dg_ 1= (1—o02) | 1— ) (3.11)

Moreover, observe that
glz-dk—l :y£_1dk—l +ng_1dk—1 < 2]3-_1‘1!{—1- (3]2)
Again, the Wolfe condition (2.9) gives

gidi 1 > 0ol dk_1 > —0oZ dk_1 + 0ag] dy_1. (3.13)
Since 0, < 1, by rearranging the previous inequality, we obtain

Sidio1 > —(02/1 — 02)Z_ i1,
which together with (3.12), gives

gl di

02
=7 < max{i, 1} . (3.14)
zk—]dk*1 (1—07)

From Assumption 2 together with Lemma 3.1 and relations (3.5), (3.11) and (3.14) we have

1BYSP| = ng(%k—l — 8kSk—1) _ C||~5k—1 — Sise|? T4,
SiZy_1 i1 Sk (Zi_1dk—1)?
- JB Uzl Sullsical) | Mot o+ 20 o + sl
= =~ < =~ Kk Yk—1
5/(|Z[71d/<,1| 3k|Z,Z;1dk,]|2 ¢
32ML? 4+ 128CBL® max {0y /(1 — 03), 1}
= lIsk—1ll = DlIsg—1l- (3.15)

Suin(1 — 02)(1 — 1/(4C))p?

Therefore, by setting b := max{2, 2DB} and . := 1/Db, we have that relations (3.9) and (3.10) hold. The proof is
complete. O

Subsequently, making use of Lemmas 3.3 and 3.4, we establish the global convergence theorem for Algorithm MSP-CG
for general functions.

Theorem 3.1. Suppose that Assumptions 1 and 2 hold. If {x;} is obtained by Algorithm MSP-CG, then we have

lim inf ||g.|| = O. (3.16)
k— o0

Proof. Assume that the conclusion (3.16)is not true. Then there exists a positive constant « > Osuch that forallk, ||gk| > u.
The proof is divided in the following steps:

Step I. A bound on the step s;. Let § be a positive integer, chosen large enough that § > 4BD, where B and D are defined in
(3.1) and (3.15), respectively. For any | > k > ko with [ — k < §, following the same proof as the case II of Theorem
3.2in[20], we get

-1
> sl < 2B.
j=k

Step II. A bound on the directions d,. It follows from the definition of dy in Eq. (1.4) with (3.1), that

MIN

2
1 M \?
lldi))? < (S*||gz||+|ﬁ,““’|||du||) 52(5—) + 2D?([si1 12 1ldi—1 1%
1

Now, the remaining argument is standard in the same way as case IIl in Theorem 3.2 in [20], thus we omit it. This
completes the proof. O
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Using the same approach with Yu [26], Yu et al. [21] and Yuan [22], we modify the rest of the spectral conjugate gradient
methods, accordingly

T T 52

Zi— Zi— Cllzg—

;LV[SHS %/;- k=1 min 4 %}; k—1 - ~||T =1l T4 LU (3.17)
5/<Z,<,1dk—1 OkZp_qdk—1 Ok(Zy_,dik—1)?

S 2 Sk 2 82 2

II{\/ISFR _ ~k 1||gk||2 _ min Nk 1||gk||2’ _ k 1||gk|£|1 Td ne (318)
Sk llgr—1l Skllgk—111*  Skllgr—1ll
Sk_181 7 Sko18TZq C82 N1Zk—1ll?

MSPR _ k—18k k21 _ min ] %18 k21’ ~k_1|| k 14|| T4, | (3.19)
Sellge1 Sellgr—1l Sellgr—1l

Similar to the MSP formula we can easily verify that if parameter C > 1/4, then all the above formulas ensure sufficient
descent independent of the accuracy of the line search and under the Wolfe line search conditions (2.8) and (2.9) the
corresponding methods are globally convergent.

Theorem 3.2. Consider any conjugate gradient method of the form (1.2)-(1.4) where the update parameter By in Eq. (1.4) is
defined by one of the formulas (3.17)-(3.19), then the generated search directions guarantee the sufficient descent condition.
Moreover, if the line search satisfies the Wolfe conditions (2.8) and (2.9) and the assumptions of Theorem 3.1 hold, then the
corresponding conjugate gradient method is globally convergent for general functions.

