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a b s t r a c t

In this work, we consider model problems of piecewise smooth systems in R3, for which
we propose minimum variation approaches to find a Filippov sliding vector field on the
intersection Σ of two discontinuity surfaces. Our idea is to look at the minimum variation
solution in the H1-norm, among either all admissible sets of coefficients for a Filippov vec-
tor field, or among all Filippov vector fields. We compare the resulting solutions to other
possible Filippov sliding vector fields (including the bilinear and moments solutions). We
further show that – in the absence of equilibria – also these other techniques select a mini-
mum variation solution, for an appropriately weightedH1-norm, andwe relate this weight
to the change of time variable giving orbital equivalence among the different vector fields.
Finally, we give details of how to build a minimum variation solution for a general piece-
wise smooth system in R3.

© 2015 Elsevier B.V. All rights reserved.

1. The problem

In thiswork,we exploremodel problems inR3 in order to understandhow to properly define a smoothminimumvariation
sliding vector field in the case of sliding on a co-dimension 2 discontinuity manifold Σ , intersection of two co-dimension 1
discontinuity surfaces. Whereas our model problems are sufficiently simple to allow explicit computations, the process we
propose is rather general, as it will be clarified in this work.

We restrict attention to smooth sliding vector fields of Filippov type, in which case there is an inherent algebraic
ambiguity in the construction of a sliding vector field. Indeed, the general concern of defining suitable Filippov sliding vector
fields on a co-dimension 2 discontinuity manifold Σ has received considerable attention in recent times (e.g., see [1–3] and
references therein).

Our idea in this paper is to select a smooth Filippov sliding vector field as solution of a minimum variation problem. As
far as we know, in this context, this idea is new. (In [4,5] the authors discussed selection of a vector field so to minimize the
2-norm of either the vector field itself or of the coefficients entering in the Filippov convexification, but these attempt
produced non-smoothly varying sliding vector fields.) At the same time, minimum variation techniques have proven quite
powerful in Mathematics and Engineering studies, notably in Optimal Control applications (see [6,7]), and in studying
stick–slip motion phenomena for solid/solid interactions (see [8]).

We will be interested in the situation in which Σ is an arc which attracts the dynamics of the given piecewise smooth
system, with endpoints corresponding to isolated values where Σ ceases to be attractive (generic first order exit points).
This way, we will be able to set up the boundary value problem corresponding to the minimality conditions of a minimum
variation solution (Euler–Lagrange equation).
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A plan of this paper is as follows. In the remainder of this Introduction, we set notation and review some of the basic
theory, in particular insofar as the ambiguity in selecting the coefficients of a Filippov sliding vector field. We express this
ambiguity in terms of selecting the function c in (1.10) and (1.11). In Section 2, we consider a model problem for which we
propose minimum variation techniques in order to select the above function c . In Section 3 we generalize the construction
we made on the model problem of Section 2 to the case of weighted minimum variation techniques. Under suitable as-
sumptions, chiefly the absence of equilibria on Σ , we relate different weights to the orbital equivalence factors of different
Filippov sliding vector fields. We also generalize the construction to the case of equilibria on Σ , obtaining singular weights.
Conclusions are in Section 4.
Notation. In this work, the norm on vectors, ∥ · ∥, is always the Euclidean norm.

1.1. Background

For the material in this section, we refer to the recent works [3,9] where the concepts and results below are introduced
and justified.

Consider the following piecewise smooth system in Rn:

ẋ = f (x), f (x) = fi(x), x ∈ Ri, i = 1, . . . , 4, (1.1)

with initial condition x(0) = x0 ∈ Ri, for some i. Here, the Ri ⊆ Rn are open, disjoint and connected sets, and are (locally)
separated by two intersecting smooth surfaces of co-dimension 1. That is, we have

Σ1 = {x : h1(x) = 0}, Σ2 = {x : h2(x) = 0}, Σ = Σ1 ∩ Σ2, (1.2)

and we will label the region Ri’s as

R1 : when h1 < 0, h2 < 0, R2 : when h1 < 0, h2 > 0,
R3 : when h1 > 0, h2 < 0, R4 : when h1 > 0, h2 > 0. (1.3)

We will always assume that ∇h1(x) ≠ 0, x ∈ Σ1, ∇h2(x) ≠ 0, x ∈ Σ2, that h1,2 are Ck functions, with k ≥ 2, and
further that ∇h1(x) and ∇h2(x) are linearly independent for x on (and in a neighborhood of) Σ .

Finally, we will use the following notation for the projections of the vector fields in the directions normal to the discon-
tinuity surfaces:

w1
1 = ∇h⊤

1 f1, w1
2 = ∇h⊤

1 f2, w1
3 = ∇h⊤

1 f3, w1
4 = ∇h⊤

1 f4,

w2
1 = ∇h⊤

2 f1, w2
2 = ∇h⊤

2 f2, w2
3 = ∇h⊤

2 f3, w2
4 = ∇h⊤

2 f4,

W =


w1

1 w1
2 w1

3 w1
4

w2
1 w2

2 w2
3 w2

4


.

(1.4)

We are interested is the casewhen (portion of)Σ attractsnearby trajectories: solution trajectories of (1.1) starting nearΣ

will reach it in finite time andwill not leave it, giving rise to so-called sliding motion onΣ . Since trajectories cannot leaveΣ ,
sliding motion must take place with a vector field in the tangent plane to Σ , hence orthogonal to ∇h1 and ∇h2 (see (1.5)).
According to first order theories, there are two mechanisms by which Σ can be attractive: through sliding or by spiraling
(see [3,10]). Furthermore, when Σ loses attractivity, a trajectory sliding on Σ may leave Σ; typically, this will happen with
sliding motion on one of Σ1 or Σ2 (this is what one expects to happen at generic first order exit points), though trajectories
may also leave Σ to enter directly into one of the regions Ri’s (e.g., this is what one might expect to happen when Σ loses
attractivity in a spiraling regime).

