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Abstract

We present a Tikhonov parameter choice approach for three-dimensional reconstruc-
tions based on a maximum product criterion (MPC) which provides a regularization
parameter located in the concave part of the L-curve in log-log scale. Our method,
baptised Improved Maximum Product Criterion (IMPC), is an extension of the MPC
method developed by Bazan et al for two-dimensional reconstructions. In the 3D frame-
work, IMPC computes the regularization parameter via a fast iterative algorithm and
requires no a priori knowledge of the noise level in the data. It is applied on the linear
sampling method for solving the electromagnetic inverse medium problem in the 3D
framework. The effectiveness of IMPC is illustrated with numerical examples involving
more than one scatterer.

1 Introduction

In this work we shall consider the scattering of a time harmonic electromagnetic wave
with frequency in the resonance region by a finite number of three dimensional scatterers
each of which is a penetrable isotropic medium. The inverse scattering problem we are
considering is related to the determination of the shape of a penetrable scatterer in IR®.

*The research of this author is supported by CNP, Brazil, grants 3087909,/2011-0, 477093/2011-6



The approach we shall use to solve the inverse electromagnetic scattering problem is a
combination of the well known linear sampling method originally developed in the acoustic
context by Colton and Kirsch [5] and an improved version of the maximum product criterion
(MPC) developed by Bazan et al [4] for 2D reconstructions. It is widely known that the linear
sampling method does not require a prior: information about either the boundary condition
or the connectivity of the scatterer, however it does require multistatic data at a single
frequency. Due to the ill-posedness of the inverse problem, the linear sampling method yields
an ill-conditioned system of linear equations whose solution requires a regularization method
in order to handle correctly the presence of noise in the data. In particular, this solution
requires the use of Tikhonov regularization method equipped with Morozov’s generalized
discrepancy principle as parameter choice rule [1, 5, 7, 8,9, 10, 11], which generally involves
the computation of the zeros of the discrepancy function at each point of the grid. In
addition, the noise level in the data should be known a priori, something that in real life
applications is not the case in general.

For electromagnetism, the linear sampling method has already been analysed for perfect
conducting scatters [16], imperfect conductors with impedance boundary data [10] and
penetrable scatterers [13]. In particular, as presented in [13], the mathematical justification
of the method is based on the formulation of an interior transmission problem for which a
weak solution is shown to exist. Then the theoretical justification follows by extending to
electromagnetics methods used for the acoustic problem.

The Maximum Product Criterion (MPC), originally developed for two dimensional recon-
structions [4], employs computation of the regularized solution norm and the corresponding
residual norm and selects the parameter which maximizes the product of these norms as
a function of the regularization parameter; its main virtue is that it constructs regularized
solutions of either large or small norm depending on whether a certain inclusion condition
is satisfied or not. MPC however applied to 3D reconstruction problems may fail due to
the existence of several local maxima. To overcome this difficulty the authors developed
a variant of MPC, the Improved Product Criterion (IMPC), which via a fast and efficient
algorithm chooses as regularization parameter the critical point associated with the largest
local maximum of the product. In addition as with MPC, IMPC does not depend on user
specified input parameters (like subspace dimension or truncating parameter) and requires
no a priori knowledge of the noise level.

We organize our paper as follows. Section 2 will be devoted to the formulation of the
problem and a brief description of the linear sampling method in the electromagnetic con-
text. Subsequently, Section 3 will deal with the improved version of MPC, the IMPC as
a parameter choice rule. In particular we will be concerned with theoretical properties on
which IMPC relies on as well as with its implementation within the framework of the linear
sampling method. In order to show the effectiveness of our method, in Section 4, we will
present numerical examples for the case of penetrable three dimensional scatterers and we
will compare the reconstructions obtained via IMPC with the ones obtained by means of
the Morozov’s generalized discrepancy principle (GDP). We will finally list our conclusions
in Section 5.



