Journal of Computational and Applied Mathematics 239 (2013) 93-102

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Estimating the lifetime performance index with Weibull distribution
based on progressive first-failure censoring scheme

Mohammad Vali Ahmadi, Mahdi Doostparast*, Jafar Ahmadi

Department of Statistics, Ordered and Spatial Data Center of Excellence, Ferdowsi University of Mashhad, P. O. Box 91775-1159, Mashhad, Iran

ARTICLE INFO ABSTRACT

Article history: An important topic in the manufacturing industries is the assessing of the lifetime

Received 12 September 2011 performance. In this paper, it is supposed the lifetimes of products are independent

Received in revised form 4 September 2012 and have a common Weibull distribution with a known shape parameter. The lifetime
performance index (C;) proposed by Montgomery (1985) [1], is used for evaluating the

Keywords: performance of a process with respect to a lower specification limit (L). The maximum

Confidence interval

. oo . likelihood estimate of C; is obtained on the basis of the progressive first-failure censored
Maximum likelihood estimator

Process capability indices data. This estimate_ is then used for developing a Fonfiden_ce _interval for CL_. T_he bet_lavior
Pitman measure of closeness of the confidence interval for the parameter C; given a significance level is investigated
Weibull distribution and also two illustrative examples and a sensitivity analysis are given. For the exponential
distribution as a special case of Weibull distribution, a comparison study for various
estimates of C; based on mean squared error (MSE) and Pitman measure of closeness (PMC)

criteria is done.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

For measuring the performance of a process in the manufacturing and services industry, process capability indices (PCIs)
are used to examine the level of product quality. There are various PCls in the literature. For more details see for example
Montgomery [1] and references therein. Throughout this paper, the lifetime performance index (C;), defined in [1], is used
for evaluating the performance of the process given a lower specification limit (L). Statistical inference for C; on the basis of
various lifetime distributions has been considered. For example, Tong et al. [2] constructed the uniformly minimum variance
unbiased estimator (UMVUE) for C; and considered the problem of the hypothesis testing procedure for the one-parameter
exponential distribution based on a complete sample.

Usually, in life testing experiments, there are time limits and/or other restrictions including money, material resources,
mechanical or experimental difficulties on data collection. In these situations, the exact lifetime of products put on a test is
not observable and we have censored data. There are several types of censoring schemes in survival analysis and the Type-II
censoring scheme is one of the most common for consideration, see for example [3]. A generalization of Type-II censoring is
the progressive Type-II censoring which allows for units to be removed from the test at points other than the final termination
point. The description of the progressive Type-II censoring is as follows. A group of n products is placed on a test and the

test is terminated at the time of the m-th failure. When the i-th item fails (i = 1, 2, ..., m — 1), R; of the surviving items
are removed randomly from the test. Finally, all of the remaining items R, =n —m — j";] R; are removed from the test
when the m-th failure occurs. Notice that m and R = (Ry, ..., Ry,) are pre-assigned. See [4] for theory and applications

about progressive Type-II censoring. In recent years, there have been many works on the statistical inference for C; based
on the usual Type-II and progressive Type-II censoring schemes with various lifetime distributions. See, for example [5-10].
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Also, Lee et al. [11] have constructed a credible interval for C; using a Bayesian approach and proposed a Bayesian test for
evaluating the lifetime performance of the products.

In some cases, the lifetime of products is quite long and so the experimental time of the Type-II censoring scheme can
still be too long. In order to give an efficient experiment, the other test methods are proposed by statisticians where one
of them is the first-failure censoring scheme, introduced in [12] and further illustrated in [13]. In this censoring scheme,
m x n items are divided to m equal groups. Then, the life test is conducted by testing each of these groups simultaneously
and terminated when the first failure is observed in each groups. As mentioned in [14], based on this censoring scheme,
a considerable amount of time and money can be saved. Statistical inference on the parameters of various distributions
under the first-failure censoring scheme have been studied by several authors. For example, Wu et al. [15] and Wu and
Yu [16] obtained maximum likelihood (ML) estimates, exact confidence intervals and confidence regions for the parameters
of Gompertz and Burr type XII distributions on the basis of the first-failure censored data, respectively.