OnΣ , we restrict consideration to the class of smooth Filippov sliding vector fields, that is, smooth vector fields of the form

fF = λ1f1 + λ2f2 + λ3f3 + λ4f4, λi ≥ 0, i = 1, . . . , 4,
4

i=1

λ1 = 1,

∇h⊤

1 fF = ∇h⊤

2 fF = 0.

(1.5)

Thus, we have to solve the problem (for x ∈ Σ):


W
1

⊤


λ =

0
0
1


where λ =

λ1
λ2
λ3
λ4

 , and W =


w1

1 w1
2 w1

3 w1
4

w2
1 w2

2 w2
3 w2

4


, 1 =

1
1
1
1

 , (1.6)

and a solution λ of (1.6) will be called admissible if λ ≥ 0 and λ depends smoothly on x ∈ Σ .
As amply discussed elsewhere (e.g., [3,9]), and as it is plainly seen from (1.6), there is an algebraic ambiguity in the

selection of a Filippov vector field, and one needs to further regularize the problem in order to obtain a unique solution. Two
ways to do this have been studied in greater detail.
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• Themoments method (see [5,9]), whereby one solves the regularized system

MλM =

0
0
1
0

 , where M :=

W
1

⊤

d⊤

 , (1.7)

withW defined in (1.6) and

d :=

 d1
−d2
−d3
d4

 , where di := ∥wi∥, i = 1, . . . , 4, (1.8)

and then uses λM in (1.5).
• The bilinear interpolant method (e.g., see [11,2,3]) whereby one restricts to the following special convex combination and

needs to solve a nonlinear system:

fB := (1 − α) ((1 − β)f1 + βf2) + α ((1 − β)f3 + βf4) ,

(α, β) ∈ (0, 1)2 : WλB = 0 with λB :=

(1 − α)(1 − β)
(1 − α)β
α(1 − β)

αβ

 .
(1.9)

As proven in [9,3], the moments and bilinear methods give well defined choices of coefficients λM and λB, when Σ is
attractive. Moreover, themomentsmethod is further guaranteed to smoothly exit at generic first order exit points, that is to
produce coefficients λM that render an exiting vector field, whereas, in general, the bilinear method does not lead to smooth
exits.

1.2. General form of coefficients

The following result is helpful in order to write the general form of an admissible solution λ in (1.5).

Lemma 1.1 ([9]). When Σ is attractive, or we are at a generic first order exit point, the matrix

W
1
⊤


in (1.6) has full rank 3.

Furthermore, there is a nontrivial vector v, as smooth as W, spanning ker

W
1
⊤


, and v can be chosen as the eigenvector relative

to the 0-eigenvalue of

W
1
⊤

⊤ 
W
1
⊤


. �

In light of Lemma 1.1, clearly any admissible solution of

W
1
⊤


λ =


0
0
1


can be written as

λ = µ + cv, (1.10)

whereµ is any (smooth) particular solution of

W
1
⊤


µ =


0
0
1


, and v (smoothly) spans ker


W
1
⊤


. We note that, since 1⊤v = 0,

then v cannot have all components of the same sign. In particular, in order for λ to be admissible, we must have that the
function c satisfies

α ≤ c ≤ β, α := max

−

µi

vi
: vi > 0


, β := min


−

µi

vi
: vi < 0


, (1.11)

for each x in (the sliding portion of) Σ . Note that α ≤ 0 and β ≥ 0. Of course, α and β are functions of x (since so are
µ and v), and in general are only continuous functions (even if µ and v are smooth). Finally, we note that, by the nature
of the solution set in (1.10), although the admissible region for c in (1.11) depends on the specific choices of µ and v, the
admissible set of coefficients λ does not. Further, the topological properties (say, connectedness) of the admissibility region
in (1.11) are preserved by choosing different µ and v.

To sum up, in our present context, all possible admissible smooth sliding vector fields of Filippov type (i.e., with
smooth and positive coefficients) arise from (1.10), for given smooth µ and v as above, and selecting a smooth function c
satisfying (1.11).

2. An example: minimum variation solutions

Here we consider amodel problem in R3, and give details of the construction of aminimum variation Filippov solution for
it. This is amodel used in [5] to illustrate different possibilities in forming a smooth sliding vector field. Later,wewill consider
a different model, and give a new interpretation of other admissible Filippov solutions also as minimum variation solutions,
but with respect to a different minimization task and ultimately with respect to a different parametrization of time.



L. Dieci, F. Difonzo / Journal of Computational and Applied Mathematics 292 (2016) 732–745 735

Example 2.1 (A Model Problem from [5]). We have fi, i = 1, 2, 3, 4, taking values in R3:

f1(x) :=

 2x1 + 1
−x1 + x2x3 + 1
x1 + x2 + 1


, x ∈ R1, f2(x) :=

 2x1 − 1
−x1 + x3 − 1
x1 + x2x3 + 2


, x ∈ R2,

f3(x) :=

 2x1 − 3
−x1 + x2 + 2
x1 + x2x3 − 1


, x ∈ R3, f4(x) :=

 2x1 + 2
−x1 + x3 − 2
x1 + x3 − 2


, x ∈ R4,

where Σ1 = {x : x3 = 0}, Σ2 = {x : x2 = 0}, so that Σ = Σ1 ∩ Σ2 is the x1-axis.

Here, the matrixW of (1.4) is

W (x) =


x1 + 1 x1 + 2 x1 − 1 x1 − 2

−x1 + 1 −x1 − 1 −x1 + 2 −x1 − 2


, (2.1)

and it is simple to verify that Σ is attractive in the segment |x1| < 1.2 and the values x1 = ±1.2 are generic first order exit
points, at which point Σ is no longer attractive. Since W (−1.2) =


−0.2 0.8 −2.2 −3.2
2.2 0.2 3.2 −0.8


then one should expect to exit

Σ at x = −1.2 by sliding on Σ+

1 ; similarly, since W (1.2) =


2.2 3.2 0.2 −0.8

−0.2 −2.2 0.8 −3.2


then one should expect to exit Σ at

x = 1.2 by sliding on Σ+

2 .