2 The linear sampling method

We begin by considering the direct scattering problem of a time harmonic electromagnetic
wave by a penetrable isotropic medium D C R? which can be formulated as the problem of
finding an electric field F and a magnetic field H such that E, H € C'(R?) and

cwrlE — ikH =0 and cwrlH +iknE =0 in R? (1)

where n € CV%(R?) is a complex valued function with 0 < @ < 1 and n(z) = 1 outside D.
The total field is given as

E=FE+F* and H=H"'+ H* (2)
where F°, H? is the scattered field satisfying the Silver-Miiller radiation condition
lim (H®* xx—rE®) =0 (3)

z
||’

uniformly in & = %, where r = |z| and the incident field is the plane wave

E'(z) = %Curlcurlpei“'d = ik(d x p) x det**d, n
H'(z) = curl pe** ¢ = ikd x pe'**, (5)

where the wavenumber k is positive, d is a unit vector giving the direction of propagation
and p is the polarization vector. The existence and uniqueness of a solution to (1)-(3) can
be found in [6]. From the second Stratton-Chu formula it follows that

ikr

€

B(z) = {Eoo(i:,d,p)—l—O(%)} as T — 00 (6)

r

where F, is the electric far field pattern. The inverse medium problem for electromagnetic
waves is to determine D from E (&, d,p) for &, d in the unit sphere Q, p € R? and different
values of k. As indicated in [13], E is infinitely differentiable as a function of its arguments
and as a function of z is tangential to the unit sphere (2.

We now introduce the space

L) ={g:Q—=C’lge L*(Q), g-2 =0, fori € Q}

of tangential L? fields in Q. The electric far-field operator F : L?(Q) — L?(€) is then defined
by
(Fo)@) = [ Exlidg(@)dstd), 3 €9 7
0
Now let E(Z, z, q) be the electric far-field pattern of an electric dipole located in z € D
and oriented along ¢:

E.(x,z,q) = %curlxcurlxq(ﬁ(x, ) (8)

H.(x,z q) = curl,q®(z, z) 9)
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with ® being the fundamental solution of the Helmholtz equation defined by

1 eik|:r—z|

O(z, 2) (10)

T ir |z — 2|
We would like to find for fixed ¢ and z, a function g(-, z,q) € LZ(€2) through the far-field
equation

(7:9(',2,61))(@)Z/QEoo(fﬁ’dygz,q(d))dS(d)ZEe,oo(iazafJ) (11)

where E. (2, d, g, 4(d)) denotes the far-field pattern of E. which is the field scattered by the
target along direction & when is illuminated by a plane wave impinging from the direction
d and polarized along g¢.,(d) € L}(Q) for a set of sampling points z € R3, three linear
independent polarizations ¢ € R? and
. ik . —ikiz
Eoe(y 2,0) = = (i x ) x G~ (12)
’ 47

It can be shown [13], that the existence of a solution to (11) is equivalent to the existence
of a solution of an appropriate electromagnetic interior transmission problem. In [13] it
was shown that the far field equation (11) has a nearby solution g. , (), where epsilon can
be interpreted as the noise level in the far-field operator, such that the L? norm of this
solution becomes unbounded as z approaches the boundary. Furthermore, if z is outside D,
there exists a nearby regularized solution gf,zyq(-) (which corresponds to a noise level equal
to € + §) such that the L? norm of this solution becomes unbounded as ¢ approaches 0.

The observations above are summarized in the following theorem whose proof can be found
in [13].

Theorem 2.1 Let q be any element of in IR® and the index of refraction n satisfies some
reqularity conditions given in theorem 3.1 of [13]. Then we have
(a)if z € D, then for every e > 0 there exists a solution g.(-,z,q) € L*(Q) of the inequality

||]:gg(',Z,Q) _Ee,oo(';za Q)HL2(Q) <e (13)
such that

(b)if 2 & D, then for every e > 0 and § > 0 there exists a solution ¢°(-,z,q) € L*(Q) of the
imequality
Fg2(-2,0) = Eeol: 2, Dz <e+d (15)
such that
lim |7 (-, 2, @)l |2(e) = 003 (16)

Based on Theorem 2.1 and on the fact that the far field equation is ill-posed as the far field
operator is compact [10, 8, 13|, the linear sampling method suggests that to determine the



boundary of D from the far field pattern £ (Z,d, g(d)), for each point z in a grid containing
the scatterer and a fixed ¢ € IR?, one should solve the far field equation (11) using Tikhonov
regularization for g,(-, z, ¢). This done, the boundary 9D is determined by looking for those z
for which the norm [|gx(+, z, ¢)||? is large. We emphasize that regularization is necessary when
solving the far field equation as in practice the integral operator is affected by measurement
noise. As far as the choice of Tikhonov regularization parameter is concerned, it has been
done by the Generalized discrepancy principle (GDP) [10, 8, 13] which requires knowledge
of estimates of the noise level in the data. As an alternative to GDP, Bazén et al [4] have
developed a new criterion called MPC which does not require any knowledge of the noise

level; both parameter choice rules can fail in some circumstances.