Since both of the above mentioned schemes improve the efficiency of the test, Wu and Kus [ 14] combined these schemes
in order to propose a new life test plan called the progressive first-failure censoring scheme which is more efficient in lifetime
studies. Also, assuming the two-parameter Weibull distribution for the lifetime data, Wu and Kus [14] proved that the
progressive first-failure censoring scheme had shorter expected test times than the progressive Type-II censoring scheme.
In the progressive first-failure censoring scheme, n disjoint groups with k items within each group (N = n x k) are placed on
a test at time zero. The life test is terminated at the time of the m-th failure. When the i-thitem fails i = 1,2, ..., m — 1),
randomly selected R; groups and the group including the i-th failure are removed from the test. When the m-th failure occur,
all of the remaining groups are removed from the test. Note that: (i) for k = 1, the progressive first-failure censoring scheme

is reduced to the case of progressive Type-II censoring, (ii) if R; = 0 fori = 1, 2, ..., m, we have the first-failure censoring,
(iii)ifk = 1,R; = 0fori = 1,2,...,m — 1 and hence R,, = n — m, this scheme is reduced to the Type-II right censoring
and (iv)ifk = 1andR; = 0fori =1, 2, ..., m, this scheme is simplified to the complete sample.

The Weibull model with known shape parameter has been considered in literature and applied in practice. See, for
example [17-19]. Notice that the exponential and Rayleigh distributions are two special cases of this model which are
used widely in reliability analysis [20]. Based on the Type-II right censoring scheme, Lee [21] used the max p-value method
to select the optimum value of the shape parameter 8 of the Weibull distribution and hence supposed that g is known.
Then, he constructed the ML estimator for C; and developed a testing procedure for the lifetime performance index of
the products with Weibull distribution on the basis of the Type-II right censored sample. The main aim of this paper is
to develop a confidence interval and the ML estimator for C; based on the progressive first-failure censored sample under
Weibull distribution with a known shape parameter. Therefore, the organization of this paper is as follows. In Section 2, we
introduce some properties of the lifetime performance index C; when the lifetime of the products is coming from the Weibull
distribution. The relationship between the lifetime performance index C; and the conforming rate (the ratio of conforming
products) is discussed in Section 2. The ML estimate of the lifetime performance index C; and some of the corresponding
statistical properties are investigated in Section 3. Section 4 develops a lower bound for the lifetime performance index
C;. Two illustrative examples and a sensitivity study via a Monte Carlo method are conducted in Section 5. In Section 6, a
comparison study for various estimates of C; based on MSE and PMC criteria is done under the exponential model. Section 7
concludes.

2. The lifetime performance index

Let X be the lifetime of products, then following [1], C;, is defined as

Q, = LLX, (1)
ox
where x and oy are, respectively, mean and standard deviation of X while Ly is a lower specification limit based on X’s
random variable. To assess the lifetime performance of products, C;, can be considered as the lifetime performance index.
Throughout this paper, we suppose that the random variable X of products follows a two-parameter Weibull distribution
with the shape and scale parameters 8 and A, respectively. Hence, the probability density function (p.d.f.) and the cumulative
distribution function (c.d.f.) of the lifetime X of products are

B rx\F-1 X\A
Kecnp =5 (3) ewf-(3){ x=02>0 >0 2)
A \A A
and
x\B
FAx;A,ﬂ):l—exp{—(X)}, x>0 %>0, 8>0, 3)
respectively. Since the mean and the standard deviation of the process are, respectively, given by ux = EX) =

AT (1+1/8) and ox = /Var(X) = A\/I‘ (1+2/8) — (I' (14 1/B))?, then from (1) the lifetime performance index
is given by

=2 r(14] Lx q LI 4
w=a [r(p) -3 emar(ieg). @
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Table 1
The lifetime performance index C;, versus the conforming rate P, for 8 = 1.89.
Ciy P, Ciy P, Ciy P, Ciy P,