The general form of the solution λ toWλ =


0
0
1


can be written as

λ = µ + cv or, explicitly: λ =



2
3

−
5
9
x1

0
2
3
x1

1
3

−
1
9
x1

 + c


−

5
3
1
1

−
1
3

 , (2.2)

which is admissible for (x1, c) in the triangular region in Fig. 1. Note that, in particular, we must have c(−1.2) = 0.8 and
c(1.2) = 0. For any admissible λ, we will get a Filippov sliding vector field of the form:

fF = λ1f1 + λ2f2 + λ3f3 + λ4f4, or

fF =


λ1(2x1 + 1) + λ2(2x1 − 1) + λ3(2x1 − 3) + λ4(2x1 + 2)

0
0


.

(2.3)

Hence, on Σ , the differential equation to solve is simply:

ẋ1 =
4
3

−
7
9
x1 −

19
3

c, (2.4)

andwe observe that there is an equilibrium onΣ at the value x1 for which c(x1) =
4
19 −

7
57x1. Given the admissibility region

of Fig. 1, any smooth selection of c will give an equilibrium, which will be unstable. Different ways to select c , in general will
give a different location for the equilibrium.

Both the moments and bilinear solutions of (1.7), (1.9), are well defined for this problem, exit smoothly at x = ±1.2, and
select (similar) c-curves; see Fig. 1. For this problem, there is also another obvious solution, the so-called triangular solution,
namely the solution obtained choosing for c the straight line segment ctr(x1) =

8
20 −

x1
3 , − 1.2 ≤ x1 ≤ 1.2, joining the

boundary values, that is the longest side of the triangle in Fig. 1.
Next, we consider new types of solutions, still on Example 2.1, obtained via a variational formulation.

2.1. Minimum variation solutions for model problem

Recall that we want to have c (hence λ) smooth functions of x1. Further, recall that we have a family of solutions, de-
pending on howwe select an admissible function c. The choice of an admissible c impacts the choice of the coefficients λi’s,
and clearly the resulting sliding vector field in (2.4).

So, a natural idea is to seek an admissible function c that, for −1.2 ≤ x1 ≤ 1.2, minimizes the H1-norm of either λ or of
the sliding vector field itself.

Remark 2.2. A version of Weierstrass’ Theorem (e.g., see [12]) states that, if A ⊂ Rn is closed and f : A −→ R is continuous
and coercive, then f has a minimum in A. This justifies all the minimization problems we examine below. In particular, the
well posedness of Problems (2.5) and (2.8), aswell as (3.5) and (3.9) in Section 3. This is because all of these problems amount
to minimization of the functional given by ∥ · ∥H1 over the compact set of λ ∈ R4 with nonnegative components adding to 1.
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Fig. 1. Admissible region (x1, c) in (2.2), and moments, bilinear, triangular, and minimum variations values of c .

2.1.1. Minimum variation for λ

Accounting for the fact that we want the solution to be defined from x1 = −1.2 to x1 = 1.2, we seek the value of the
function c such that the following functional is minimized:

min
λ∈C1,λ≥0

 b

a


∥λ(x1)∥2

+ ∥λ′(x1)∥2 dx1, a = −1.2, b = 1.2. (2.5)

With the Lagrangian given by the integrand, next we write down the Euler–Lagrange equation:
∂L

∂c
−

d
dx1

∂L

∂c ′
= 0.

With a little algebra, and using the exit conditions, this gives the boundary value problem for c:

c ′′
− c = x1/3 − 1/4, c(−1.2) = 0.8, c(1.2) = 0, (2.6)

which has the solution

c ≡ cMV,λ(x1) =
0.15

e1.2 + e−1.2


ex1 + e−x1


−

x1
3

+
1
4
. (2.7)

With this value of cMV,λ, we obtain what we callminimum variation solution with respect to λ. See Fig. 1 for a plot of cMV,λ.

2.1.2. Minimum variation for fF
Now we consider the general form of the smooth sliding vector field fF and seek the function c in order to minimize the

H1 norm of fF, still considering the model problem of Example 2.1.
In other words, we seek the (smooth) function c such that the following functional is minimized among smooth admis-

sible functions c:

min
c

 b

a


∥fF(x1)∥2

+ ∥fF′(x1)∥2 dx1, a = −1.2, b = 1.2. (2.8)

Given the simple expression (2.4), this reduces to minimizing b

a
L(x1, c, c ′)dx1, L =


4
3

−
7
9
x1 −

19
3

c
2

+


7
9

+
19
3

c ′

2

.

The Euler–Lagrange equation gives the following boundary value problem for c:

c ′′
− c =

7
57

x1 −
12
57

, c(−1.2) = 0.8, c(1.2) = 0, (2.9)

which has the solution

c ≡ cMV,fF(x1) = A1ex1 + B1e−x1 +
12 − 7x1

57
,

A1
B1


=

6
95(e−2.4 − e2.4)


7e−1.2

+ e1.2

−e−1.2
− 7e1.2


.

(2.10)

With this value of cMV,fF , we obtain what we call minimum variation solution with respect to the H1-variation of fF. See
Fig. 1 for a plot of cMV,fF .
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Fig. 2. Sliding vector fields for moments, bilinear, triangular, and minimum variations solutions. All have an equilibrium.

Remark 2.3. It is a simple computation to verify that the minimum variation solutions we obtained, both with respect to λ
and with respect to the vector field fF, in the end give parameters values λ, in an independent way of how we chose µ and
v in (2.2).

Questions 2.4. The above example suggests several questions, which we will address in the next section.

(i) In Example 2.1, in spite of the different expressions for the functions c we obtained, in the end all sliding vector fields have a
similar behavior: there is an equilibrium on Σ , and – depending on where one enters Σ – motion goes to the right/left until
an exit point is reached. Different choices of admissible functions c determine the position of the equilibrium. See Fig. 2.