3 Improvements to the maximum product criterion al-
gorithm for the selection of the Tikhonov parameter

In practice the far-field equation must be discretized in order to construct approximate
solutions to the continuous problem. However, the main difficulty associated to this construc-
tion process is that since the original problem is ill-posed, its finite dimensional counterpart
is ill-conditioned and characterized by numerical instability. As a result, the approximate
solution becomes less and less reliable as the quality of the discretization improves and reg-
ularization is necessary to construct stable approximations. In what follows we assume that
the unit sphere is discretized using a triangular mesh containing N vertices (which are also
used as directions for the plane incident waves) and that the far-field equation is discretized
by following the scheme described in [8]. This gives rise to a system of 2N x 2N linear
equations which we refer to as the discrete far-field equation

Fg.=1.,  FerN (17)

where 7, , € C*" is a discrete counterpart of F, o (+; 2,¢) and F denotes the far-field matrix.
In practice only a noisy far-field matrix is available and assumed to be of the form F=F+E ,
with E being introduced to denote measurement noise. Since the discrete far-field equation
is ill-conditioned, Tikhonov regularization has been used to compute stable approximate
solutions with the regularization parameter being chosen by the generalized discrepancy
criterion. Tikhonov regularization applied to the discrete far-field equation yields regularized
solutions defined by

gx = argmin_gen{[[r- = Fgll; + A*llgl3} (18)

where A > 0 is the regularization parameter. GDP chooses as regularization parameter the
only root of the nonlinear equation

G(AN) = |Ireg = F gxells = Gallgn:ll3 = 0 (19)

where 0 4 is an estimate for || E'|| such that ||E|| < 4. GDP works well when || E|| is accurately
estimated but this may not be the case in real life applications. There exist some alternative



parameter selection criteria that avoid knowledge of the noise level, referred to as heuristic
parameter choice rules, which have also been used in inverse scattering; these include L-
curve [14, 18] and a Fixed-point method [2, 17]. Recently, Fares et al [12] developed a new
heuristic algorithm, the SVD-tail, based on the combined presence of error in the operator
and eigenvalue clusters corresponding to a singular subspace associated with a few small
singular values. SVD-tail is proven efficient since the point-wise solution of the far-field
equation is never explicitly constructed; one of its disadvantages though is that the quality
of the reconstruction depends on the chosen dimension of the singular subspace.

More recently, Bazan et al [4] introduced the so-called maximum product criterion (MPC)
which defines as regularization parameter a solution to the problem

A" = argmax{ WU(\) }, U(A) =x(N)y(A), (20)

where -
yN) = llgrzl? x(A) = llrog — Fox:ll3- (21)

Existence of maximum is always guaranteed when the far field matrix is non singular as ¥
is positive and
U(0)=0= lim U(A). (22)

A—00
The main virtue of MPC (illustrated on 2D reconstruction problems in [4]) is that it delivers
regularized solutions of large norm for z outside D and regularized solutions of small norm for
z inside, a necessary condition for LSM to produce good reconstructions. From the practical
point of view, under the assumption that ¥ has a unique maximizer, the authors in [4] show
that such a maximizer is the only non zero root of the function

p(A) =x(\) = Ny(\) =0 (23)

and that this root can be computed by using some root finder such as the regula falsi method
or other. However, we realize when solving 3D reconstruction problems that MPC can fail
when the function W has several local maxima. Difficulties arise since, depending on factors
such as the chosen root finder, the chosen initial guess, etc., the regularization parameter
determined in this way may not be suitable to ensure the success of LSM.

3.1 An improved version of MPC

First of all we note that extreme points of ¥ are fixed points of the function 9 defined by

~F
o) = Iz = For:ll (24)
gx.:

or equivalently roots of function ¢ as seen from (23). Using the fact that the regularized
solution norm and the corresponding residual norm are monotone, see, e.g., [4], it follows
that ¥ is an increasing function of A and therefore no local maximum of ¥ can be computed
by using fixed point iterations of the form A1 = ¥(\;), & > 0. This is explained by the
fact that depending on the chosen initial guess, either the iterations converge to a minimum
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of W or to the value A = 0, or the iterations diverge to infinity. As an example, assume that
Ao is such that ¥(Ag) < A\g. When this is the case, either {\;} converges to 0 if ¥ does not
have a non zero fixed point located to the left of Ay as {\;} is a decreasing sequence, or {\;}
converges to a non zero fixed point located to the left of \yg. This can be better interpreted
from the behavior of a function ¥ as seen in Fig. 1.