—oo  0.00000 —-06 025456 0.2 052713 1.0 0.83828
—-13 0.10944 —-05 0.28273 03 0.56690 1.1 0.87121
—-12 012491 -04 031279 04 0.60715 1.2 0.90137
—1.1 0.14202 —-03 0.34467 0.5 0.64755 1.3 0.92832
—1.0 0.16084 —0.2 0.37828 0.6 0.68773 1.4 0.95162
-09 018146 —0.1 041350 0.7 072732 15 0.97086
—0.8 0.20393 0.0 045019 08 0.76589 1.6 0.98562
—-0.7 0.22829 0.1 048814 0.9 0.80302 1.7 0.99547

where
1/2

=[50 T

and I'(+) is the complete gamma function. Obviously, for AI'(141/8) > Lx, we have C;, > 0. Also, the failure rate function
r(x; A, B) is readily obtained as
X; A, X
o = 2B (X
1—FMx A B) A \A
From (4) and (6), we see that the failure rate function is decreasing in A while the lifetime performance index C, is increasing
in A. Therefore, C;, is appropriate for representing the lifetime performance of products.
Throughout this paper, if X > (<)Ly, then the product is called the conforming (nonconforming) product. Therefore, the
ratio of conforming products is known as the conforming rate which is defined as

1 B 1 1
P,:P(szx)zexp{—<r<1+ﬂ)—ACLX> } _°°<CLx<EF<1+E>' (7)

Obviously, a strictly increasing relationship exists between the conforming rate P, and the lifetime performance index G,
for given B > 0. In Table 1, some numerical values of C;, and the corresponding conforming rates P, for 8 = 1.89 are
presented. One can easily obtain P, from (7) for given C;,, and 8.

B-1
) , x>0,1>0, B >0. (6)

3. ML estimate of C;

Let X1 mnk < Xo:mnk < - -+ < Xmemen:k e the progressive first-failure censored sample from a continuous population with
p.d.f. and c.d.ffx(-; €) and Fx(-; 0), respectively, where 6 is a vector of parameters. Following [ 14], the associated likelihood
function of the observed data x = (x1, X2, ..., X;y) reads

L©: %) = C k" [ [ )11 — Fe(xis )10, (8)

i=1
where0 < x; < -+ < Xy, < oo and

m—1
C:n(n—Rl—1)(n—R1—Rz—2)~--<n—ZRi—m+1).
i=1

Upon substituting (2) and (3) into (8), the likelihood function becomes as

kp m m B m xi\ A
LG BiX) =C (Tﬂ) gxf U exp (—k;(Ri—f—l) (K> ) )

For known 8, the ML estimate of A is readily derived from (9) as
1

s li m . B
A= (m ;(R' + 1) Xi:m:n:k) . (10)

By using the invariance property of ML estimators (see [22]), the ML estimate of C;,, is given by

i [00) 15[ (o) ]

where W = k Z:T;] (Ri + 1) Xi'?m:n:k'
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Remark 3.1. Wu and Kus [14] proved that (2W /A#) has a chi-squared distribution with 2m degrees of freedom. Hence, it
can be shown that the ML estimator C;, is an asymptotically unbiased estimator, when m — oo. In addition, it is proved
that this estimator is consistent for Ci, .

Remark 3.2. Since the parameter 8 is known, from (9) and the fact that W has a gamma distribution with shape and scale
parameters m and A?, respectively, one can conclude that the statistic W is sufficient and complete for A.

4. Confidence interval for C;

In this section, a 100 x (1—a)% lower bound for C;, is obtained by using the ML estimate given by (11) and then, based on
this lower bound, a hypothesis testing procedure is developed in order to determine whether the lifetime performance index
of products meets the predetermined level. To this end, let cx denote the lower bound of C;,,. Notice that C;, of products
must be larger than cx. Our aim is to test the null hypothesis Hy : G, < cx (the product is unreliable) against the alternative

1 : G, > cx (the product is reliable). Since 8 is known and by Remark 3.1 and using the fact that QW /AB) ~ Xzzm, we
have