(ii) Below, we will consider a similar model, for which no smooth Filippov vector field has an equilibrium on Σ . In this case,
according to the results in [13], we know that all possible smooth Filippov sliding motions are orbitally equivalent. Are there
functionals, related to the change of time variable in the aforementioned orbital equivalency, whose minimizers give – say –
the moments, or the bilinear solutions?

(iii) Finally, how can one extend our construction to a broader class of problems?

3. Orbital equivalence and weighted minimum variation

In this section, we consider another pattern of sliding motion, which has the key features outlined below.

Conditions 3.1.
(a) The state space is R3.
(b) The sliding manifold Σ is a smooth arc: Σ = {x ∈ R3

: x = γ (s), a ≤ s ≤ b}.
(c) For a < s < b, Σ is attractive, there are no equilibria on Σ for any smooth Filippov sliding vector field, and motion on Σ

proceeds from xa := γ (a) to xb := γ (b).
(d) The point xb is a generic first order exit point, and the point xa is a generic first order exit point for the time reversed problem.

When Conditions 3.1 hold (in particular Σ is attractive), the functionW (which depends solely on the parameter s), is of
full rank. Therefore, the general form of an admissible solution λ in (1.5), can be written as (see Section 1.2)

λ(s) = µ(s) + c(s)v(s), a ≤ s ≤ b, (3.1)

where µ is any given (smooth) particular solution, v is a given (smooth) vector spanning ker

W
1
⊤


, and the function c is

subject to restrictions as in (1.11).
Note. Wewill want to select an admissible function c(s), a ≤ s ≤ b, so that the resulting λ(s) in (3.1) at the endpoints s = a
and s = b gives the respective ‘‘exiting’’ vector fields. We know that this is possible, since it is achieved, for example, by the
moments method. Indeed, as proved elsewhere (see [9,3]), both moments and bilinear solutions give well defined Filippov
sliding vector fields, the moments vector field further being guaranteed to give coefficients that render the exit vector field
at first order exit points. Below, we show how to formally define a minimum variation solution in this general case.

Now, in light of the results in [13], for a problem with the above characteristics, all smooth sliding vector fields on Σ

are orbitally equivalent. That is, if we have two different smooth sliding vector fields, say fF1 and fF2, then the solutions
associated to these vector fields are tracing the same orbit, but at different speeds. In other words, we must have

fF1 = ω(x)fF2, ω ∈ C1, ω > 0, (3.2)

and therefore
dx
dt

= fF1 ⇐⇒
dx
dτ

= fF2 and ω(x) =
dt
dτ

.



738 L. Dieci, F. Difonzo / Journal of Computational and Applied Mathematics 292 (2016) 732–745

This being the case, and the system being autonomous, it means that we can interpret the two distinct vector fields above
as follows:

If fF1 = λ1f1 + λ2f2 + λ3f3 + λ4f4,
then fF2 = λ1(ωf1) + λ2(ωf2) + λ3(ωf3) + λ4(ωf4),

(3.3)

which means that ‘‘Any sliding vector field can be interpreted as having modified all vector fields fi, i = 1, 2, 3, 4, through the
reparametrization of time’’. Observe that – under Conditions 3.1 – we can assume that ω is parametrized by s. Therefore, for
all orbitally equivalent smooth vector fields, further smoothly aligning at the exit points with the exit vector fields, wemust
have ω|s=a = ω|s=b = 1.

3.1. Weighted minimum variation

Motivated by the above, we are thus lead to consider a generalization of the approach in Section 2.1.2, and seek mini-
mization of functionals more general than those in Section 2.1.2. Namely, we will seek the function c so that in the end we
will minimize either

(i) the H1-variation of wλ, or
(ii) the H1-variation of the sliding vector field wfF.

Above, the function w – which we will call weight function – is required to satisfy these properties:

(i) w is smooth (at least C2) ∀s ∈ (a, b)
(ii) w > 0 ∀s ∈ [a, b], and w|s=a = w|s=b = 1. (3.4)

Each of the above H1-minimization tasks has its merits, though minimization of ∥wfF∥H1 is more in tune with the
previously mentioned reparametrization of time.

Remark 3.2. In all cases, the value of c will be required to take the values c(a) = ca, and c(b) = cb, specified so that λ(a)
and λ(b) give the exiting vector fields at γ (a) and γ (b). Therefore, we emphasize that, with the choices we made for the
weight function w and the values of c(a) and c(b), the solutions of our minimization problems (when solvable) will give
smoothly exiting solutions.

3.1.1. Minimum variation for λ

With the function w as in (3.4), we seek c such that

min
c

 b

a


∥wλ∥

2
+ ∥(wλ)′∥2 ds, c(a) = ca, c(b) = cb. (3.5)

Consider the Lagrangian associated to (3.5), that is

L(s, c, c ′) = ∥wλ∥
2
+

(wλ)′
2

= w2
∥λ∥

2
+ (w′)2 ∥λ∥

2
+ w2

λ′
2

+ 2ww′λ⊤λ′.

The Euler–Lagrange equation on this functional (with some algebra), gives the following boundary value problem to be
solved for c (note that ∥v∥ ≠ 0):

c ′′w ∥v∥
2
+ 2c ′


w′

∥v∥
2
+ w(v⊤v′)


− c


(w − w′′) ∥v∥

2
− w(v⊤v′′) − 2w′(v⊤v′)


= (w − w′′)(v⊤µ) − wv⊤µ′′

− 2w′(v⊤µ′), c(a) = ca, c(b) = cb.
(3.6)

Remark 3.3. In general, it is not clear how to obtain the exact solution of the boundary value problem (3.6). However, there
is an important special case where (3.6) can be solved exactly. This is when the null vector v ∈ ker


W
1
⊤


is constant. In fact,

in this case (3.6) becomes

c ′′w ∥v∥
2
+ 2c ′w′

∥v∥
2
− c(w − w′′) ∥v∥

2
= (w − w′′)v⊤µ − wv⊤µ′′

− 2w′v⊤µ′,

c(a) = ca, c(b) = cb.
(3.7)

The differential equation in (3.7) rewrites as

y′′
= y + g(s), where y = cw ∥v∥

2
+ wv⊤µ, and g(s) = 2v⊤µ′(w′

− w′′).