10°

Figure 1: Typical behavior of function 1 with several fixed points and function ¥ with several
critical points. Maximum points are marked with star.

Another difficulty with MPC when the function W has several local maxima is how to choose
one of them. Aiming at avoiding these difficulties, we propose

i) to choose as regularization parameter the largest maximum local of W

ii) a fast algorithm to compute the regularization parameter.

The following theorem provides information on the largest maximizer of ¥ in terms of
the singular value decomposition (SVD) of the far-field matrix F. For latter use, recall that

the SVD of F is of the form N
F=Usv” (25)
where U = [uy, ..., usn], V = [v1, ..., von] are orthonormal matrices, and X = diag(oy, . . ., 0oy ),

With(TlZJQZ"'ZO'QN.

Theorem 3.1 Let the far-field matrix F have the SVD (25). Assume that Fis nonsingular
and that its singular values are distinct. Then the following assertions hold

a) function U has at least one critical point inside (o9, 01) and at most one critical point

inside (‘/501, 01).

b) function U has a mazimum at A = X if and only if cp(X) =0 and 9'(\) > 1 where ¢
and ¥ are introduced in (23) and (24), respectively.
Proof: Using the SVD of F and (21) we have
2N

i=1 =1



where a; = |ufr, 4|?. Therefore

p(A) =

() — A2y (\) = Z M

(02 4+ \2)2

From this we see that p(A) > 0 if A > oy and ¢(\) < 0 if A < g9y. We also see that oy
(respectively o9x) cannot be a root of ¢ since by assumption all singular values are distinct.
This implies that ¢ must have at least a root inside the interval (o9x,07) or equivalently
that W has at least a critical point inside (o9y,071) as the critical points of W are roots of
¢ [4]. We now see that

s 2N 0'2042 2N 0'2052
i=1 t =1 g

Hence, the derivative of ¢ with respect to A becomes

¢ = X)) —2ay()) — A ’(A>
= —2Dy(\) + X 22

3)\2—0)a
(02 + A\2)3

This shows that ¢'(\) does not change sign inside (\fcrl, o1). Thus, if ¥ has a critical point
inside this interval, this critical point is unique and the proof of item a) is complete. To
prove assertion b) observe from (23) that A is a critical point of W if and only if ¢(X) = 0,
this being true if and only if 19(/):) = \. Now a simple calculation gives

T'(N) = [=20+ 2009 W]y W)y’ (A) + =27 + P2 (V)] [y (Vy' (V)] (28)
This shows that at A = A we have " (/A\) <0 iff (X) > 1, and assertion b) is proved. [

The assumption that all singular values are distinct and positive is very natural when
the noisy far-field matrix comes from a random perturbation of the exact far-field matrix.
When this is the case, condition (22) is insured and so function 9 has a fixed point that
maximizes W. For a discussion regarding existence of fixed points of 9 for the case where
the coefficient matrix is singular or rank-deficient and rectangular, the reader is referred to
2, 3]. Regarding the consequences of Theorem 3.1, notice from assertion b) that maximizers
of U are fixed points of ¥ such that (J9(\) — A) changes sign from negative to positive as A
increases in a vicinity of the fixed points, see Fig. 1. In such case the largest fixed point of
¥ corresponds to the largest local maximum of W, as is illustrated for a typical function ¥ in
inverse scattering, see Figure 1 again.

The following theorem shows how to use the previous theorem in order to develop an
algorithm for computing the largest maximizer of W.

Theorem 3.2 For fived z and X\ > 0 consider the function & : R* +— R" defined by

(29)



Then & increases as A increases and E(N) < o1 YA > 0. Further, consider the sequence
Mev1 =E(Me), k>0. (30)

Then A\ converges monotonically to the largest fized point of & (hence to the largest fized

point of ¥) as long as the initial guess Ao is chosen in the interval [?01, a1].