4. Experimental results

In this section, we report some numerical results on a set of 73 unconstrained optimization problems. These test problems
with the given initial points can be found on Andrei Neculai’s web site.! Each test function is made an experiment with the
number of variable 1000, 5000 and 10 000, respectively.

We evaluate the performance of our proposed conjugate gradient algorithm MSP-CG with that of the CG-DESCENT
method [20] and the descent spectral Perry (DSP) conjugate gradient method [21]. The CG-DESCENT code is coauthored
by Hager and Zhang obtained from Hager’s web page.? We stop the iterations if the inequality ||gk||oo < 1078 is satisfied.
We lmplemented Algorithm MSP-CG with the followmg parameters: C = 0.5, Sy = 10710 Syax = 10" and u = s
and in case (Sk does not belong to the interval [(SMIN, 8MAX] then we set (Sk = 8,( 1 as in [21]. The implementation
code was written in Fortran and compiled with ifort (with compiler settings -02 -double-size 128) on a PC
(2.66 GHz Quad-Core processor, 4 GB RAM) running Linux operating system. The detailed numerical results can be found
in http://www.math.upatras.gr/~livieris/Results/MSCG.zip. Moreover, all methods were implemented with the same line
search as CG-DESCENT.

The cumulative total for a performance metric over all simulations does not seem to be too informative, since a small
number of simulations can tend to dominate these results. For this reason, we have used the performance profiles proposed
in [23] to display the performance of each algorithms, in terms of function and gradient evaluations. The use of profiles
provide a wealth of information such as solver efficiency, robustness and probability of success in compact form and
eliminate the influence of a small number of problems on the benchmarking process and the sensitivity of results associated
with the ranking of solvers [23]. The performance profile plots the fraction P of problems for which any given method is
within a factor t of the best solver. The horizontal axis of the figure gives the percentage of the test problems for which a
method is the fastest (efficiency), while the vertical axis gives the percentage of the test problems that were successfully
solved by each method (robustness).

Fig. 1 presents the performance profiles of CG-DESCENT, DSP and MSP relative to the function and gradient evaluations.
Clearly, MSP exhibits the best overall performance since it illustrates the best probability of being the optimal solver,
outperforming CG-DESCENT, relative to both performance metrics. More analytically, the performance profile for function
evaluations shows that MSP solves 65.3% of the test problems with the least number of function evaluations while
CG-DESCENT and DSP solve about 46.5% and 53.8% of the test problems, respectively. As regards the gradient evaluations
metric, the interpretation in Fig. 1(b) illustrates that MSP solves 59.8% of the test problems with the least number of
gradient evaluations while CG-DESCENT and DSP solve about 48.4% and 51.6% of the test problems, respectively in the
same situation. Moreover, it is worth mentioning that MSP is the only method that successfully solved all the test problems.
Since all methods are implemented with the same line search, we conclude that the MSP appears to generate the best search
directions, on average.

Subsequently, we continue our experimental analysis by evaluating the performance of the rest of our proposed spectral
conjugate gradient with that of the CG-DESCENT and the corresponding classical descent spectral conjugate gradient

1 http://camo.ici.ro/neculai/SCALCG/testuo.pdf
2 http://www.math.ufl.edu/~hager/papers/CG
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Fig. 3. Log,, scaled performance profiles of conjugate gradient methods CG-DESCENT, DSPR and MSPR.

methods [21]. More specifically, in Fig. 2, we compare the performance of the modified spectral Hestenes-Stiefel (MSHS)
with that of the CG-DESCENT and the descent spectral Hestenes-Stiefel (DSHS), in Fig. 2 we evaluate the performance of the
modified spectral Polak-Ribiére (MSPR) with that of the CG-DESCENT and the descent spectral Polak-Ribiére (DSPR) and
in Fig. 4, we compare the performance of the modified spectral Fletcher-Reeves (MSFR) with that of the CG-DESCENT and
the descent spectral Fletcher-Reeves (DSFR). The interpretation in Figs. 2-4 shows that the proposed methods outperform
the classical methods relative to both performance metrics. Moreover, it is worth noticing that MSHS and MSPR outperform

CG-DESCENT which implies that the proposed methods are computational efficient.