For this, letting y1(s) = es and y2(s) = e−s, the solution can be written as

y(s) = Ay1(s) + By2(s) + yp(s).
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The associated Wronskian is det

y1 y2
y′1 y′2


= −2, and using the variation of constants formula gives

yp(s) =
1
2


es


e−sg(s)ds − e−s


esg(s)ds


,

from which one can obtain the solution of (3.7):c(s) =
Aes + Be−s

+ yp(s) − w(s)v⊤(s)µ(s)

w(s) ∥v(s)∥2 , a ≤ s ≤ b,

A, B : c(a) = ca, c(b) = cb.
(3.8)

Observe that since w(a) = w(b) = 1, the values of A and B in (3.8) are independent of the weight function w.

3.1.2. Minimum variation for fF
Now, with the weight function w as above, we seek c such that

min
c

 b

a


∥wfF∥2

+ ∥(wfF)′∥2 ds, c(a) = ca, c(b) = cb. (3.9)

Again, c(a) = ca, and c(b) = cb, must be assigned to make sure that λ(a) and λ(b) give the exiting vector fields at γ (a) and
γ (b).

For a general sliding vector field fF, given the form of λ (3.1), we will use the notation

fF = Fµ + cFv,

where Fµ = µ1f1 + µ2f2 + µ3f3 + µ4f4, and Fv = v1f1 + v2f2 + v3f3 + v4f4.
We will assume that Fv ≠ 0, for all s ∈ [a, b] (see Remark 3.9 when this is violated).
The Lagrangian associated to (3.9) is

L(s, c, c ′) = ∥wfF∥2
+

(wfF)′
2

= w2
∥fF∥2

+ (w′)2 ∥fF∥2
+ w2

fF′2
+ 2ww′fF⊤fF′.

The Euler–Lagrange equation on this functional (with some algebra), gives the following boundary value problem to be
solved for c:

c ′′w ∥Fv∥
2
+ 2c ′


w′

∥Fv∥
2
+ w(F⊤

v F ′

v)

− c


(w − w′′) ∥Fv∥

2
− w(F⊤

v F ′′

v ) − 2w′(F⊤

v F ′

v)


= (w − w′′)(F⊤

v Fµ) − wF⊤

v F ′′

µ − 2w′(F⊤

v F ′

µ), c(a) = ca, c(b) = cb.
(3.10)

Remark 3.4. Again, in general, it is not clear how to obtain the exact solution of the boundary value problem (3.10). However,
there is an important special case when in fact it can be solved exactly, that is when the discontinuity surfaces Σ1 and Σ2
are given by coordinates’ planes.1

So, without loss of generality, in this case we can take Σ1 = {x : x2 = 0} and Σ2 = {x : x3 = 0}. Then, Σ is (a segment
on) the x1-axis, and one has that both Fv and Fµ have only the first components different from 0, on Σ:

Fµ =

fµ
0
0


, Fv =

fv
0
0


,

and we are requiring that fv ≠ 0 for all x1 ∈ [a, b].
Using this in (3.10), and dividing by fv , we get the boundary value problem (differentiation is with respect to x1):

c ′′wfv + 2c ′

w′fv + wf ′

v


− c


(w − w′′)fv − wf ′′

v − 2w′f ′

v


= (w − w′′)fµ − wf ′′

µ − 2w′f ′

µ,

c(a) = ca, c(b) = cb. (3.11)

The point is that now the differential equation in (3.11) rewrites as
(cwfv) + (wfµ)

′′
= (cwfv) + (wfµ),

from which we get the solution of (3.11):c(x1) =
Aex1 + Be−x1 − w(x1)fµ(x1)

w(x1)fv(x1)
, a ≤ x1 ≤ b,

A, B : c(a) = ca, c(b) = cb.
(3.12)

1 In fact, through a simple change of variable, the same reasoning holds true whenever Σ1,2 are planes.
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Note that since w(a) = w(b) = 1, the values of A and B in (3.12) are independent of the weight function w. Also, note that,
as long as the value of c in (3.12) is admissible, and hence λ as in (3.1) gives an admissible Filippov sliding vector field, then
we must have

Aex1 + Be−x1 ≠ 0, for all x1 ∈ [a, b], (3.13)

as otherwise the resulting vector field would be 0 at some point, giving an equilibrium, which is excluded.

Now, with respect to either of the above minimization tasks (that is, minimizing either the H1 norm of wλ or of wfF), the
following questions are natural.

Questions 3.5.
(i) Can we choose w so that the solution of (3.5)–(3.9) gives us the bilinear and moments solutions? More generally, can we

interpret a given admissible solution as the minimum variation solution of (3.5)–(3.9) for some w?
(ii) Can we relate to each other the weight w and the reparametrization of time performed by ω?

As already remarked, in general, the boundary value problems (3.6) and (3.10) do not appear to be easy to solve exactly,
and probably onewould need to solve themnumerically. However, in the important special cases of Remarks 3.3 and 3.4 they
can be solved exactly. We clarify in Example 3.6 how we use these exact solutions to derive minimum variation solutions,
and answer the above questions on a concrete Example. Then, we will generalize our construction.