Proof: Since £(A\)J(\) = A2, differentiation with respect to A yields
SNV (A) + & (NI(A) = 24,

and therefore

2000 - XN

e = 2 (31)
Now let x(\) = p*(\) and y(A\) = n*(\). Then it follows that
X'(A) =2p(N)p' (), ¥'(A) = 2n(\)n'(N), (32)

and thus
d_y _ldn @ _ P(A)

= —— & — R
dx 9dp  dp A2
where the last equality is because of (27). Taking derivative with respect to A on the right
equality leads to

e 2AI(N) — N2 ()
0N =
Since p/(A) > 0 by (32) and (27), and since 7 is a convex decreasing function of p, see,

e.g., [14, Theorem 4.6.1], combining the last equality with (31) it follows that £'(A) > 0.
This proves that £ increases with A\. Now notice that function £ can be rewritten as

W=\ 2 e S\ S @)

i=1 1=

from which the inequality {(\) < o7 readily follows.

Proceeding with the proof, we now notice that \is a fixed point of ¢ if and only if Nis a
fixed point of €. Notice also that the curve (A, §(\)) lies below the constant line z = oy, as
illustrated in Fig. 2. Hence, if £ has a fixed point inside [?0’1, o1] and the initial guess Ag
is chosen in this interval, the sequence {\;} will converge to that fixed point of £ as {\} is
monotone due to £ being an increasing function. A similar argument holds true if the largest
fixed point of £ does not belong to (?al, o1). This concludes the proof. O

We now transform the theoretical results of Theorem 3.2 into a practical algorithm. To
this end we notice that as we already know the sequence {\;} converges to the largest fixed
point of ¢ (which hopefully maximizes V), what remains to do is to introduce a test to ensure
that the captured fixed point actually maximizes W. This gives rise to a new algorithm which

we refer to as IMPC and we describe as follows.
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Figure 2: Typical behavior of functions ®(\), {(\) and the sequence {\;} when initialized
as in Theorem 3.2. In this illustration the initial guess is taken to be A\ = o1. The largest
fixed point of ¢ is marked with star.

Improved version of MPC algorithm (IMPC)
Input: o1, tol

1. Set k =0 and choose Ay in the interval [@al, o1]
2. Compute sg = &(Ag)/No-
3. while (|sy — 1| > tol ) do
M1 = EMk), Sk = A1/ Mk
k=k+1
end while
4. if (¥ (M) > 1) do
A=\
elseif (¥ (\;) =1) do
Set k=0, \og = 0.9 % Az, and go to step 2
end if

Remark: The improved version of MPC can also be implemented in conjunction with Kirsch’s
method: it suffices to replace o2 by o; in (33).

As a consequence of the analysis above we now show that the regularization parameter chosen
by the generalized discrepancy principle can also be determined by a fixed point iteration algorithm.
This is the subject of the following theorem.

Theorem 3.3 For fized z and \ > 0 consider the function ¢ : R™ — IR defined by

o) = Ajf_f). (34)

Let {\}, k > be the sequence defined by

Met1 = C(Ak), k= 0. (35)
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Assume that 54 < o1. Then {\} converges globally and monotonically to the reqularization param-
eter chosen by GDP irrespective of the initial guess chosen.

Proof: Based on the SVD of F (25) and (26), the discrepancy equation (19) reads
(A (5A02)ozl
=0. 36
Z (02 + \2)2 (36)

Then function G is increasing due to (27) and has a unique root when 4 < o;. But G(A\) =0 is
equivalent to 195—;‘\ = 1, and this implies that G(A) = 0 has a unique root if and only if this root is
a non zero fixed point of (. Now it is not difficult to check that

lim ¢(A) = K >0

for appropriate constant K and that for A > o1 we have ((\) < A. Taking into account the results
of the above analysis and since ( = 1/d41/€ increases with )\, as ¢ so does, we deduce that the
sequence (35) is monotone and the assertion of the theorem follows. O

Similar to the MPC case, we can now transform the results of Theorem 3.3 into a practical
fixed point algorithm for determining the Tikhonov regularization parameter chosen by GDP. We
refer to this algorithm as FP-GDP; it can be outlined as follows.