—ple. s r(1s! X%‘“*ngr11 AC, 12
=rlazg|r (e 5) - (52) (r(+5) )| ). (12

ora 100 x (1 — )% lower bound for C;, is

B, = |r(1s] X%*“*Zm%rl LANITS 13
Be=3 (W)‘ 2m (<+ﬁ>_ ) ()

where XJ/ is the y-th percentile of the chi-square distribution with v degrees of freedom. Since W ~ I'(m, A#) and Cy in
(4)isa strlctly increasing function of A, by Corollary 3.4.1 of [23], a uniformly most powerful (UMP) test for testing the null
hypothesis Hy : G, < cx against the alternative H; : C, > cx has the rejection region of the form

W>uw (14)

where w is a constant and determined by the level of the test. From Remark 3.1, the rejection region (14) is reduced to
(—o0, LBy). Thus, by Theorem 3.5.1 of [23], the lower bound LB, given by (13) is a uniformly most accurate lower (UMAL)
bound for C,,.

One may use the following computationally more simple approach. Using the transformation Y = X?, Yy <

Yommk < -+ < Ymmnx Will be the corresponding progressive first-failure censored sample from the one-parameter
exponential distribution with p.d.f. and c.d.f.

fr(y;0) =60exp(—6x), x>0,6 >0, (15)
and

Fy(y;0) =1—exp(—0x), x>0, 60 >0, (16)
respectively, where 8 = A~# and 8 is known. Thus, the lifetime performance index reduces to

CLY:MYT_YLyzl—GLy, —00 <G < 1, (17)

where uy = oy = 1/6 and Ly = Lfé. Substituting (15) and (16) into (8), the associated likelihood function of the observed
datay = (y1,¥2, ..., Ym) becomes as

m
L(O;y) = C (k&)™ exp <—k0 Z(R,- + l)y,-) , O<yi < - <ym<o0. (18)
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Table 2
Failures of 23 ball bearings data for Example 1.

17.88 28.92 33.00 4152 4212 4560 4848 51.84 5196 54.12 5556 67.80
68.64 68.64 68.88 84.12 93.12 98.64 105.12 105.84 127.92 128.04 173.40

The ML estimates of 6 and C;,, are

A m
b= (19)
k Z(Ri + 1)Yi:m:n:k
i=1
and
A m
G, =1- W Ly, (20)
respectively, where
m
W =k R+ 1Y (21)
i=1
Notice that 20W’ ~ x3. . Thus
1w = POW < 1)
X a2
—a,2m ~
:p(qy 31—2m(1—qy)>. (22)
From (22), the 100 x (1 — a)% lower bound for C;, can be derived as:
2
B, =1 Xe2mg ¢, (23)

Similarly, the rejection region for a UMP test of the null hypothesis H, : C;, < cy against the alternative H; : G, > cy is
(=00, LBy). This yields that LBy in (23) is a UMAL bound for Cj,.

5. Illustrative examples

For illustration of the proposed procedures, we consider a real data set, due to Lawless [24], a simulated first-failure
progressive censored sample and a sensitivity study via a Monte Carlo method.

Example 1 (Ball Bearing Data Set). In Table 2, the number of millions of revolutions before failing for 23 ball bearings in a
life test were presented, due to Lawless [24, p. 99]. Lawless [24] observed that the Weibull distribution is appropriate for
these failure times. In order to estimate the shape parameter § in the Weibull distribution, the Gini statistic is suggested
(see [25]). Similar to Lee [21], the Gini statistic is defined as

n—1
> iDits
Gy = =l n s
(n—1))_D
i=1

where D; = (n—i+1)(Tyy —Ty_1.p) fori = 2,3, ..., nand Dy = nTy,, while Ty,, = X .Forn > 20, (12(n — 1))/? (G, —0.5)
tends to the standard normal distribution N (0, 1). Hence, the p-value = P {|Z| > | (12(n — 1))1/? (gn — 0.5)|}, where g, is
the observed value of G,, and Z has an approximation of N (0, 1). So, by using the maximum p-value method, the optimum
value of 8 is selected and then we suppose $ is known. For the data set in Table 2, the values of 8 and the corresponding
p-values are shown in Table 3.