Example 3.6 (AnotherModel Problem). This is very similar to Example 2.1, except for the first component of the vector fields,
chosen so that there are no equilibria on the sliding segment. We have fi, i = 1, 2, 3, 4, taking values in R3:

f1(x) :=

 e−x1 + 1
−x1 + x2x3 + 1
x1 + x2 + 1

 , x ∈ R1, f2(x) :=

 e−x1 − 1
−x1 + x3 − 1
x1 + x2x3 + 2

 , x ∈ R2,

f3(x) :=

 −e−x1 + 1
−x1 + x2 + 2
x1 + x2x3 − 1

 , x ∈ R3, f4(x) :=

 −e−x1 + 2
−x1 + x3 − 2
x1 + x3 − 2

 , x ∈ R4,

where Σ1 = {x : x3 = 0}, Σ2 = {x : x2 = 0}, and so Σ = Σ1 ∩ Σ2 is the x1-axis. The admissible region for c is the same
as in Example 2.1, that is the triangle of Fig. 1, hence we have a = −1.2, b = 1.2, and ca = 0.8, cb = 0, and λ = µ + cv as
in (2.2). There is sliding motion on Σ from a to b.

(a) The minimum variation solution with weight w ≡ 1, with respect to λ, that is the solution in (3.8), is

cMV,λ =
1

∥v∥
2


Aex1 + Be−x1 − v⊤µ


,

with v⊤µ =
44
27x1 −

11
9 , ∥v∥

2
=

44
9 , and the constants A, B, so that cMV,λ(−1.2) = 0.8 and cMV,λ(1.2) = 0.

(b) The minimum variation solution with weight w ≡ 1, with respect to fF, that is the solution in (3.12) is

cMV,fF =
1
fv


Aex1 + Be−x1 − fµ(x1)


,

with fv = −
4
3 e

−x1 −
7
3 and fµ = −

10
9 x1e−x1 +

1
3 e

−x1 −
1
9x1 +

4
3 , and the constants A, B, so that cMV,fF(−1.2) = 0.8 and

cMV,fF(1.2) = 0.

In Fig. 3 we show the five functions c we discussed for this problem: moments, bilinear, triangular, and the two minimum
variation solutions (with weightw = 1). We also show the ‘‘broken-line’’ solution, corresponding to the selection of c given
by the path along the two other sides of the triangular region. In this case, all these solutions are admissible (all smooth,
except the broken line solution), and give different Filippov sliding vector fields, all smoothly exiting. The corresponding
vector fields are shown in Fig. 4.

We are finally ready to answer in the positive, on this example, Questions 3.5. The reason why we can answer positively
those questions is that there are no equilibria, and thus:

Aex1 + Be−x1

(fF)1 > 0,

where (fF)1 is the first component of any of the above vector fields (the second and third components being 0 in the present
case).

(i) In light of the above, we can choose the weight w so that the solution of (3.9) gives us any of the above solutions. In fact,
for any admissible c giving us a sliding vector field fF, we define the weight w, which gives c as the minimum variation
of (3.9), from

w(x) =
Aex1 + Be−x1

(fF)1
. (3.14)
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Fig. 3. Admissible region (x1, c) and moments, bilinear, triangular, broken-line, and minimum variation solutions of c .

Fig. 4. Sliding vector fields for moments, bilinear, triangular, broken-line, and minimum variation solutions.

By construction, using this weight w in the minimization of (3.9) will give us the function c which gave fF. In particular,
also the bilinear, triangular, andmoments solutions are in factweightedminimumvariation solutions. The ‘‘broken line’’
solution, not being smooth, cannot be obtained as solution of (3.9) with smooth w; nonetheless, we still formally define
its associated weight as above (it is attainable as the limit of smooth solutions).

(ii) As we know, the previously displayed vector fields (see Fig. 4) are all orbitally equivalent. In particular, it must be true
that any of the vector field is a multiple of the vector field obtained as minimum variation with respect to fF with weight
1. Because of (3.14), thus we must have

ω(x) =
1

w(x)
, (3.15)

where w(x) is the weight associated to the specific choice of fF under consideration; see (3.14). (In other words, in (3.2)
we are using fF1 = fMV –minimumvariationwith respect to fF withweightw = 1– and fF2 any of the previously obtained
sliding vector fields). In Fig. 5 we show the values of ω for the vector fields above. We observe that the moments and
bilinear solutions give quite similar functions ω. Also, observe that the broken-line solution gives (as expected) a non-
smooth factor ω. Looking at Fig. 5, we conclude that all possible values of ω must be within the upper and lower curves,
that is in between the functions ω of the triangular and broken-line solutions.

To conclude our discussion on this example, we observe that the broken-line solution takes the least amount of ‘‘time’’ to
travel from a to b:

tbroken ≈ 1.93 < tm ≈ 2.76 < tb ≈ 2.76 < tMV,fF ≈ 2.96 < tMV,λ ≈ 3.85 < ttr ≈ 6.55.

This was predictable, since – being all vector fields orbitally equivalent – we have that with respect to the time t given by
selecting cMV,fF , all other times come from dτ =

1
ω
dt , and therefore ‘‘the larger ω, the shorter the time’’ (see Fig. 5). The fact

that the broken-line solution gives the shortest time is also consistent with the general flavor of results in optimal control
theory, whereby it is known that, for linear problems with constraints, the optimal control (here, the value of c giving the
minimal time solution) lies on the boundary of the admissible region (see [14]). Likewise, the admissible solution taking the
longest time is the triangular solution.
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Fig. 5. Orbital equivalence factors ω for moments, bilinear, triangular, broken-line, and minimum variation with respect to λ.

3.2. Generalization

Example 3.6 was sufficiently simple that we were able to answer Questions 3.5 and to explicitly give the orbital equiva-
lency factorsω. At the same time, the process we used is fully general, and it can be used, for example, anytime the situation
of Remark 3.4 applies.

With the previous notation, we summarize it in the following theorem.