Fixed point approach for GDP (FP-GDP)
Input: o1, tol
1. Set k =0 and choose \y = o7
2. Compute sog = ((Ag)/o-
3. while (|sp — 1| > tol ) do
M1 = C( k), Sk = Apr1/Mk
k=k+1
end while

Our experience in terms of computational time spent by FP-GDP and IMPC when applied to
2D reconstruction problems is that both are efficient and fast but with a slight advantage in favor
of the former. Now, when comparing them to an implementation of GDP coupled with regula falsi
as root finder, our experience is that FP-GDP and IMPC are significantly faster. As an example,
Table 1 displays the time spent by these algorithms in solving a 2D reconstruction problem involving
a far field matrix of size 32 x 32 for each z in a grid of 2500 points.

Table 1: Time spent (in seconds) by an implementation of GPP with regula falsi as root
finder (denoted here by RF-GDP), FP-GDP and IMPC

| RF-GDP. FP-GDP  IMPC
t(sec.) | 20.3253  0.9457  1.2143
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4 Numerical Applications

In this paper we will not present details of the discretization of equation (11) since we used
the approach presented in [10]. Instead we describe two examples in which the discrete solution is
computed using the Tikhonov regularization method where the regularization parameter is chosen
by the new version of MPC designed for 3D reconstruction problems. Comparison with Morozov’s
discrepancy principle (GDP) takes place and hence the effectiveness of the IMPC is illustrated. In
both examples we corrupt the exact far-field matrix F' with noise

F=F+¢|F|N,

where N is a random noise matrix normalized such that ||| = 1 and € is an error parameter.
The numerical experiments use synthetic data that have been created by CESC. CESC is a solver
for electromagnetic scattering problems developed at CERFACS. In [8] has been explained that
the best reconstruction is obtained by combining three different inverse resolutions corresponding
to ¢ = q1,¢2 and g3 for the right hand side E o, where (g1, ¢2,¢3) is an orthogonal basis of IR3.
Hence as in [8, 13] our algorithm is based on the evaluation of

W) = 2 (loC 2 a) 7 + g za2) 17+ Dl 2 a5)]1 7). (37)

where ¢; = (1,0,0), g2 = (0,1,0) and g3 = (0,0,1). To this end we consider a uniform grid in a
box containing the object and denote by Z the set of all these grid points. As discussed before
llg(+, 2, q)|| becomes arbitrarily large when z approaches the boundary from inside and remains large
when z is outside. The reconstruction is then visualized by plotting the isosurface

S={z€Z|W(z)=r1},

for an isovalue parameter 7 such that the level set S is a suitable visual representation of the
unknown object. The isovalue parameter can be selected by trial and error or based on heuristics.
Among several ways to choose the isovalue parameter, two parameter choices stand out. The first,
very popular in the last decade (see, e.g. [9, 10, 8, 13]), defines the isovalue parameter as
= Cmax W(z 38

i = Cmax W(2) (39)
with C chosen close to zero (e.g., 0.3, 0.2, etc) or with C' varying until the “best” reconstruction is
obtained, and the second, due to Fares et al [12], based on elementary statistics and referred to as
the global mean and standard deviation (GMSD) heuristic, which defines the isovalue parameter

72 = mean [W(2)] + 2 std [W(2)]. (39)

As indicated in [8, 13], in practice it is difficult to know how to choose C since g is computed from
noisy data. Hence, automated reconstructions based on (38) can fail when the isovalue parameter is
too small; a similar comment applies to the GMSD heuristic. Numerical illustrations that confirm
this observation are postponed to Subsection 4.2.

In all our numerical experiments the reconstructed object is visualized using Matlab’s isosurface
function with the isovalue parameter being defined by

= mi — mi . 1. 4
TIMPC = IiD Wi(z)+1 max W(z)) min W(z) 0<7< (40)

12



Our proposal relies on the observation that what really matters here is to find an isosurface &
associated with large values of W(z). Based on this, we use 7 ~ 0.5, which was found to produce
good reconstructions in our experiments. All the numerical reconstructions are performed by using
92 uniformly distributed nodes on 2, which means the far-field matrix f is 184 x 184, far fielda
uniform grid for z € [-2, 2]3 with mesh step 4/60, a wavenumber k& = 3 and, except for the last
example, the noise level is ¢ = 0.01. In all examples the far-field matrix F is 184 x 184 and all
quantities required by the IMPC algorithm are computed by using the SVD of F.