Table 3 indicates that 8§ = 1.89 is very close to the optimum value and the maximum p-value = 0.99797. So, we assume
that the failure times of ball bearings follow a Weibull distribution with the shape parameter § = 1.89.

A progressive first-failure censoring scheme was conducted with k = 1,m = 10 and (Ry,...,Ry) = (0,0,0,1, 2,
2,2,2,2,2) and the observed values were presented in Table 4. Let Ly = 28.58 and to deal with the product purchasers’
concerns about lifetime performance, the conforming rate P, of products was assumed to exceed 80%. From (7) and Table 1,
the Cy,, will exceed 0.9. Therefore, the performance index value is supposed to be cx = 0.9. Hence, the testing hypothesis
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Table 3
Numerical values of p-values for ball bearing data set.

B p-value B p-value B p-value B p-value

170 050983 1.82 081304 194 0.86507 2.06 0.57537
171 053310 1.83 083990 1.95 0.83909 2.07 0.55388
172 055683 1.84 0.86686 1.96 081336 2.08 0.53287
173 058098 185 0.89389 197 0.78793 2.09 051234
174 060554 186 092095 1.98 0.76280 2.10 0.49231
175 063047 187 094802 199 073801 2.11 047277
176 065574 1.88 097505 2.00 0.71357 2.12  0.45373
177 068134 189 099797 201 0.68950 2.13  0.43519
1.78 070722 190 097109 2.02 066583 2.14 041717
179 073337 191 094433 2.03 0.64256 2.15 0.39966
180 075974 192 091772 2.04 0.61972 2.16  0.38265
181 078630 193 089129 205 0.,59732 2.17 0.36616

Table 4

Progressive first-failure censored sample for ball bearing data set.
i 1 2 3 4 5 6 7 8 9 10
Ximnk 17.88 2892 33.00 41.52 42.12 4560 51.84 5196 55.56 105.12
Ri 0 0 0 1 2 2 2 2 2 2

Table 5

Transformed progressive first-failure censored sample with transformation Yimpnx = Kimonak) 52
based on the data in Table 4.

i 1 2 3 4 5 6 7 8 9 10
Yimnk 2328 577.7 7413 11442 11757 1366.0 1740.7 17483 1984.3 6622.0
Ri 0 0 0 1 2 2 2 2 2 2
Table 6
Simulated progressive first-failure censored sample.
i 1 2 3 4 5 6 7 8 9 10 11
Ximnk 0.1401 0.1684 0.2691 0.2860 0.2964 0.2967 0.3287 0.4513 0.6113 0.6241 0.6657
R 0 1 0 1 0 1 0 1 0 1 0
i 12 13 14 15 16 17 18 19 20 21 22
Ximnk 07395 07806 0.7916 0.8252 0.8753 09379 09584 1.0068 1.1725 12230 1.2341
Ri 1 0 1 0 1 0 1 0 1 0 1
i 23 24 25 26 27 28 29 30 31 32 33
Ximnk 12447 12731 13228 13648 1.3773 15918 15989 1.7877 19148 1.9501 1.9656
Ri 0 1 0 1 0 1 0 1 0 1 6

Hp : G, < 0.9 against the alternative Hy : C;, > 0.9 is concerned. From (13), the 95% lower bound for C;,, is obtained as
LBy, = 0.9772. Since cx = 0.9 ¢ [0.9772, 00), so we reject the null hypothesis Hy : C;, < 0.9 in favor of H; : C;,, > 0.9.

As discussed in Section 4, the proposed testing procedure for C;, can be stated. To this end, the values of Yi.n.nx =
Ki-m:n:k) 22 were presented in Table 5. By assumption Ly = 28.58, then Ly was obtained as 564.88. Thus, using the expression
P, = P(Y > Ly) = e% ™! the performance index value is supposed to be cy = 0.78 and the testing hypothesis H;, :
C,, <0.78versus H; : C, > 0.78 is constructed. From (23), the 95% lower bound for C;, is derived as LB, = 0.9906. Since
cy = 0.78 ¢ [0.9906, c0), we reject the null hypothesis Hy.

Based on the two methods, the lifetime performance index of products meets the required level.