Theorem 3.7. Let Conditions 3.1 hold. Let Σ1 = {x : x2 = 0}, Σ2 = {x : x3 = 0}. In the notation of Conditions 3.1, let Σ

be the segment (a, b) on the x1-axis. Let the general solution for λ be as in (1.10), with the particular solution µ and the vector
v smoothly varying in Σ (for example, µ could be the moments solution λM), and let the smooth function c in (1.10) be subject
to the constraints α(x1) ≤ c(x1) ≤ β(x1), for all a ≤ x1 ≤ b. Let fF be any smooth Filippov sliding vector field on Σ , obtained
from smooth, admissible coefficients (for example, the moments’ vector field fM), in particular with a smooth admissible functionc in (1.10) so that λ = µ +cv at the exit points render the coefficients of the smoothly exiting Filippov vector field.

Assume that fv ≠ 0 on Σ , and consider the boundary value problem (3.11) with solution (3.12), and with A and B as there.
Assume that (3.13) holds.

(i) If

Aex1 + Be−x1

 fF(x1)1 > 0, for all x1 ∈ Σ , then the function

w(x1) =
Aex1 + Be−x1fF(x1)1 , (3.16)

is the weight function associated tofF. That is, this weight function w is such that the H1 minimization problem for wfF gives
the functionc as solution of (3.11).

(ii) On the other hand, let w be an arbitrary weight function as in (3.4), and let c be the smooth function in (3.12). This will be
admissible if and only if, for all x1 ∈ Σ , we have

c(x1) + w(x1)
fµ(x1)
fv(x1)

− β(x1) ≤ w(x1)
fµ(x1)
fv(x1)

≤c(x1) + w(x1)
fµ(x1)
fv(x1)

− α(x1), (3.17)

where w andc are an admissible weight and its associated solution in (3.11). When c is admissible, the resulting vector field
is orbitally equivalent to that associated toc, with orbital equivalence factor 1/w.

(iii) If (3.13) is violated, that is

Aex1 + Be−x1


= 0 at some x1 ∈ Σ , then there is no admissible sliding vector field obtained as

solution of the Euler–Lagrange equation, by minimization of the H1 norm of wfF, for any weight function w.

Proof. Statement (i) holds by construction. Indeed, since
fF(x1)1 = fµ +cfv , we seek the functionw for which (3.11) holds.

That is, we want w such that

c(x1) =
Aex1 + Be−x1 − w(x1)fµ(x1)w(x1)fv(x1)

,

which gives (3.16). Note that, sincec is admissible and the resultingλ at the exit points give the coefficients of the smoothly
exiting vector fields, then we have w(a) = w(b) = 1 because of the way A and B were found. To verify (3.17), we need to
check whether or not the function c one finds is admissible. Because of (3.12), we always have (for all x1 ∈ Σ):

c(x1)fv(x1) + fµ(x1)

w(x1) = Aex1 + Be−x1 , andc(x1)fv(x1) + fµ(x1)

 w(x1) = Aex1 + Be−x1 ,
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from which we get

c(x1) = (w(x1) − w(x1))
fµ(x1)
fv(x1)

+c(x1).
The constraint α(x1) ≤ c(x1) ≤ β(x1) can thus be rewritten as in (3.17). The statement on orbital equivalence is obvious.
Finally, validity of the statement (iii) is simply because, in case (3.13) is violated, the resulting minimum variation vector
field would give an equilibrium, which is excluded. �

Remark 3.8. We note that the point (iii) of Theorem 3.7 does not contradict Remark 2.2. In fact, in order to find a minimum
solution for (3.9), we have solved its associated Euler–Lagrange equation without enforcing the constraint on c (ensuring
that the corresponding λ = µ + cv has nonnegative components adding to one). Therefore, it could happen that the un-
constrained solution does not lie completely in the admissibility set, as it happens when, as proven above, (3.13) is violated.
In other words, the unique solution of the constrained minimization problemwould be a boundary solution with respect to
the admissibility set, thus not solving the Euler–Lagrange equation associated to the unconstrained problem.

Remark 3.9. When Fv = 0 in (3.10), and in particular fv = 0 in (3.11), the technique based onminimization of the H1-norm
of wfF gives a singular differential equation. We have not explored in detail this situation (which would require analyzing
the nature of the singular points), but observe that in the case of Fv ≡ 0 for all a ≤ s ≤ b in (3.10), then the minimization
task for wfF is surely ill-posed. The next example clarifies this statement.

Example 3.10 ([9]). Consider the following problem in R3:

f1(x) :=


√
2
8

sin
π

4
− x23


√
2
8

cos
π

4
− x23


x21 + x22 + 1

 , f2(x) :=


2
√
2 sin


3
4
π − x23


√
2 cos


3
4
π − x23


x21 + x22 + 1

 ,

f3(x) :=


√
2 sin

π

4
− 2x23


√
2 cos

π

4
− 2x23


x21 + x22 + 1

 , f4(x) :=

 −2
−1

x21 + x22 + 1

 ,

Σ1 := {x ∈ R3
: x1 = 0}, Σ2 := {x ∈ R3

: x2 = 0} and Σ := Σ1 ∩ Σ2 is just the x3-axis, which is in particular attractive
in the segment γ := {−

√
π/2 < x3 <

√
π/2} (the endpoints being generic first order exit points).

In this problem, we stress that fv(x3) = 0 for all x3 ∈ γ :
x21 + x22 + 1 x21 + x22 + 1 x21 + x22 + 1 x21 + x22 + 1

 
x∈Σ

v = 1
⊤v = 0,

and further – no matter what choice of coefficients we make – all sliding vector fields will always be: fF(x) =


0
0
1


(that is,

ẋ3 = 1). As a consequence, the minimum variation requirement in (3.9) is ill-posed, as any λ solution of (1.6) would provide
the same sliding vector field. The minimum variation solution requirement in (3.5) is feasible, though, and indeed not all
different choices of λ will provide sets of coefficients that give the exiting vector fields.