4.1 Example 1

In this example the exact scatterer is an ellipsoid, centered at the origin (not shown here) which
is made of a homogeneous absorbing material: n(z) = 2 + 2i. The isolines of W for different cross
sections are shown in figure 3 and provide a good indicator of the shape of the scatterer.

W(z) W(z) W(z)
2 2

-2 -1 0 1 2 -2 -1 0 1 2
1 ZZ 1
plane z,=0 plane z,=0 plane z,=0
W(2) W(z) W(z)
2 2

1 2
4

1 2 1
plane z,= 0 plane z = 0 plane z,= 0

Figure 3: Isolines of W (z) for GDP (top) and IMPC (bottom).

Figure 4 shows the surface W (z), z3 = 0 and isovalue parameters defined by (38)-(40) displayed
as horizontal lines. The isovalue parameters are introduced in order to geometrically illustrate their
role in the reconstruction process. Notice that for this example the level curves determined by each
isovalue parameter not only give an excellent indicator of the shape of the object but also suggest
that all the isovalue parameters will give good reconstructions in this particular case.

Figure 5 shows the reconstruction obtained by GDP and IMPC. Both methods yield very good
reconstructions, however for GDP the exact noise level in F' was used as input data.

Finally, in order to illustrate the convergence speed of IMPC algorithm, the number of iterations
required for convergence in each grid point are displayed in a comprehensive way using a 3D plot,
as seen in Figure 6 for the grid points corresponding to the plane z3 = 0. For this example, the
average number of iterations required for convergence was 29, with the observation that the largest
number of iterations correspond to grid points near the boundary of the object.
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W(2), 2, = 0, k= 3 (GDP) W(z), 2,70, k= 3 (IMPC)
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e
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Figure 4: Top: Surface W (z), z3 = 0, and isovalue parameters displayed as horizontal lines.
Bottom: Level curves of W(z), z3 = 0, determined by 7y, 7 and mvype. In this example,
71 = 2.7515 corresponds to C'= 0.3, 7, = 3.3175 and mypc = 3.1505.

g isosurf (GDP) g isosurf (IMPC)

Figure 5: Reconstruction of an ellipsoid with index n(x) = 2 4+ 2i. The three-dimensional
object and its projections on the planes (z1, z2), (29, 23) and (z1, z3) are also shown.

4.2 Example 2: Two scatterers
We now describe numerical reconstructions of two spheres considering three cases as in [13].
a) Reconstruction of two homogeneous spheres with index n(x) = 2 + 2i.

We present the reconstructions obtained by GDP for two choices of the isovalue parameter 7|
in order to illustrate why certain choices may not be appropriate. As in the previous example, we
show the isolines of W for different cross sections (see Fig. 7) and see that they give a clear idea of
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Figure 6: Iteration number required for convergence of IMP regarded as a surface defined
on the 60 x 60 grid corresponding to z3 =0 .
the shape of the objects.
W(z) W(z) W(2)

-2 -1 0 1 2 -2 -1 0 1 2
Zl Z2 Zl
plane z,= 0 plane z, = 0 plane z,= 0
W(z) W(z) W(2)

1 Z
plane z,= 0 plane z, = 0

1
plane z,= 0

Figure 7: Isolines of W(z) for GDP and IMPC. This example uses a noise level € = 1%

Figure 8 shows the surface W (z), z3 = 0, isovalue parameters displayed as horizontal lines, and
level curves determined by the parameters 71 (corresponding to C' = 0.1) and mvpc (corresponding

to 7 = 0.45). The behavior of the level curves is critical to understand the role of the isovalue
parameter in the reconstruction of the object. Of course, in spite of knowing that the shape of
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the object is determined by the isolines, the point here is that the final result of the reconstruc-
tion depends on the cross section determined by the isovalue parameter. Taking this observation
into account, it is apparent that, as in this case 71 is small, the cross section captures information
associated to the object and information associated to the background, hence the reconstruction
obtained by GDP with 7 as isovalue parameter should suffer some deformation. The same obser-
vation applies to the reconstructions obtained by GDP with 75. This is confirmed in Figure 9 (top),
in which we present the reconstruction obtained by GDP with 7 corresponding to C' = 0.1 as well
as the reconstruction obtained by IMPC. To clarify the role of the parameter in the reconstruction,
we also display in Figure 9 (bottom) the reconstruction obtained by GDP with 71 corresponding
to C' = 0.3. The results are now apparent. Again GDP was implemented with the exact noise level
in F'. Notice also that the IMPC reconstructions seem more accurate since the isovalue parameter
does not capture information associated to the background.