Example 2 (Simulated Data Set). A progressive first-failure censored sample with n = 220,k = 4,m = 33 and (R4, ...,
Rn) = (0,1,0,1,...,0,1,6) was generated from a Weibull distribution with p.d.f. (2) and (8, 1) = (1.89, 3.35). The
observed data were reported in Table 6.

Based on the censored data in Table 6 and assuming Ly = 1.5,C;, = 0.9 and P, = 0.9, we obtained cx = 1.2 and
LB, = 0.7538. Since cx = 1.2 € [0.7538, 00), the null hypothesis Hy : C;, < 1.2 is not rejected. Similarly, the proposed
testing procedure for C;, can be conducted. To this end, let the transformation Yimmnx = Ximnr)'3, i = 1,2,...,33.
Thus, Ly = 2.152 and ¢y = 0.89. From (23), the 95% lower bound for C;, is obtained as LB, = 0.7099. Since cy = 0.89 €
[0.7099, 00), the null hypothesis Hj : C;, < 0.89 is not rejected.

Example 3 (Sensitivity Analysis). To carry out the effect of the shape parameter 8 and the censoring scheme (Rq, Ra, ..., Rp),
a simulation study was conducted for the different values of 8 = 0.5, 1, 1.89, 2, and 3 and the various censoring schemes
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withn = 69, k = 3and m = 7, 13, and 18. We also consider A = 1 and L = 1.5. The simulation algorithm of (1 — )% lower
bound is given in the following steps:

1. A random sample of size n represented by X1, X3, .. ., X; is generated from the Weibull distribution with parameters A
and 8.

2. The progressive first-failure censored data (X1.m:n:k, Xo:meniks - - - » Xmemen:k) 1S simulated from a random sample obtained
in Step 1, and then by transformation Yimnx = Kimni)?, the values (Yemnk, Youmnks - - - » Ymemen:k) are obtained.

3. The 95% lower bounds LBy ; and LB, ; are calculated from (13) and (23).

4.1f G, > LBy ; then County; = 1 else County; = 0. Similarly, if G, > LBy ;, it's supposed that County; = 1 else
County ; = 0.

5. Steps 1-4 are repeated t = 5 x 10* times and the mean of lower bounds based on censored data (X) and transformed
censored data (Y) as well as the coverage probabilities of the confidence intervals of C;, and C;, are computed from the
following equations.

1 t
ME(LBy) = - LBy ;.
i=1
1
ME(LBy) = — ) LBy ;.
1
ME(COx) = Z County ;,

1
ME(COy) = — County ;.
(COoy) =~} _ County,

The results of the simulation study were reported in Table 7. From empirical evidence in Table 7, we have:

e The lower bounds for C;, and C;, are quite sensitive to the value of 8. Also, when B is underestimated (<1.89), the
actual coverage probabilities of the confidence lower bounds for C;, and C;, are less than the nominal level, while the
overestimated value of 8 (>1.89) leads to the larger values for these coverage probabilities relative to the nominal level.
Thus, the exact determination of 8 seems very important.

e If B is properly estimated, it seems that the results obtained are stable with respect to the different progressive first-
failure censoring employed. But the incorrect estimation of 8 causes the results obtained to be sensitive with respect to
the choice of censoring scheme, especially when m is small.

o As we expected, for all of the progressive first-failure censoring schemes, the results based on the censored data and the
transformed censored data are identical.

6. More results for exponential model

Due to the Weibull distribution with known shape parameter is considered as the transformation of the exponential
distribution, in this section, using the data generated by the exponential distribution and first-failure progressive censoring,
we will compare the various estimates of C;,, on the basis of two popular criteria, i.e. MSE and PMC. In order to obtain the
best estimate based on the MSE criterion, we confine ourselves to the class € of the form

a
e = {5a|5a =1— WL} , (24)

where W' is defined by (21).
In what follows, we show that the estimator CL*V =1-— ’“M;ZL has the minimum MSE in the class of estimators € in (24).
To see this, by definition, for every §, € €, we have

MSEy (80) = Ey (8 — C1,))* = Vary (&) + [Eo(50) — Gy ] (25)
Since 20W’ ~ x2., after some algebraic manipulations, we have

Ey(8) = 1—al—2 d Vary(8,) (alf)” (26)

=1-a , an ar, = —.
6% m—1 O = m — 1)2(m — 2)
Substituting (26) in (25), the MSE of §, is obtained as
1w \’[ & 5
MSEy (64) = +(m—-1—a)|. (27)
m—1 m—2

By differentiating from MSE, (8,) with respect to a, the desired result follows.