The admissibility region for this problem (found from (1.11) using the moments solution as particular solution and
the smooth eigenvector v of Lemma 1.1), is the region comprised between the two curves in Fig. 6 (these are α and β
in (1.11)). Looking at Fig. 6, it is clear that, when the dynamics enters or exits from sliding motion on Σ , there are intervals
of admissible values for c in (1.10). At the same time, for a Filippov vector field to exit smoothly from Σ , it is necessary
that its corresponding λ coefficient coincides with λm at first order exit points (see [9]). Therefore, there is only one way to
enter/exit smoothly from Σ in this specific problem, and it is given by the end values of c selected by the moments solution
in Fig. 6. For comparison, we also show the values of c selected by the bilinear solution; since the end values do not coincide
with those of the moments solution, we infer that the bilinear solution cannot be a minimum variation solution nor can be
smoothly exiting. This last observation is corroborated by the results in [9].

3.3. Revisiting Example 2.1: singular weights

We conclude our discussion on minimization of the H1 variation of admissible solutions, with some considerations on
the case of sliding vector fields with equilibria on Σ . In particular, we reconsider Example 2.1. That was a situation where –
unlike the scenario of Conditions 3.1 – every smooth sliding vector field of Filippov type had an equilibrium on Σ . Suppose
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Fig. 6. Curves of α(x3), β(x3) defining the admissible region (1.11) for Example 3.10, and moments and bilinear solutions.

that this is indeed the case, and thus consider the following scenario, still inR3, and still considering as discontinuity surfaces
Σ1 = {x : x2 = 0}, and Σ2 = {x : x3 = 0} (see Remark 3.4).

Conditions 3.11 (Equilibrium on Σ).
(i) The sliding manifold is the segment Σ = {x1 : a ≤ x1 ≤ b}.
(ii) For a < x1 < b, Σ is attractive, any smooth Filippov sliding vector field fF has one – and just one – equilibrium x̄ on Σ (the

value of x̄ depends on the choice of vector field), which is unstable and generic.2 Let x̄ =


x̄1
0
0


, so that motion on Σ proceeds

from any left neighborhood of x̄1 to a (right-to-left) and from any right neighborhood of x̄1 to b (left-to-right).
(iii) The points x1 = a and x1 = b are generic first order exit points.

Obviously, under Conditions 3.11, different sliding vector fields cannot be orbitally equivalent, and the dynamics on Σ

differ (unless all possible sliding vector field share the same equilibrium). Indeed, in the case of Conditions 3.11, and with
the above notation, we have this result.

Theorem 3.12. Assume that fv ≠ 0 for x1 ∈ [a, b], and that, for w = 1, the solution cMV,fF in (3.12) of the boundary value
problem (3.11) is well defined and gives an admissible smooth Filippov sliding vector field fF1. Then, the following holds.
(i) The function

Aex1 + Be−x1

is 0 at the point x̄1, equilibrium of (fF1)1 (cfr. with (3.13)).
(ii) The only admissible weight functions w, satisfying (3.4) and giving an admissible solution c of (3.12), are those for which

the resulting vector field has the equilibrium at x̄.
(iii) To any other sliding vector field fF formed from an admissible c, we can associate a singular weight w, namely one which

goes through 0 and changes sign at the value x̄1, and that has a first order pole at the zero of (fF)1. As a consequence, there is
a singular orbital pseudo-equivalence factor ω, relating fF and fF1, given by 1/w; ω is 0 at the equilibrium of (fF)1 and has
a first order pole at x̄1.

Proof. By hypothesis, we have that cMV,fF =
Aex1+Be−x1−fµ(x1)

fv(x1)
, and therefore,

fF1 =

fµ(x1) + cMV,fF(x1)fv(x1)
0
0


=

Aex1 + Be−x1

0
0

 ,

fromwhich point (i) follows. To verify point (ii), suppose therewere aweight functionw satisfying (3.4), giving an admissible
solution cw of (3.12), and such that the resulting vector field has an equilibrium at a point different from x̄. Then, we must
have

w(x1) =
Aex1 + Be−x1

fµ(x1) + cw(x1)fv(x1)
. (3.18)

But, the denominator of this expression vanishes at the equilibrium of the vector field fµ(x1) + cw(x1)fv(x1), and since – by
hypothesis – this is different from (x̄)1, we reach the contradiction that w satisfies (3.4), and the claim follows.

2 By this, we mean that d
dx1

(fF)1


x1=x̄1

≠ 0.
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Fig. 7. Moments and triangular orbital pseudo-equivalence factors, with respect to fF1 for Example 2.1.

Finally, point (iii) follows at once from the expression (3.18). �

We illustrate Theorem 3.12, by considering the orbital pseudo-equivalence factors for the moments and the triangular
solutions of Example 2.1. See Fig. 7.

4. Conclusions

In this work, we considered selection of a smooth sliding vector field, in the class of Filippov sliding vector fields, on
a co-dimension 2 manifolds in R3. It is well understood that there is a one-degree-of-freedom algebraic ambiguity in this
selection process. To resolve this ambiguity, we reformulated the problem as one in which we seek a minimum variation
solution in the H1-norm for either the coefficients entering in the convex combination, or for the sliding vector field itself.
We explicitly solved the resulting Euler–Lagrange equation on somemodel problems, and compared the resultingminimum
variation solution(s) to other sliding vector fields previously considered in the literature (most notably, the bilinear and
moments solutions). Moreover, we have also proved, under suitable assumptions, that a properly weighted minimum
variation solution coincides with other smoothly varying sliding vector fields (say, the moments method), the weight itself
providing a time reparametrization from one vector field to the other.

Although the methodology proposed in this work does not seem to be of trivial, nor universal, applicability (already in
R3), it provides a promising alternative to existing approaches in case the ‘‘entry’’ and ‘‘exit’’ points of sliding motion are
known. In fact, it is our opinion that the present minimum-variation ideas can eventually provide insight into appropriate
minimality properties of a Filippov sliding vector field.

The extension of our approach to the case of systems in R4 (and beyond) presents some very interesting and challenging
mathematical and modeling issues. We anticipate studying these in future work.
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