W(z),z, =0, k= 3 (GDP) W(z), 2,20, k= 3 (IMPC)

-1

-2
-2 -1 0 1 2

Figure 8: Surface W(z), z3 = 0, isovalue parameters displayed as horizontal lines, and level
curves of W(z), z3 = 0, corresponding to the isovalue parameters.

b) Reconstruction of two spheres: one is absorbing and the other is non-absorbing.

This example deals with the case where the two media are different. To describe the results we
show in Figure 10 the surface W(z), z3 = 0, isovalue parameters displayed as horizontal lines, and
level curves determined by the parameters 71 corresponding to C' = 0.3 and mpc corresponding
to 7 = 0.45. Looking at the level curves, it is clear that while GDP with 7 and IMPC will produce
good reconstructions, this will not be the case for GDP with 7. The reconstructions obtained
by GDP and IMPC are shown in Figure 11. Another information that can be extracted from the
level curves is that the volume of the object depends on the cross section area determined by the
isovalue parameter. This explains why the balls obtained by GDP are slightly smaller than those
determined by IMPC.
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g isosurf (GDP) g isosurf (IMPC)

2 2
g isosurf (IMPC)

Figure 9: Reconstruction of two identical homogeneous spheres with index n(x) = 2 + 2i.
Top C = 0.1, bottom C' = 0.3.

c) Reconstruction of two spheres: one is absorbing and the other is a perfect conductor.

In this example we consider two noise levels: € = 0.01 and ¢ = 0.1. The results of the re-
constructions for the low noise level are shown in Figures 12 and 13. As in the example anterior,
motivated by the behavior of the level curves, only the results obtained by GDP and IMPC are
displayed. In this case, the GDP reconstruction corresponds to 71 with C' = 0.1 (as done in [8])
and the IMPC reconstruction corresponds to 7 = 0.45. We notice that spheres reconstructed by
GDP are deformed towards each other.

Finally, the results of the reconstructions for the high noise level (¢ = 0.1) are shown in Figure 14
(bottom) in which the surface W(z), z3 = 0, and the isovalue parameters displayed as horizontal
lines are also included. In this case, the GDP reconstruction correspond to C' = 0.35 and the IMPC
reconstruction corresponds to 7 = 0.35. The results show that LSM also works well in the case of
data with high noise level.
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W(z), 2, = 0, k= 3 (GDP) W(2), 2,70, k= 3 (IMPC)

Figure 10: Surface W(z), z3 = 0, isovalue parameters displayed as horizontal lines and level
curves of W (z), z3 = 0, corresponding to the isovalue parameters 71, 7o and mypc.

g isosurf (GDP) g isosurf (IMPC)

Figure 11: Reconstruction of two spheres where one is absorbing and the other one is non
absorbing.

5 Conclusions

We have developed an improved maximum product criterion variant used to determine the
regularization parameter for the linear sampling method applied to three dimensional penetrable
scatterers. Our method is fast and efficiently selects as regularization parameter the largest local
maximum of an appropriate product. In addition, we discussed the selection of the isovalue pa-
rameter for visualizing the scatter and proposed a heuristic for such selection that was numerically
proved efficient. The quality of reconstructions is comparable to the ones obtained via Morozov’s
discrepancy principle where the noise level is known a priori. The IMPC however does not require
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W(z), z, = 0, k=3 (GDP) W(2), 2,20, k= 3 (IMPC)

Figure 12: Surface W (z), z3 = 0, isovalue parameters displayed as horizontal lines. Bottom:
Level curves of W(z), z3 = 0, corresponding to the isovalue parameters 71, 7 and mypc.

g isosurf (GDP) g isosurf (IMPC)

Figure 13: Reconstruction of two spheres where one is absorbing and the other is a perfect
conductor.

a priori knowledge of the noise level, a situation which is very likely in real world problems.
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W(2), z, = 0, k= 3 (GDP) W(2), z,=0, k= 3 (IMPC)

g isosurf (GDP) g isosurf (IMPC)

Figure 14: Top: Surface W (z), z3 = 0, and isovalue parameters displayed as horizontal lines.
Bottom Reconstruction of two spheres where one is absorbing and the other is a perfect
conductor.
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