100 M.V. Ahmadi et al. / Journal of Computational and Applied Mathematics 239 (2013) 93-102

Table 7

The mean of lower bounds and the coverage probabilities of the confidence intervals of C;, and
Cy, for the different values of 8 and the various progressive first-failure censoring schemes with
n=69,k=3,L=15and A = 1.

m  (Ri,....Rn) B ME(LBy)  ME(COx) ME(LBy)  ME(COy)
7 (16,0,...,0) 0.5 0.3782  0.0001 0.4544  0.0001
1 —03456 02820 —03456  0.2820
1.89 —24919 09504  —3.2407  0.9504
2 —26991 09574 —3.7856  0.9574
3 —4.1080 09664 —11.9302 0.9664
(2,2,2,4,2,2,2) 0.5 0.4051  0.0000 05691  0.0000
1 —0.0181 0.0372 —0.0181 0.0372
1.89 —2.4883 09484  —3.2356  0.9484
2 —2.8271 09706  —4.0554 0.9706
3 —55840 09990  —22.0118 0.9990
(,...,0,16) 0.5 0.4104  0.0000 05966  0.0000
1 0.0591  0.0159 0.0591  0.0159
1.89 —24971 09501  —3.2526  0.9501
2 —2.8515 09727  —4.1023 09727
3 —6.2442 09999  —27.8175 0.9999
13 (2,2,2,2,2,0,...,0) 0.5 0.3553  0.0000 03619  0.0000
1 —02799 0.1438  —02799  0.1438
1.89 —2.1083 09505  —2.4881  0.9505
2 —22927 09618 —2.8853  0.9618
3 —35925 09816  —84353 09816
©,...,0,2,2,2,2,2,0,...,0) 05 0.3677  0.0000 0.4057  0.0000
1 —0.1792  0.0599  —0.1792  0.0599
1.89  —2.1031 09500 —2.4796  0.9500
2 —23235 09646 —29435  0.9646
3 —39386 09909  —10.0825 0.9909
0,...,0,2,2,2,2,2) 0.5 0.3732  0.0000 0.4266  0.0000
1 —0.1232 00308 —0.1232  0.0308
1.89 —2.1053 09498  —2.4826  0.9498
2 —23499 09708  —2.9903  0.9708
3 —44131 09990  —12.5240 0.9990
18 (1,1,1,1,1,0,...,0) 0.5 0.3219  0.0000 02534  0.0000
1 —03546 02013 —03546 02013
189 —19671 09509 —22359  0.9509
2 —2.1220 09610  —25525  0.9610
3 —32451 09791 —6.7743 09791
©,...,0,1,1,1,1,1,0,...,0) 05 0.3327  0.0000 02861  0.0000
1 —02882 0.1122  —02882  0.1122
189 —19616 09514 —22265 0.9514
2 —2.1399 09636  —2.5837  0.9636
3 —34265 09872 —7.5042 09872
©,...,0,1,1,1,1,1) 0.5 0.3370  0.0000 02995  0.0000
1 —02538 0.0756 —02538  0.0756
1.89 —1.9604 09482  —22252  0.9482
2 —2.1526 09664 —26064 0.9664
3 —36692 09966 —85336  0.9966

Remark 6.1. Note that the pdfof (Y3, ..., Yy) in (18) can be written in the form of the exponential family. Hence, based on
Theorem 1.11 and Corollary 1.12 of [26], the UMVUE for C;, is derived as
- m-—1
C, =1~ W L. (28)

Remark 6.2. Notice that §,, is reduced to @Ly in (20). Since ELY € @, we have
MSE, (C},) < MSEq(Cr,) < MSEg(Cy,). (29)

The last inequality follows from (27), since ﬁMSEg (8) > 0fora > m — 2.1t is worth mentioning that (29) holds for all of
6 and L.