403



404 LE. Livieris, P. Pintelas / Journal of Computational and Applied Mathematics 239 (2013) 396-405

1 TR TE TR TR T T TR T TR T = = R e =
g - * FLI AN ’
09 =il Pt 0.9 (e T emm ==
- peman
08 ____,.----' , 0.8} ST L 4
07t =" 1 o7t T 1
i o
06+ & — 06 f » 4
4 ‘!
& 05 &~ 05 1
04 | 1 0.4 1
4 1
03¢ - =CG-DESCENT ] 0.3 ='=CG-DESCENT ]
02 == DSFR q 0.2 == DSFR B
o1l MSFR | o1l MSFR
0 L 0 .
10' 10% 10' 107
T T
(a) Performance based on function evaluations. (a) Performance based on gradient evaluations.

Fig. 4. Log,, scaled performance profiles of conjugate gradient methods CG-DESCENT, DSFR and MSFR.
5. Conclusions and future research

In this paper, we proposed a new class of spectral conjugate gradient methods which ensures the sufficient descent
property independent of the accuracy of the line search. An important property of our proposed class of methods is that
it achieves a high-order accuracy in approximating the second order curvature information of the objective function by
utilizing the modified secant equation presented in [10]. Furthermore, the global convergence of our proposed methods
has been established under the Wolfe line search conditions for general functions. Based on our numerical experiments, we
concluded that the proposed methods are more efficient and more robust than the classical conjugate gradient methods,
providing faster and more stable convergence.

Our future work is concentrated on studying the convergence properties of our proposed methods using different inexact
line searches [32-36] and exploring different choices of the coefficient Sk

References

[1] M.R.Hestenes, E. Stiefel, Methods for conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards 49 (1952)
409-436.
[2] R. Fletcher, C.M. Reeves, Function minimization by conjugate gradients, Computer Journal 7 (1964) 149-154.
[3] E. Polak, G. Ribiére, Note sur la convergence de methods de directions conjuguees, Revue Francais d'Informatique et de Recherche Operationnelle 16
(1969) 35-43.
[4] A.Perry, A modified conjugate gradient algorithm, Operational Research 26 (1978) 1073-1078.
[5] Y.H. Dai, Y.X. Yuan, Nonlinear Conjugate Gradient Methods, Shanghai Scientific and Technical Publishers, Shanghai, 2000.
[6] J. Nocedal, S.J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.
[7] W.W. Hager, H. Zhang, A survey of nonlinear conjugate gradient methods, Pacific of Journal Optimization 2 (2006) 35-58.
[8] E.G. Birgin, .M. Martinez, A spectral conjugate gradient method for unconstrained optimization, Applied Mathematics and Optimization 43 (1999)
117-128.
[9] J. Barzilai, ].M. Borwein, Two point step size gradient methods, IMA Journal of Numerical Analysis 8 (1988) 141-148.
[10] S.Babaie-Kafaki, R. Ghanbari, N. Mahdavi-Amiri, Two new conjugate gradient methods based on modified secant equations, Journal of Computational
and Applied Mathematics 234 (2010) 1374-1386.
[11] J.A. Ford, L.A. Moghrabi, Multi-step quasi-Newton methods for optimization, Journal of Computational and Applied Mathematics 50 (1994) 305-323.
[12] J.A. Ford, L.A. Moghrabi, Using function-values multi-step quasi-Newton methods, Journal of Computational and Applied Mathematics 66 (1996)
201-211.
[13] Z. Wei, G. Yu, G. Yuan, Z. Lian, The superlinear convergence of a modified BFGS-type method for unconstrained optimization, Computational
Optimization and Applications 29 (2004) 315-332.
[14] J.A. Ford, Y. Narushima, H. Yabe, Multi-step nonlinear conjugate gradient methods for unconstrained minimization, Computational Optimization and
Applications 40 (2008) 191-216.
[15] G.Li,C.Tang, Z. Wei, New conjugacy condition and related new conjugate gradient methods for unconstrained optimization, Journal of Computational
and Applied Mathematics 202 (2007) 523-539.
[16] S. Babaie-Kafaki, M. Fatemi, N. Mahdavi-Amiri, Two effective hybrid conjugate gradient algorithms based on modified BFGS updates, Numerical
Algorithms 58 (3) (2011) 315-331.
[17] L. Zhang, W. Zhou, D. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numerische
Mathematik 104 (2006) 561-572.
[18] L. Zhang, W. Zhou, D. Li, A descent modified Polak-Ribiére-Polyak conjugate gradient method and its global convergence, IMA Journal of Numerical
Analysis 26 (4) (2006) 629-640.
[19] L.Zhang, W. Zhou, D. Li, Some descent three-term conjugate gradient methods and their global convergence, Optimization Methods and Software 22
(2007) 697-711.
[20] W.W. Hager, H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM of Journal Optimization 16 (2005)
170-192.
[21] G. Yu, L. Guan, W. Chen, Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization,
Optimization Methods and Software 23 (2) (2008) 275-293.
[22] G.Yuan, Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems, Optimization Letters
3(2009) 11-21.
[23] E. Dolan, JJ. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming 91 (2002) 201-213.