In the following, we will utilize the PMC criterion for comparing the estimates C *Y, ELV and QY of C;,. For more details,
see [27].



M.V. Ahmadi et al. / Journal of Computational and Applied Mathematics 239 (2013) 93-102 101

Table 8
The values of a;, = P(Z > 2m — 1) where Z ~ 2.
m  an m  an m o ap m an

1 0.6065 15 0.5176 29 0.5125 43 0.5102
2 0.5578 16 0.5170 30 0.5123 44  0.5101
3 0.5438 17 0.5165 31 0.5121 45 0.5100
4 0.5366 18 0.5160 32 0.5119 46 0.5099
5 0.5321 19 0.5156 33 0.5117 47 0.5098
6 0.5289 20 0.5151 34 0.5115 48 0.5097
7 0.5265 21 0.5148 35 0.5114 49 0.5096
8 0.5246 22 0.5144 36 0.5112 50 0.5095
9 0.5231 23 0.5141 37 0.5110 60 0.5086

10 05218 24 05138 38 0.5109 70  0.5080
11 05207 25 05135 39 05107 80  0.5075
12 05198 26 05132 40 0.5106 90  0.5070
13 05190 27 05130 41 05105 100  0.5067
14 05182 28 05127 42 05103 200 0.5047

Definition 6.3. Under the PMC criterion, the estimator 31 is better than the estimator 32 if
PMC(31, 52) = P(I81 — 6] < 18, — 6]) > %
where 6 is the parameter of interest.
One can prove that, based on the PMC criterion, @Y is better than QY for Cy,. To this end, it is sufficient to show
PMC(Cy,, Ciy) > % (30)

From (17), (20), (28) and (30), and after some algebraic computations, we have

A~ m-—1 m

PMC(Ey,. Giy) = P (|0 — T >‘9_W
20(m — 1) 20m
=p(lo- "> |- =
Z Z

2(m—1 2

z z

=P(Z >2m—1),

whereZ = 20W’ ~ xzzm. By assumption a,, = P(Z > 2m — 1), the values of a,, for different values of m reported in Table 8.
It seems that a,, is a decreasing function of m and tends to % Also, based on the central limit theorem, Z have a normal
distribution with mean 2m and variance 4m as m goes to infinity. Hence, as m — oo, we have

Z—2m —1 ) 1

2Jm . 2dm

This conclusion along with the results obtained in Table 8 imply that P(Z > 2m — 1) > % i.e. for every 6, ﬁy dominates

QY based on the PMC criterion.
Similarly, it can easily be shown that

P(Z>2m—1):P< 25

PMC(Cyy . Gf) = P(Z > 2m — 2),
and
PMC(Cy, . ) = P(Z > 2m — 3).
SinceP(Z >2m—1) > % for any m, then we have
P(Z>2m—-3)>P(Z >2m—-2) > %
Therefore, we have
6Ly >pwmc Ciy >puc G,

where 8; >pwc 8, means that P(|8; — 0] < |8; — 6]) > 1.
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7. Conclusions

The lifetime performance index C; was used for assessing the performance of a process, in which L denotes the lower
specification limit. In this paper, we considered the problem of estimating C; on the basis of a progressive first-failure
censored sample. Assuming the Weibull distribution for the lifetime of the products with a known shape parameter, explicit
expressions for the ML estimates of the unknown parameters were obtained. The ML estimate of C; was utilized to develop
a 100 x (1 — )% one-sided confidence interval for it. This lower bound may be used for assessing whether the product
performance meets customer expectations. For the exponential distribution as a special case of the Weibull distribution,
a comparison study for various estimates of C; based on MSE and PMC criteria was done. Moreover, using Lehmann and
Casella [26], it can be easily shown that the UMVUE for Cj, is of the form

-1 1 r(m)L
Gy = r<1+—>—7(m)x -
F(m—%)WF

Using the confidence interval for C;, based on 6va one can evaluate whether the product quality meets the required level.
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