LE. Livieris, P. Pintelas / Journal of Computational and Applied Mathematics 239 (2013) 396-405 405

[24] ]J.Z. Zhang, N.Y. Deng, L.H. Chen, New quasi-Newton equation and related methods for unconstrained optimization, Journal of Optimization Theory
and Applications 102 (1999) 147-167.

[25] ]J.Z.Zhang, C.X. Xu, Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations, Journal of Computational
and Applied Mathematics 137 (2001) 269-278.

[26] G.H.Yu, Nonlinear self-scaling conjugate gradient methods for large-scale optimization problems, Ph.D. Thesis, Sun Yat-Sen University, 2007.

[27] Y.H.Dai, ]. Han, G. Liu, D. Sun, H. Yin, Y. Yan, Convergence properties of nonlinear conjugate gradient methods, SIAM Journal of Optimization 2 (1999)
345-358.

[28] ].C. Gilbert, J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM Journal of Optimization 2 (1) (1992)
21-42.

[29] M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM Journal of Optimization 7 (2007)
26-33.

[30] Y. Xiao, Q. Wang, D. Wang, Notes on the Dai-Yuan-Yuan modified spectral gradient method, Journal of Computational and Applied Mathematics 234
(10)(2010) 2986-2992.

[31] M.J.D. Powell, Restart procedures for the conjugate gradient method, Mathematical Programming 12 (1977) 241-254.

[32] L.Grippo, S. Lucidi, A globally convergent version of the Polak-Ribiére conjugate gradient method, Mathematical Programming 78 (3) (1997) 375-391.

[33] J. Han, ]J. Sun, W. Sun, Global convergence of non-monotone descent methods for unconstrained optimization problems, Journal of Computational and
Applied Mathematics 146 (2002) 89-98.

[34] Z]. Shi, ]. Guo, A new family of conjugate gradient methods, Journal of Computational and Applied Mathematics 224 (1) (2009) 444-457.

[35] Z.]. Shi, J. Shen, Convergence of nonmonotone line search method, Journal of Computational and Applied Mathematics 193 (2) (2006) 397-412.

[36] W. Sun, ]. Han, J. Sun, Global convergence of nonmonotone descent methods for unconstrained optimization problems, Journal of Computational and
Applied Mathematics 146 (2) (2002) 89-98.



	A new class of spectral conjugate gradient methods based on a modified secant equation for unconstrained optimization
	Introduction
	Modified spectral Perry conjugate gradient method
	Convergence analysis
	Experimental results
	Conclusions and future research
	References


